Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Investigating the Effects of Urea-Zinc Sulfate-L Phenylalanine on the Corrosion Inhibition of Mild Steel Exposed to pH-4 Sulfuric Acid

In Press, (this is not the final "Version of Record"). Available online 10 May, 2024
Author(s): Geetha Manoharan*, Rajesh Nithyanandam, Jenish Soosai Antony and Susai Rajendran
Published on: 10 May, 2024

DOI: 10.2174/0115734110296231240501170801

Price: $95

Abstract

Background: Corrosion of mild steel is a risk to material and stability. The practice of corrosion inhibitors is a cost-effective corrosion modification method for mild steel. Organic inhibitors rich in electrons might have an excellent ability to prevent corrosion. This study aims to assess the inhibitory effect of the mixture of Urea, Zinc Sulfate, and L-Phenylalanine, which has a high electron density.

Methods: MS corrosion was experimentally performed using H2SO4 at a pH of 4. Different gravimetric and conventional techniques, such as polarization, AC impedance AFM, UV, and fluorescence, were used to examine the studied data.

Results: According to gravimetric measurements, this combination produced 93% effective inhibition. The findings of the impedance test proved that the mixture of inhibitors that was adsorbed on the metal surface effectively prevented corrosion.

Conclusion: Likewise, according to the Polarization measurements, the inhibitor exhibits mixed-type performance with significant cathodic activity. UV, Fluorescence, and AFM findings showed that MS corrosion was suppressed because the inhibitor molecule adhered to the metal's surface and reduced.

[1]
Muthamma, K.; Kumari, P.; Lavanya, M.; Rao, S.A. Corrosion inhibition of mild steel in acidic media by N-[(3,4-dimethoxyphenyl) methyleneamino]-4-hydroxy-benzamide. J. Bio Tribocorros., 2021, 7(1), 10.
[http://dx.doi.org/10.1007/s40735-020-00439-7]
[2]
Qiang, Y.; Guo, L.; Zhang, S.; Li, W.; Yu, S.; Tan, J. Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl. Sci. Rep., 2016, 6(1), 33305.
[http://dx.doi.org/10.1038/srep33305] [PMID: 27628901]
[3]
Ashassi-Sorkhabi, H.; Seifzadeh, D.; Hosseini, M.G. EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenothiazin-3-one, 7-dimethylamin on mild steel corrosion in 1M HCl solution. Corros. Sci., 2008, 50(12), 3363-3370.
[http://dx.doi.org/10.1016/j.corsci.2008.09.022]
[4]
Aljourani, J.; Raeissi, K.; Golozar, M.A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corros. Sci., 2009, 51(8), 1836-1843.
[http://dx.doi.org/10.1016/j.corsci.2009.05.011]
[5]
Cheng, S.; Chen, S.; Liu, T.; Chang, X.; Yin, Y. Carboxymethylchitosan+Cu2+ mixture as an inhibitor used for mild steel in 1M HCl. Electrochim. Acta, 2007, 52(19), 5932-5938.
[http://dx.doi.org/10.1016/j.electacta.2007.03.038]
[6]
Rahimi, A.; Abdouss, M.; Farhadian, A.; Guo, L.; Neshati, J. Development of a novel thermally stable inhibitor based on furfuryl alcohol for mild steel corrosion in a 15% hcl medium for acidizing application. Ind. Eng. Chem. Res., 2021, 60(30), 11030-11044.
[http://dx.doi.org/10.1021/acs.iecr.1c01946]
[7]
Hooshmand Zaferani, S. Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes – A review. J. Environ. Chem. Eng., 2013, 1(4), 652-657.
[http://dx.doi.org/10.1016/j.jece.2013.09.019]
[8]
Mwakalesi, A.J. Corrosion inhibition of mild steel in sulphuric acid solution with Tetradeniariparia leaves aqueous extract: Kinetics and thermodynamics. Biointerface Res. Appl. Chem., 2022, 13(1), 32.
[http://dx.doi.org/10.33263/BRIAC131.032]
[9]
Arockiasamy, P.; Sheela, X.Q.R.; Thenmozhi, G.; Franco, M.; Sahayaraj, J.W.; Santhi, R.J. Evaluation of corrosion inhibition of mild steel in 1 m hydrochloric acid solution bymollugocerviana. Int. J. Corros., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/679192]
[10]
Zakeri, A.; Bahmani, E.; Aghdam, A.S.R. Plant extracts as sustainable and green corrosion inhibitors for protection of ferrous metals in corrosive media: A mini review. Corrosion Communications, 2022, 5, 25-38.
[http://dx.doi.org/10.1016/j.corcom.2022.03.002]
[11]
Anand, B.; Balasubramanian, V. Corrosion behaviour of mild steel in acidic medium in presence of aqueous extract ofallamandablanchetii. E-J. Chem., 2011, 8(1), 226-230.
[http://dx.doi.org/10.1155/2011/345095]
[12]
Ebenso, E.E.; Arslan, T.; Kandemırlı, F.; Love, I.; Öğretır, C.; Saracoğlu, M.; Umoren, S.A. Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium. Int. J. Quantum Chem., 2010, 110(14), 2614-2636.
[http://dx.doi.org/10.1002/qua.22430]
[13]
Khan, M.Z.H.; Aziz, M.A.; Hasan, M.R.; Al-Mamun, M.R. The role of drug as corrosion inhibitor for mild steel surface characterization by SEM, AFM, and FTIR. Anti-Corros. Methods Mater., 2016, 63(4), 308-315.
[http://dx.doi.org/10.1108/ACMM-11-2015-1597]
[14]
Bai, Bing.; Chen, Jing.; Bai, Fan. Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues. Environ. Technol. Innov., 2024, 33, 103485.
[15]
Pan, C.; He, J.; Zhu, J.; Li, S.; Li, W.; Yang, W.; Li, W. Corrosion control by carbon-based nanomaterials: A review. ACS Appl. Nano Mater., 2024, 7(3), 2515-2528.
[http://dx.doi.org/10.1021/acsanm.3c05547]
[16]
Faustin, M.; Maciuk, A.; Salvin, P.; Roos, C.; Lebrini, M. Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies. Corros. Sci., 2015, 92, 287-300.
[http://dx.doi.org/10.1016/j.corsci.2014.12.005]
[17]
Yıldız, R.; Döner, A.; Doğan, T.; Dehri, İ. Experimental studies of 2-pyridinecarbonitrile as corrosion inhibitor for mild steel in hydrochloric acid solution. Corros. Sci., 2014, 82, 125-132.
[http://dx.doi.org/10.1016/j.corsci.2014.01.008]
[18]
Chaieb, E.; Bouyanzer, A.; Hammouti, B.; Benkaddour, M. Inhibition of the corrosion of steel in 1M HCl by eugenol derivatives. Appl. Surf. Sci., 2005, 246(1-3), 199-206.
[http://dx.doi.org/10.1016/j.apsusc.2004.11.011]
[19]
Hamed, E.; Abd El-REhim, S.S.; El-Shahat, M.F.; Shaltot, A.M. Corrosion inhibition of nickel in H2SO4 solution by alanine. Mater. Sci. Eng. B, 2012, 177(5), 441-448.
[http://dx.doi.org/10.1016/j.mseb.2012.01.016]
[20]
Alhaffar, M.T.; Umoren, S.A.; Obot, I.B.; Ali, S.A. Isoxazolidine derivatives as corrosion inhibitors for low carbon steel in HCl solution: Experimental, theoretical and effect of KI studies. RSC Advances, 2018, 8(4), 1764-1777.
[http://dx.doi.org/10.1039/C7RA11549K] [PMID: 35542624]
[21]
Saliyan, V.R.; Adhikari, A.V. Quinolin-5-ylmethylene-3-[8-(trifluoromethyl)quinolin-4-yl]thiopropanohydrazide as an effective inhibitor of mild steel corrosion in HCl solution. Corros. Sci., 2008, 50(1), 55-61.
[http://dx.doi.org/10.1016/j.corsci.2006.06.035]
[22]
Verma, D.K.; Dewangan, Y.; Dewangan, A.K.; Asatkar, A. Heteroatom-based compounds as sustainable corrosion inhibitors: An overview. J. Bio Tribocorros., 2021, 7(1), 15.
[http://dx.doi.org/10.1007/s40735-020-00447-7]
[23]
Bayol, E.; Gürten, T.; Gürten, A.A.; Erbil, M. Interactions of some Schiff base compounds with mild steel surface in hydrochloric acid solution. Mater. Chem. Phys., 2008, 112(2), 624-630.
[http://dx.doi.org/10.1016/j.matchemphys.2008.06.012]
[24]
Rauscher, A.; Kutsan, G.; Lukacs, Z. Studies on the mechanisms of corrosion inhibition by acetylenic compounds in hydrochloric acid solution. Corros. Sci., 1993, 35(5-8), 1425-1430.
[http://dx.doi.org/10.1016/0010-938X(93)90367-P]
[25]
Okafor, P.C.; Ikpi, M.E.; Uwah, I.E.; Ebenso, E.E.; Ekpe, U.J.; Umoren, S.A. Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media. Corros. Sci., 2008, 50(8), 2310-2317.
[http://dx.doi.org/10.1016/j.corsci.2008.05.009]
[26]
Sliem, M.H.; El Basiony, N.M.; Zaki, E.G.; Sharaf, M.A.; Abdullah, A.M. Corrosion inhibition of mild steel in sulfuric acid by a newly synthesized Schiff base: An electrochemical, DFT, and monte carlo simulation study. Electroanalysis, 2020, 32(12), 3145-3158.
[http://dx.doi.org/10.1002/elan.202060461]
[27]
Al-Amiery, A.; Kadhum, A.; Kadihum, A.; Mohamad, A.; How, C.; Junaedi, S. Inhibition of mild steel corrosion in sulfuric acid solution by New Schiff Base. Materials, 2014, 7(2), 787-804.
[http://dx.doi.org/10.3390/ma7020787] [PMID: 28788488]
[28]
Li, D.; Zhang, P.; Guo, X.; Zhao, X.; Xu, Y. The inhibition of mild steel corrosion in 0.5 M H2SO4 solution by radish leaf extract. RSC Advances, 2019, 9(70), 40997-41009.
[http://dx.doi.org/10.1039/C9RA04218K] [PMID: 35540043]
[29]
Zhang, J.; Gong, X.L.; Yu, H.H.; Du, M. The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium. Corros. Sci., 2011, 53(10), 3324-3330.
[http://dx.doi.org/10.1016/j.corsci.2011.06.008]
[30]
Nataraja, S.E.; Venkatesha, T.V.; Manjunatha, K.; Poojary, B.; Pavithra, M.K.; Tandon, H.C. Inhibition of the corrosion of steel in hydrochloric acid solution by some organic molecules containing the methylthiophenyl moiety. Corros. Sci., 2011, 53(8), 2651-2659.
[http://dx.doi.org/10.1016/j.corsci.2011.05.004]
[31]
Mourya, P.; Banerjee, S.; Singh, M.M. Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor. Corros. Sci., 2014, 85, 352-363.
[http://dx.doi.org/10.1016/j.corsci.2014.04.036]
[32]
Geetha, M.B.; Rajendran, S. Study on corrosion inhibition of mild steel in sulphuric acid by urea with Zn2+ and L-phenylalanine as co-inhibitors. Oxid. Commun., 2016, 39(2), 1488-1497.
[33]
Chile, N.E.; Haldhar, R.; Godffrey, U.K.; Chijioke, O.C.; Umezuruike, E.A.; Ifeoma, O.P.; Oke, M.O.; Ichou, H.; Arrousse, N.; Kim, S.C.; Dagdag, O.; Ebenso, E.E.; Taleb, M. Theoretical study and adsorption behavior of urea on mild steel in automotive gas oil (AGO) medium. Lubricants, 2022, 10(7), 157.
[http://dx.doi.org/10.3390/lubricants10070157]
[34]
Geetha, M.B.; Rajendran, S. Inhibitive action of urea-Zn2+ system in controlling the corrosion of mild steel in sulphuric acid solution. J Chem Chem Sci., 2017, 7(12), 1110-1116.
[http://dx.doi.org/10.29055/jccs/516]
[35]
Gunasekaran, G.; Palaniswamy, N.; Apparao, B.V. Synergistic effect of Zn2+ ions and 2-Carboxyethyl phosphonic acid on the corrosion inhibition of mild steel in neutral environment. Bull. Electrochem., 1996, 12, 59-63.
[36]
Manivannan, M.; Rajendran, S. Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water. Int. J. Eng. Sci. Technol., 2011, 3(11)
[37]
Ashassi-Sorkhabi, H.; Ghasemi, Z.; Seifzadeh, D. The inhibition effect of some amino acids towards the corrosion of aluminum in 1M HCl+1M H2SO4 solution. Appl. Surf. Sci., 2005, 249(1-4), 408-418.
[http://dx.doi.org/10.1016/j.apsusc.2004.12.016]
[38]
Geetha, M.B. An investigation on corrosion inhibition potential of thiourea-Zn2+ -glycine system: Sulphuric acid corrosion on mild steel. Journal of Xi’an Shiyou University, 2021, 44(1), 213-230.
[39]
Raja, A.S.; Rajendran, S.; Satyabama, P. Inhibition of corrosion of carbon steel in well water by DL-phenylalanine-Zn2+ system. J. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/720965]
[40]
Gowri, S.; Sathiyabama, J.; Rajendran, S.; Kennedy, Z.R.; Devi, S.A. Corrosion inhibition of carbon steel in sea water by glutamic acid - Zn2+ system. Chem. Sci. Trans., 2012, 2(1), 275-281.
[http://dx.doi.org/10.7598/cst2013.327]
[41]
Sahaya Raja, A.; Rajendran, S.; Sathiyabama, J.; Prathipa, V. Synergism and antagonism in carbon steel corrosion inhibition by aminoacetic acid (Glycine). Int. J. Nano. Corr. Sci. Engg., 2015, 2(2), 52-60.
[42]
Aramaki, K.; Hackerman, N. Inhibition mechanism of medium-sized polymethyleneimine. J. Electrochem. Soc., 1969, 116(5), 568.
[http://dx.doi.org/10.1149/1.2411965]
[43]
Al-Hanash, E.K.; Alandis, N.M. Herbs as new type of green inhibitors for acidic corrosion of steel. Mater. Des., 2002, 33(9), 550-554.
[44]
Angel, P.; Sahaya Raja, A.; Sathiyabama, J.; Prathipa, V. Corrosion inhibition of Vitexnegundo extract as a green corrosion inhibitor for carbon steel in well water. Int. J. Chem. Stud., 2014, 2(1), 31-37.
[45]
Thomas Paulraj, J.; Sahaya Raja, A.; Sathiyabama, J.; Prathipa, V. A study of acalyphaindica extract as a novel green inhibitor for carbon steel in aqueous medium. IJGHC, 2014, 3(3)
[46]
Sheeba, S.; Sahaya Raja, A.; Sathiyabama, J.; Prathipa, V. Green approach to corrosion inhibition of carbon steel by the extract of polyalthialongifolia. J. Appl. Chem., 2014, 3(5), 2055-2065.
[47]
Prathipa, V.; Sahaya Raja, A.; Rajendran, S. Electrochemical study and spectroscopic methods used for analyzing protective film formed by l-alanine on carbon steel in well water: A green approach. J. Adv. Chem. Sci., 2015, 1(2), 59-63.
[48]
Rajendran, S.; Amalraj, A.J.; Joice, M.J.; Anthony, N.; Trivedi, D.C.; Sundaravadivelu, M. Corrosion inhibition by the caffeine - Zn2+ system. Corros. Rev., 2004, 22(3), 233-248.
[http://dx.doi.org/10.1515/CORRREV.2004.22.3.233]
[49]
Mohamed, M.A.; Rajalakshmi, R. Corrosion inhibition of mild steel in acid medium using canna indica as green corrosion inhibitor. Rasayan J. Chem., 2016, 9(1), 56-66.
[50]
Hu, K.; Zhuang, J.; Ding, J.; Ma, Z.; Wang, F.; Zeng, X. Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corros. Sci., 2017, 125, 68-76.
[http://dx.doi.org/10.1016/j.corsci.2017.06.004]
[51]
Sivakumar, S.; Raja, A. S.; Sathiyabama, J.; Prathipa, V. Spectroscopic methods used for analyzing protective film formed by Lhistidine on carbon steel. Int. J. Pharm. Drug. Anal., 2014, 2.
[52]
Sharmila, A. Influence of murrayakoenigii (Curry Leaves) extract on the corrosion inhibition of carbon steel in HCL solution. Rasayan J. Chem., 2010, 3(1), 74-81.
[53]
Selvarani, F.R.; Santhamadharasi, S.; Sahayaraj, W.; Amalraj, A.J.; Rajendran, S. Synergistic effect of succinic acid and Zn2+ in controlling corrosion of carbon steel. Bull. Electrochem., 2004, 20(12), 561-565.
[54]
Lebrini, M.; Robert, F.; Roos, C. Inhibition effect of alkaloids extract from Annona squamosa plant on the corrosion of C38 steel in normal hydrochloric acid medium. Int. J. Electrochem. Sci., 2010, 5(11), 1698-1712.
[http://dx.doi.org/10.1016/S1452-3981(23)15422-8]
[55]
Badiea, A.M.; Mohana, K.N. Corrosion mechanism of low-carbon steel in industrial water and adsorption thermodynamics in the presence of some plant extracts. J. Mater. Eng. Perform., 2009, 18(9), 1264-1271.
[http://dx.doi.org/10.1007/s11665-009-9378-x]
[56]
Saratha, R.; Vasudha, V.G. Emblicaofficinalis (Indian gooseberry) leaves extract as corrosion inhibitor for mild steel in 1N HCL Medium. E-J. Chem., 2010, 7(3), 677-684.
[http://dx.doi.org/10.1155/2010/162375]
[57]
Madhan, D.; Rajkumar, P. Analysis of protective (Nano) film of ocimumTenuiflorum (Tulsi) extract by surface examination study. Scholars Research Library. Pharma Chem., 2013, 5(5), 68-76.
[58]
Raya, A.S.S.; Rajendran, S. Inhibition of corrosion of carbon steel in well water by arginine-Zn2+ system. J. Electrochem. Sci. Eng., 2012, 2(2), 91-104.
[http://dx.doi.org/10.5599/jese.2012.0012]
[59]
Nazeera Banu, V.R. Investigation of the inhibitive effect of tween 20 self assemblingnanofilms on corrosion of Carbon Steel. J. Alloys Compd., 2016, 675, 139-148.
[http://dx.doi.org/10.1016/j.jallcom.2016.02.247]
[60]
Zhang, D.Q.; Xie, B.; Gao, L.X.; Cai, Q.R.; Joo, H.G.; Lee, K.Y. Intramolecular synergistic effect of glutamic acid, cysteine and glycine against copper corrosion in hydrochloric acid solution. Thin Solid Films, 2011, 520(1), 356-361.
[http://dx.doi.org/10.1016/j.tsf.2011.07.009]
[61]
Sathiabama, J.; Rajendran, S.; Selvi, J.A. Erilchrome Black-T as corrosion inhibition for carbon steel in well water. Bull. Electrochem., 2006, 22, 363-370.
[62]
Rajendran, S.; Manivannan, M.; Sahayaraj, J.W. Corrosion behavior of aluminium in methyl orange solution at pH 11. Transactions of the SAEST, 2006, pp. 63-67.
[63]
Johnsirani, V.; Sathiyabama, J.; Rajendran, S.; Prabha, A.S. Inhibitory mechanism of carbon steel corrosion in sea water by an aqueous extract of henna leaves. ISRN Corrosion, 2012, 2012, 1-9.
[http://dx.doi.org/10.5402/2012/574321]
[64]
Lebrini, M.; Lagrenée, M.; Vezin, H.; Traisnel, M.; Bentiss, F. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds. Corros. Sci., 2007, 49(5), 2254-2269.
[http://dx.doi.org/10.1016/j.corsci.2006.10.029]
[65]
Alvarez, P.E.; Fiori-Bimbi, M.V.; Neske, A.; Brandán, S.A.; Gervasi, C.A. Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution. J. Ind. Eng. Chem., 2018, 58, 92-99.
[http://dx.doi.org/10.1016/j.jiec.2017.09.012]
[66]
Rbaa, M.; Benhiba, F.; Obot, I.B.; Oudda, H.; Warad, I.; Lakhrissi, B.; Zarrouk, A. Two new 8-hydroxyquinoline derivatives as an efficient corrosion inhibitors for mild steel in hydrochloric acid: Synthesis, electrochemical, surface morphological, UV–visible and theoretical studies. J. Mol. Liq., 2019, 276, 120-133.
[http://dx.doi.org/10.1016/j.molliq.2018.11.104]
[67]
Rajendran, S.; Joany, M.R.; Apparao, B.V. Role of Zn2+ in the inhibition of corrosion of mild steel by 1-hydroxyethane-1, 1-diphosphonic acid. Indian J. Chem. Technol., 2002, 9(3), 197-200.
[68]
Rajendran, S.; Peter, B.R.E.J.; Regis, A.P.P.; Amalraj, A.J. Influence of chloride ion concentration on the inhibition efficiency of the HEDP-Zn2+ system. Transactions of the SAEST, 2003, pp. 11-15.
[69]
Sribharathy, V.; Rajendran, S. cuminumcyminum extracts as eco-friendly corrosion inhibitor for mild steel in seawater. ISRN Corrosion, 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/370802]
[70]
Rajendran, S.; Apparao, B.V.; Mani, A.; Palaniswamy, N. Corrosion inhibition by ATMP-molybdate-Zn2+ system in low chloride media. Anti-Corros. Methods Mater., 1998, 45(1), 25-30.
[http://dx.doi.org/10.1108/00035599810194150]
[71]
Anbarasi, C.M.; Rajendran, S. Surface protection of carbon steel by butanesulphonic acid-zinc ion system. Res. J. Chem. Sci., 2012, 2(12), 21-26.
[72]
Singh, A.K.; Quraishi, M.A. Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution. Corros. Sci., 2011, 53(4), 1288-1297.
[http://dx.doi.org/10.1016/j.corsci.2011.01.002]
[73]
Wang, B.; Du, M.; Zhang, J.; Gao, C.J. Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion. Corros. Sci., 2011, 53(1), 353-361.
[http://dx.doi.org/10.1016/j.corsci.2010.09.042]
[74]
Sudhakaran, R.; Thangavelu, C.; Kasilingam, T.; Sekar, M.; Asokan, T. Surface analysis of mild steel protected from corrosion by a binary inhibitor formulation containing Zn2+ and citrate. Int. J. Sci. Eng. Res., 2016, 7(8), 203-213.
[75]
El-Haddad, M.A.M.; Bahgat Radwan, A.; Sliem, M.H.; Hassan, W.M.I.; Abdullah, A.M. Highly efficient eco-friendly corrosion inhibitor for mild steel in 5 M HCl at elevated temperatures: Experimental & molecular dynamics study. Sci. Rep., 2019, 9(1), 3695.
[http://dx.doi.org/10.1038/s41598-019-40149-w]
[76]
Rajendran, S.; Sangeetha, M.; Sathiyabama, J.; Prabhakar, P. Eco friendly extract of Banana peel as corrosion inhibitor for carbon steel in sea water. J. Nat. Prod. Plant Resour., 2012, 2(5), 601-610.
[77]
Sherine, H.B.; Nasser, A.J.A.; Rajendran, S. Inhibitive action of hydroquinone - Zn2+ system in controlling the corrosion of carbon steel in well water. Int. J. Eng. Sci. Technol., 2010, 2(4), 341-357.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy