Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A New Modified Carbon Paste Electrode for Selective Determination of Chromium(III) in Pharmaceutical Drugs and Food Samples

Author(s): Safa S. EL-Sanafery*, Khaled M. Hussein, Ashraf A. Abbas, M. M. Omar and Gehad G. Mohamed

Volume 20, Issue 9, 2024

Published on: 10 May, 2024

Page: [646 - 662] Pages: 17

DOI: 10.2174/0115734110300593240325060533

Price: $65

Abstract

Background and Objective: This study presents a novel potentiometric method for the precise, accurate, selective, and rapid determination of Cr(III) ion concentration in different samples.

Methods: A new ionophore, namely macrocyclic tetramide ionophore (MCTA), was synthesized through an inexpensive and straightforward approach, yielding a high-quality product. The (MCTA) ionophore was utilized as the active center in the preparation of modified carbon paste electrodes (MCPEs) to quantify the Cr(III) ion. The paste was made by adding graphite, MCTA, and plasticizer and mixing them in varying weight percent ratios.

Results: The proposed electrodes, I and II, exhibited a trivalent Nernstian response of 20.029 ±0.57 and 20.3±0.56 mV decade-1, respectively, with linearity of 1.0x10-7 – 1.0x10-2 and 1.0x10-5 – 1.0x10-2 mol L-1. Electrodes I and II were examined for their pH, response time, and thermal stability. In comparison to other mono-, bi-, and trivalent cations, starch, and sugars, the electrodes demonstrated a high degree of selectivity for Cr(III). The modified electrodes were used to determine the concentration of Cr(III) in various real samples, including drug tablets, juice extractions, and tap water, with acceptable recovery values.

Conclusion: The results were compared with those obtained using the previously reported method, with no significant difference observed between them, as indicated by the F and t-test values. The data showed good accuracy and precision, as well as a high percentage of recovery. The adsorption capacity of the MCTA ionophore towards Cr(III) ions was also examined.

Graphical Abstract

[1]
Genchi, G.; Lauria, G.; Catalano, A.; Carocci, A.; Sinicropi, M.S. The double face of metals: The intriguing case of chromium. Appl. Sci. (Basel), 2021, 11(2), 638.
[http://dx.doi.org/10.3390/app11020638]
[2]
Yang, L.; Zhang, Z.; Zhang, C.; Li, S.; Liu, G.; Wang, X. An excellent multifunctional photocatalyst with a polyoxometalate–viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front., 2022, 9(18), 4824-4833.
[http://dx.doi.org/10.1039/D2QI00838F]
[3]
Táng, S.; Gao, Y.; Han, S.; Chi, J.; Zhang, Z.; Liu, G. A kind of complex-based electrocatalytic sensor for monitoring the reduction of Cr(VI) by organic/inorganic reductants. Polyhedron, 2022, 223, 115944.
[http://dx.doi.org/10.1016/j.poly.2022.115944]
[4]
Orescanin, V.; Mikelic, L.; Lulic, S.; Rubcic, M. Determination of Cr(III) and Cr(VI) in industrial and environmental liquid samples by EDXRF method. Anal. Chim. Acta, 2004, 527(2), 125-129.
[http://dx.doi.org/10.1016/j.aca.2004.09.027]
[5]
Firdaus, M.L.; Alwi, W.; Trinoveldi, F.; Rahayu, I.; Rahmidar, L.; Warsito, K. Determination of chromium and iron using digital image-based colorimetry. Procedia Environ. Sci., 2014, 20, 298-304.
[http://dx.doi.org/10.1016/j.proenv.2014.03.037]
[6]
Hirata, S.; Honda, K.; Shikino, O.; Maekawa, N.; Aihara, M. Determination of chromium(III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochim. Acta B At. Spectrosc., 2000, 55(7), 1089-1099.
[http://dx.doi.org/10.1016/S0584-8547(00)00169-5]
[7]
Achmad, R.; Budiawan, E.I.A.; Auerkari, E. Effects of chromium on human body. Annu. Res. Rev. Biol., 2017, 13(2), 1-8.
[http://dx.doi.org/10.9734/ARRB/2017/33462]
[8]
Rao, J.R.; Sant, B.R. Simultaneous gravimetric determination of aluminium and chromium in chrome ores. Anal. Chim. Acta, 1971, 53(1), 189-191.
[http://dx.doi.org/10.1016/S0003-2670(01)80086-6]
[9]
Szekeres, L. Determination of chromium by EDTA titration. Microchem. J., 1972, 17(3), 360-363.
[http://dx.doi.org/10.1016/0026-265X(72)90075-6]
[10]
Roverso, M.; Di Marco, V.; Favaro, G.; Di Gangi, I.M.; Badocco, D.; Zerlottin, M.; Refosco, D.; Tapparo, A.; Bogialli, S.; Pastore, P. New insights in the slow ligand exchange reaction between Cr(III)-EDTA and Fe(III), and direct analysis of free and complexed EDTA in tannery wastewaters by liquid chromatography - Tandem mass spectrometry. Chemosphere, 2021, 264(Pt 1), 128487.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128487] [PMID: 33038755]
[11]
Michalski, R. Trace level determination of Cr(III)/Cr(VI) in water samples using ion chromatography with UV detection. J. Liq. Chromatogr. Relat. Technol., 2005, 28(18), 2849-2862.
[http://dx.doi.org/10.1080/10826070500269901]
[12]
Tsai, M.J.; Liao, K.S.; Hsu, L.J.; Wu, J.Y. A luminescent Cd(II) coordination polymer as a fluorescence-responsive sensor for enhancement sensing of Al3+ and Cr3+ ions and quenching detection of chromium(VI) oxyanions. J. Solid State Chem., 2021, 304, 122564.
[http://dx.doi.org/10.1016/j.jssc.2021.122564]
[13]
Diana, R.; Caruso, U.; Di Costanzo, L.; Gentile, F.S.; Panunzi, B. Fluorescence pH-dependent sensing of zinc (II) and chromium (III) cations by a tripodal ligand and exploration of emission response in solution and in the solid state. Dyes Pigments, 2021, 193, 109567.
[http://dx.doi.org/10.1016/j.dyepig.2021.109567]
[14]
Mao, J.; Wang, L.; Dou, W.; Tang, X.; Yan, Y.; Liu, W. Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Org. Lett., 2007, 9(22), 4567-4570.
[http://dx.doi.org/10.1021/ol7020687] [PMID: 17900133]
[15]
Mahato, P.; Saha, S.; Suresh, E.; Di Liddo, R.; Parnigotto, P.P.; Conconi, M.T.; Kesharwani, M.K.; Ganguly, B.; Das, A. Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe. Inorg. Chem., 2012, 51(3), 1769-1777.
[http://dx.doi.org/10.1021/ic202073q] [PMID: 22235801]
[16]
Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl. Mater. Interfaces, 2013, 5(24), 13242-13247.
[http://dx.doi.org/10.1021/am4042355] [PMID: 24274643]
[17]
Anderson, R.A.; Roussel, A.M.; Zouari, N.; Mahjoub, S.; Matheau, J.M.; Kerkeni, A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J. Am. Coll. Nutr., 2001, 20(3), 212-218.
[http://dx.doi.org/10.1080/07315724.2001.10719034] [PMID: 11444416]
[18]
Byrdy, F.A.; Olson, L.K.; Vela, N.P.; Caruso, J.A. Chromium speciation by anion-exchange high-performance liquid chromatography with both inductively coupled plasma atomic emission spectroscopic and inductively coupled plasma mass spectrometric detection. J. Chromatogr. A, 1995, 712(2), 311-320.
[http://dx.doi.org/10.1016/0021-9673(95)00528-U] [PMID: 7581851]
[19]
Martínez-Bravo, Y.; Roig-Navarro, A.F.; López, F.J.; Hernández, F. Multielemental determination of arsenic, selenium and chromium(VI) species in water by high-performance liquid chromatography–inductively coupled plasma mass spectrometry. J. Chromatogr. A, 2001, 926(2), 265-274.
[http://dx.doi.org/10.1016/S0021-9673(01)01062-7] [PMID: 11556332]
[20]
Kotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut., 2000, 107(3), 263-283.
[http://dx.doi.org/10.1016/S0269-7491(99)00168-2] [PMID: 15092973]
[21]
Puzon, G.J.; Tokala, R.K.; Zhang, H.; Yonge, D.; Peyton, B.M.; Xun, L. Mobility and recalcitrance of organo–chromium(III) complexes. Chemosphere, 2008, 70(11), 2054-2059.
[http://dx.doi.org/10.1016/j.chemosphere.2007.09.010] [PMID: 17959226]
[22]
Markiewicz, B.; Komorowicz, I.; Sajnóg, A.; Belter, M.; Barałkiewicz, D. Chromium and its speciation in water samples by HPLC/ICP-MS – technique establishing metrological traceability: A review since 2000. Talanta, 2015, 132, 814-828.
[http://dx.doi.org/10.1016/j.talanta.2014.10.002] [PMID: 25476383]
[23]
Tang, A.N.; Jiang, D.Q.; Jiang, Y.; Wang, S.W.; Yan, X.P. Cloud point extraction for high-performance liquid chromatographic speciation of Cr(III) and Cr(VI) in aqueous solutions. J. Chromatogr. A, 2004, 1036(2), 183-188.
[http://dx.doi.org/10.1016/j.chroma.2004.02.065] [PMID: 15146920]
[24]
Saraiva, M.; Jitaru, P.; Sloth, J.J. Speciation analysis of Cr(III) and Cr(VI) in bread and breakfast cereals using species-specific isotope dilution and HPLC-ICP-MS. J. Food Compos. Anal., 2021, 102, 103991.
[http://dx.doi.org/10.1016/j.jfca.2021.103991]
[25]
Fouladlou, S.; Faraji, H.; Shahbaazi, H.; Moghimi, A.; Azizinezhad, F. Deep eutectic solvent-based continuous sample drop flow microextraction combined with electrothermal atomic absorption spectrometry for speciation and determination of chromium ions in aqueous samples. Microchem. J., 2021, 162, 105834.
[http://dx.doi.org/10.1016/j.microc.2020.105834]
[26]
Elahi, F.; Arain, M.B.; Khan, W.A.; Shah, N.; Kazi, T.G. Speciation and determination of chromium by ultrasound-assisted deep eutectic solvent liquid–liquid microextraction followed by flame atomic absorption spectrometry. Chem. Pap., 2021, 75(2), 717-724.
[http://dx.doi.org/10.1007/s11696-020-01337-5]
[27]
Pasullean, B.; Davidson, C.M.; Littlejohn, D. On-line preconcentration of chromium(III) and speciation of chromium in waters by flame atomic absorption spectrometry. J. Anal. At. Spectrom., 1995, 10(3), 241.
[http://dx.doi.org/10.1039/ja9951000241]
[28]
Sperling, M.; Xu, S.; Welz, B. Determination of chromium(III) and chromium(VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Anal. Chem., 1992, 64(24), 3101-3108.
[http://dx.doi.org/10.1021/ac00048a007]
[29]
Soylak, M.; Karatepe, A.; Elçi, L.; Doğan, M. Column preconcentration/separation and atomic absorption spectrometric determinations of some heavy metals in table salt samples using amberlite xad-1180. Turk. J. Chem., 2003, 27(2), 235-242.
[30]
Tüzen, M.; Soylak, M. Multiwalled carbon nanotubes for speciation of chromium in environmental samples. J. Hazard. Mater., 2007, 147(1-2), 219-225.
[http://dx.doi.org/10.1016/j.jhazmat.2006.12.069] [PMID: 17258392]
[31]
Rosales, R.M.; Faz, A.; Gómez-Garrido, M.; Muñoz, M.A.; Murcia, F.J.; González, V.; Acosta, J.A. Geochemical speciation of chromium related to sediments properties in the riverbed contaminated by tannery effluents. J. Soils Sediments, 2017, 17(5), 1437-1448.
[http://dx.doi.org/10.1007/s11368-016-1412-7]
[32]
Sun, Z.; Liang, P. Determination of Cr(III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry. Mikrochim. Acta, 2008, 162(1-2), 121-125.
[http://dx.doi.org/10.1007/s00604-007-0942-0]
[33]
Van Tan, L.; Quang Hieu, T.; Van Cuong, N. Spectrophotometric determination of Cr(III) and Pb(II) using their complexes with 5,11,17,23-Tetra[(2-ethyl acetoethoxyphenyl)(azo)phenyl]calix[4] arene. J. Anal. Methods Chem., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/860649] [PMID: 25984379]
[34]
Ghaedi, M.; Asadpour, E.; Vafaie, A. Sensitized spectrophotometric determination of Cr(III) ion for speciation of chromium ion in surfactant media using α-benzoin oxime. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 182-188.
[http://dx.doi.org/10.1016/j.saa.2005.04.049] [PMID: 16344251]
[35]
Neto, J.A.S.; Oliveira, J.A.N.; Siqueira, L.M.C.; Alves, V.N. Selective extraction and determination of chromium concentration using Luffa cylindrica fibers as sorbent and detection by FAAS. J. Chem., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/1679419]
[36]
Alves, V.N.; Coelho, N.M.M. Selective extraction and preconcentration of chromium using Moringa Oleifera husks as biosorbent and flame atomic absorption spectrometry. Microchem. J., 2013, 109(109), 16-22.
[http://dx.doi.org/10.1016/j.microc.2012.05.030]
[37]
Zayed, M.A.; Abbas, A.A.; Mahmoud, W.H.; Ali, A.E.; Mohamed, G.G. Development and surface characterization of a bis(aminotriazoles) derivative based renewable carbon paste electrode for selective potentiometric determination of Cr(III) ion in real water samples. Microchem. J., 2020, 159, 105478.
[http://dx.doi.org/10.1016/j.microc.2020.105478]
[38]
Bakker, E.; Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Analyt. Chem., 2005, 24(3), 199-207.
[http://dx.doi.org/10.1016/j.trac.2005.01.003] [PMID: 16642205]
[39]
Guziński, M.; Lisak, G.; Kupis, J.; Jasiński, A.; Bocheńska, M. Lead(II)-selective ionophores for ion-selective electrodes: A review. Anal. Chim. Acta, 2013, 791, 1-12.
[http://dx.doi.org/10.1016/j.aca.2013.04.044] [PMID: 23890601]
[40]
Khoshnood, R.S.; Ebrahimi, M.; Abedi, M.R.; Abedi, M.R. Fabrication of carbon paste electrodes modified with multi-walled carbon nanotubes for the potentiometric determination of chromium(III). J. Anal. Chem., 2020, 75(7), 951-957.
[http://dx.doi.org/10.1134/S1061934820070072]
[41]
Švancara, I.; Foret, P.; Vytřas, K. A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants. Talanta, 2004, 64(4), 844-852.
[http://dx.doi.org/10.1016/j.talanta.2004.03.062] [PMID: 18969679]
[42]
Koudelková, Z.; Syrový, T.; Ambrožová, P.; Moravec, Z.; Kubáč, L.; Hynek, D.; Richtera, L.; Adam, V. Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors (Basel), 2017, 17(8), 1832.
[http://dx.doi.org/10.3390/s17081832] [PMID: 28792450]
[43]
Ghaedi, M.; Shokrollahi, A.; Salimibeni, A.R.; Noshadi, S.; Joybar, S. Preparation of a new chromium(III) selective electrode based on 1-[(2-hydroxy ethyl) amino]-4-methyl-9H-thioxanthen-9-one as a neutral carrier. J. Hazard. Mater., 2010, 178(1-3), 157-163.
[http://dx.doi.org/10.1016/j.jhazmat.2010.01.057] [PMID: 20362393]
[44]
Paniagua, A.R.; Vázquez, M.D.; Tascón, M.L.; Batanero, P.S. Determination of chromium(VI) and chromium(III) by using a diphenylcarbazide‐modified carbon paste electrode. Electroanalysis, 1993, 5(2), 155-163.
[http://dx.doi.org/10.1002/elan.1140050211]
[45]
Abu-Shawish, H.M.; Saadeh, S.M.; Dalloul, H.M.; Najri, B.; Athamna, H.A. Modified carbon paste electrode for potentiometric determination of silver(I) ions in burning cream and radiological films. Sens. Actuators B Chem., 2013, 182, 374-381.
[http://dx.doi.org/10.1016/j.snb.2013.03.018]
[46]
Zhou, W.; Chai, Y.; Yuan, R.; Guo, J.; Wu, X. Organically nanoporous silica gel based on carbon paste electrode for potentiometric detection of trace Cr(III). Anal. Chim. Acta, 2009, 647(2), 210-214.
[http://dx.doi.org/10.1016/j.aca.2009.06.007] [PMID: 19591707]
[47]
Abu-Shawish, H.M.; Saadeh, S.M.; Hartani, K.; Dalloul, H.M. A comparative study of chromium(III) ion-selective electrodes based on N,N-bis(salicylidene)-o-phenylenediaminatechromium(III). J. Indian Chem. Soc., 2009, 6(4), 729-737.
[http://dx.doi.org/10.1007/BF03246163]
[48]
Naeimi, H.; Rahmatinejad, S. Nano magnetite supported phthalocyanine complexes of Cu(II) and Fe(II) as new heterogeneous effective catalysts for synthesis of β-amido ketones. J. Coord. Chem., 2018, 71(24), 4210-4227.
[http://dx.doi.org/10.1080/00958972.2018.1542493]
[49]
Barati, Z.; Masrournia, M.; Es’haghi, Z.; Jahani, M.; Ebrahimi, J. Selective determination of CR(III) by modified carbon nanotube paste electrode: A potentiometric study. J. Chem. Technol. Biotechnol., 2022, 97(5), 1234-1239.
[http://dx.doi.org/10.1002/jctb.7015]
[50]
Abbas, A.A. Convenient method for the synthesis of macrocyclic teteraamides, acyclic diamides, their lariat derivatives and Bis-macrocyclic tetraamides. Synthesis, 2004, 3(3), 419-428.
[http://dx.doi.org/10.1055/s-2004-815938]
[51]
Ali, T.A.; Mohamed, G.G.; El-Dessouky, M.M.I.; Abou El Ella, S.M.; Mohamed, R.T.F. Modified carbon paste ion selective electrodes for the determination of iron(III) in water, soil and fish tissue samples. Int. J. Electrochem. Sci., 2013, 8(1), 1469-1486.
[http://dx.doi.org/10.1016/S1452-3981(23)14112-5]
[52]
Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev., 1998, 98(4), 1593-1688.
[http://dx.doi.org/10.1021/cr970113+] [PMID: 11848943]
[53]
Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic Cations (Technical Report). Pure Appl. Chem., 2000, 72(10), 1851-2082.
[http://dx.doi.org/10.1351/pac200072101851]
[54]
Vlascici, D.; Popa, I.; Chiriac, V.A.; Făgădar-Cosma, G.; Popovici, H.; Fagadar-Cosma, E. Potentiometric detection and removal of copper using porphyrins. Chem. Cent. J., 2013, 7(1), 111.
[http://dx.doi.org/10.1186/1752-153X-7-111] [PMID: 23829792]
[55]
Abdel-Rahman, T.; Abdellseid, A.M. Evaluation of heavy metals contamination levels in fruit juices samples collected from El-Beida city, Libya, World Academy of Science. Eng. Technol., 2013, 77, 578-580.
[56]
Zamani, H.A.; Rajabzadeh, G.; Masrornia, M.; Dejbord, A.; Ganjali, M.R.; Seifi, N. Determination of Cr3+ ions in biological and environmental samples by a chromium(III) membrane sensor based on 5-amino-1-phenyl-1H-pyrazole-4-carboxamide. Desalination, 2009, 249(2), 560-565.
[http://dx.doi.org/10.1016/j.desal.2009.01.023]
[57]
Abbaspour, A.; Izadyar, A. Chromium(III) ion-selective electrode based on 4-dimethylaminoazobenzene. Talanta, 2001, 53(5), 1009-1013.
[http://dx.doi.org/10.1016/S0039-9140(00)00593-2] [PMID: 18968191]
[58]
Sharma, R.K.; Goel, A. Development of a Cr(III)-specific potentiometric sensor using Aurin tricarboxylic acid modified silica. Anal. Chim. Acta, 2005, 534(1), 137-142.
[http://dx.doi.org/10.1016/j.aca.2004.11.026]
[59]
Gholivand, M.B.; Raheedayat, F. Chromium(III) ion selective electrode based on oxalic acid BiS(Cyclohexylidene hydrazide). Electroanalysis, 2004, 16(16), 1330-1335.
[http://dx.doi.org/10.1002/elan.200302956]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy