Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders

In Press, (this is not the final "Version of Record"). Available online 10 May, 2024
Author(s): Bharat Bhushan, Kuldeep Singh*, Shivendra Kumar and Anjali Bhardwaj
Published on: 10 May, 2024

DOI: 10.2174/0115665232292246240426125504

Price: $95

Abstract

: Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.

[1]
Vishwakarma SK, Bardia A, Tiwari SK, Paspala SAB, Khan AA. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. J Adv Res 2014; 5(3): 277-94.
[http://dx.doi.org/10.1016/j.jare.2013.04.005] [PMID: 25685495]
[2]
Akram F, Sahreen S, Aamir F, et al. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol Biotechnol 2023; 65(2): 227-42.
[http://dx.doi.org/10.1007/s12033-022-00501-4] [PMID: 35474409]
[3]
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci 2019; 232: 116636.
[http://dx.doi.org/10.1016/j.lfs.2019.116636] [PMID: 31295471]
[4]
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 2017; 266: 17-26.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.012] [PMID: 28911805]
[5]
Charpentier E, Elsholz A, Marchfelder A. CRISPR-Cas: more than ten years and still full of mysteries. RNA Biol 2019; 16(4): 377-9.
[http://dx.doi.org/10.1080/15476286.2019.1591659] [PMID: 31009325]
[6]
Pennisi E. The CRISPR Craze. Science 2013; 341(6148): 833-6.
[http://dx.doi.org/10.1126/science.341.6148.833] [PMID: 23970676]
[7]
Singh V, Dhar PK, Eds. Genome engineering via CRISPR-Cas9 system. Academic Press 2020; pp. 1-13.
[8]
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR- Cas systems. Nucleic Acids Res 2013; 41(7): 4336-43.
[http://dx.doi.org/10.1093/nar/gkt135] [PMID: 23460208]
[9]
Perez-Pinera P, Kocak DD, Vockley CM, et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 2013; 10(10): 973-6.
[http://dx.doi.org/10.1038/nmeth.2600] [PMID: 23892895]
[10]
Sampson TR, Weiss DS. Exploiting CRISPR / C as systems for biotechnology. BioEssays 2014; 36(1): 34-8.
[http://dx.doi.org/10.1002/bies.201300135] [PMID: 24323919]
[11]
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526(7571): 55-61.
[http://dx.doi.org/10.1038/nature15386] [PMID: 26432244]
[12]
Heler R, Marraffini LA, Bikard D. Adapting to new threats: the generation of memory by CRISPR-CAS immune systems. Mol Microbiol 2014; 93(1): 1-9.
[http://dx.doi.org/10.1111/mmi.12640] [PMID: 24806524]
[13]
Amitai G, Sorek R. CRISPR–Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 2016; 14(2): 67-76.
[http://dx.doi.org/10.1038/nrmicro.2015.14] [PMID: 26751509]
[14]
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006; 1(1): 7.
[http://dx.doi.org/10.1186/1745-6150-1-7] [PMID: 16545108]
[15]
Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321(5891): 960-4.
[http://dx.doi.org/10.1126/science.1159689] [PMID: 18703739]
[16]
Hale CR, Zhao P, Olson S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009; 139(5): 945-56.
[http://dx.doi.org/10.1016/j.cell.2009.07.040] [PMID: 19945378]
[17]
Garneau JE, Dupuis MÈ, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320): 67-71.
[http://dx.doi.org/10.1038/nature09523] [PMID: 21048762]
[18]
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482(7385): 331-8.
[http://dx.doi.org/10.1038/nature10886] [PMID: 22337052]
[19]
van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol 2014; 12(7): 479-92.
[http://dx.doi.org/10.1038/nrmicro3279] [PMID: 24909109]
[20]
Horvath P, Romero DA, Coûté-Monvoisin AC, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 2008; 190(4): 1401-12.
[http://dx.doi.org/10.1128/JB.01415-07] [PMID: 18065539]
[21]
Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 2008; 190(4): 1390-400.
[http://dx.doi.org/10.1128/JB.01412-07] [PMID: 18065545]
[22]
Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol Cell 2015; 60(3): 385-97.
[http://dx.doi.org/10.1016/j.molcel.2015.10.008] [PMID: 26593719]
[23]
Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 2016; 164(1-2): 29-44.
[http://dx.doi.org/10.1016/j.cell.2015.12.035] [PMID: 26771484]
[24]
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[25]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[26]
Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011; 471(7340): 602-7.
[http://dx.doi.org/10.1038/nature09886] [PMID: 21455174]
[27]
Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 2010; 79(1): 181-211.
[http://dx.doi.org/10.1146/annurev.biochem.052308.093131] [PMID: 20192759]
[28]
Nojadeh J, Eryilmaz NS, Ergüder Bİ. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J 2023; 22: 567-82.
[PMID: 37636024]
[29]
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[30]
Hu JH, Davis KM, Liu DR. Chemical Biology approaches to genome editing: understanding, controlling, and delivering programmable nucleases. Cell Chem Biol 2016; 23(1): 57-73.
[http://dx.doi.org/10.1016/j.chembiol.2015.12.009] [PMID: 26933736]
[31]
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[32]
Kosaka K, Yoshimura M, Ikeda K, Budka H. Diffuse type of Lewy body disease: progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree--a new disease? Clin Neuropathol 1984; 3(5): 185-92.
[PMID: 6094067]
[33]
Brettschneider J, Del Tredici K, Irwin DJ, et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol 2014; 127(3): 423-39.
[http://dx.doi.org/10.1007/s00401-013-1238-y] [PMID: 24407427]
[34]
McKee AC, Stein TD, Nowinski CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013; 136(1): 43-64.
[http://dx.doi.org/10.1093/brain/aws307] [PMID: 23208308]
[35]
Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 2003; 6(2): 252-73.
[PMID: 12935438]
[36]
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14(3): 133-50.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[37]
Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer 2016; 138(6): 1328-36.
[http://dx.doi.org/10.1002/ijc.29626] [PMID: 26044706]
[38]
Mao Y, Yang X, Zhou Y, Zhang Z, Botella JR, Zhu JK. Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems. Genome Biol 2018; 19(1): 149.
[http://dx.doi.org/10.1186/s13059-018-1529-7] [PMID: 30266091]
[39]
Shmakov SA, Barth ZK, Makarova KS, et al. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems. Nucleic Acids Res 2023; 51(15): 8150-68.
[http://dx.doi.org/10.1093/nar/gkad495] [PMID: 37283088]
[40]
Wang P, Zhang J, Sun L, et al. High efficient multisites genome editing in allotetraploid cotton ( Gossypium hirsutum ) using CRISPR/Cas9 system. Plant Biotechnol J 2018; 16(1): 137-50.
[http://dx.doi.org/10.1111/pbi.12755] [PMID: 28499063]
[41]
Koonin EV, Makarova KS. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol Rep 2009; 1: 95.
[http://dx.doi.org/10.3410/B1-95] [PMID: 20556198]
[42]
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[43]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[44]
Scott T, Urak R, Soemardy C, Morris KV. Improved Cas9 activity by specific modifications of the tracrRNA. Sci Rep 2019; 9(1): 16104.
[http://dx.doi.org/10.1038/s41598-019-52616-5] [PMID: 31695072]
[45]
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013; 31(9): 827-32.
[http://dx.doi.org/10.1038/nbt.2647] [PMID: 23873081]
[46]
Fishman-Lobell J, Rudin N, Haber JE. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 1992; 12(3): 1292-303.
[http://dx.doi.org/10.1128/mcb.12.3.1292-1303.1992] [PMID: 1545810]
[47]
Bétermier M, Bertrand P, Lopez BS. Is non-homologous end-joining really an inherently error-prone process? PLoS Genet 2014; 10(1): e1004086.
[http://dx.doi.org/10.1371/journal.pgen.1004086] [PMID: 24453986]
[48]
Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci 2007; 30(1): 575-621.
[http://dx.doi.org/10.1146/annurev.neuro.29.051605.113042] [PMID: 17417937]
[49]
MacDonald M. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72(6): 971-83.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[50]
Lee JM, Ramos EM, Lee JH, et al. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 2012; 78(10): 690-5.
[http://dx.doi.org/10.1212/WNL.0b013e318249f683] [PMID: 22323755]
[51]
Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers 2015; 1(1): 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[52]
An MC, Zhang N, Scott G, et al. Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 2012; 11(2): 253-63.
[http://dx.doi.org/10.1016/j.stem.2012.04.026] [PMID: 22748967]
[53]
Alkanli SS, Alkanli N, Ay A, Albeniz I. CRISPR/Cas9 mediated therapeutic approach in Huntington’s disease. Mol Neurobiol 2023; 60(3): 1486-98.
[http://dx.doi.org/10.1007/s12035-022-03150-5] [PMID: 36482283]
[54]
Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015; 6(1): 6244.
[http://dx.doi.org/10.1038/ncomms7244] [PMID: 25692716]
[55]
Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science 2014; 345(6201): 1184-8.
[http://dx.doi.org/10.1126/science.1254445] [PMID: 25123483]
[56]
Kolli N, Lu M, Maiti P, Rossignol J, Dunbar G. CRISPR-Cas9 mediated GeneSilencing of the mutant huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci 2017; 18(4): 754.
[http://dx.doi.org/10.3390/ijms18040754] [PMID: 28368337]
[57]
Sundal C, Fujioka S, Uitti RJ, Wszolek ZK. Autosomal dominant Parkinson’s disease. Parkinsonism Relat Disord 2012; 18 (Suppl. 1): S7-S10.
[http://dx.doi.org/10.1016/S1353-8020(11)70005-0] [PMID: 22166459]
[58]
Rahman M, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-based technology and its relevance to gene editing in Parkinson’s disease. Pharmaceutics 2022; 14(6): 1252.
[http://dx.doi.org/10.3390/pharmaceutics14061252] [PMID: 35745824]
[59]
Chesselet MF. In vivo alpha-synuclein overexpression in rodents: A useful model of Parkinson’s disease? Exp Neurol 2008; 209(1): 22-7.
[http://dx.doi.org/10.1016/j.expneurol.2007.08.006] [PMID: 17949715]
[60]
Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 2015; 72(6): 1175-84.
[http://dx.doi.org/10.1007/s00018-014-1744-7] [PMID: 25274063]
[61]
Wang X, Cao C, Huang J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 2016; 6(1): 20620.
[http://dx.doi.org/10.1038/srep20620] [PMID: 26857844]
[62]
György B, Sage C, Indzhykulian AA, et al. Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol Ther 2017; 25(2): 379-91.
[http://dx.doi.org/10.1016/j.ymthe.2016.12.010] [PMID: 28082074]
[63]
Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533(7601): 125-9.
[http://dx.doi.org/10.1038/nature17664] [PMID: 27120160]
[64]
Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72(2): 257-68.
[http://dx.doi.org/10.1016/j.neuron.2011.09.010] [PMID: 21944779]
[65]
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72(2): 245-56.
[http://dx.doi.org/10.1016/j.neuron.2011.09.011] [PMID: 21944778]
[66]
Mutihac R, Ababneh N, Scaber J, Wade-Martins R, Cowley S, Talbot K. Modelling amyotrophic lateral sclerosis (ALS) using mutant and CAS9/CRISPR-corrected motor neurons from patients with C9ORF72 mutations reveals disease-specific cellular phenotypes. J Neurol Sci 2015; 357 (Suppl. 1): e48.
[http://dx.doi.org/10.1016/j.jns.2015.08.198]
[67]
Drepper C, Herrmann T, Wessig C, Beck M, Sendtner M. C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol Aging 2011; 32(3): 548.e1-4.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.11.017] [PMID: 20018407]
[68]
Wang L, Yi F, Fu L, et al. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 2017; 8(5): 365-78.
[http://dx.doi.org/10.1007/s13238-017-0397-3] [PMID: 28401346]
[69]
Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health 2015; 51(8): 759-64.
[http://dx.doi.org/10.1111/jpc.12868] [PMID: 25752877]
[70]
Lim K, Yoon C, Yokota T. Applications of CRISPR/Cas9 for the treatment of Duchenne muscular dystrophy. J Pers Med 2018; 8(4): 38.
[http://dx.doi.org/10.3390/jpm8040038] [PMID: 30477208]
[71]
Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016; 351(6271): 403-7.
[http://dx.doi.org/10.1126/science.aad5143] [PMID: 26721684]
[72]
Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 2017; 9(418): eaan8081.
[http://dx.doi.org/10.1126/scitranslmed.aan8081] [PMID: 29187645]
[73]
Zhang Y, Long C, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 2017; 3(4): e1602814.
[http://dx.doi.org/10.1126/sciadv.1602814] [PMID: 28439558]
[74]
Wong E, Liao GP, Chang JC, Xu P, Li YM, Greengard P. GSAP modulates γ-secretase specificity by inducing conformational change in PS1. Proc Natl Acad Sci USA 2019; 116(13): 6385-90.
[http://dx.doi.org/10.1073/pnas.1820160116] [PMID: 30850537]
[75]
Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci 2019; 22(4): 524-8.
[http://dx.doi.org/10.1038/s41593-019-0352-0] [PMID: 30858603]
[76]
György B, Lööv C, Zaborowski MP, et al. CRISPR/Cas9 mediated disruption of the swedish APP allele as a therapeutic approach for early-onset alzheimer’s disease. Mol Ther Nucleic Acids 2018; 11: 429-40.
[http://dx.doi.org/10.1016/j.omtn.2018.03.007] [PMID: 29858078]
[77]
Qing X, Walter J, Jarazo J, Arias-Fuenzalida J, Hillje AL, Schwamborn JC. CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons. Stem Cell Res 2017; 24: 44-50.
[http://dx.doi.org/10.1016/j.scr.2017.08.013] [PMID: 28826027]
[78]
Kantor B, Tagliafierro L, Gu J, et al. Downregulation of SNCA expression by targeted editing of DNA methylation: A potential strategy for precision therapy in PD. Mol Ther 2018; 26(11): 2638-49.
[http://dx.doi.org/10.1016/j.ymthe.2018.08.019] [PMID: 30266652]
[79]
Safari F, Hatam G, Behbahani AB, et al. CRISPR system: a high-throughput toolbox for research and treatment of Parkinson’s disease. Cell Mol Neurobiol 2020; 40(4): 477-93.
[http://dx.doi.org/10.1007/s10571-019-00761-w] [PMID: 31773362]
[80]
Arias-Fuenzalida J, Jarazo J, Qing X, et al. FACS-assisted CRISPR-Cas9 genome editing facilitates Parkinson’s disease modeling. Stem Cell Reports 2017; 9(5): 1423-31.
[http://dx.doi.org/10.1016/j.stemcr.2017.08.026] [PMID: 28988985]
[81]
Li H, Wu S, Ma X, et al. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neurosci Bull 2021; 37(9): 1271-88.
[http://dx.doi.org/10.1007/s12264-021-00732-6] [PMID: 34165772]
[82]
Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 2017; 127(7): 2719-24.
[http://dx.doi.org/10.1172/JCI92087] [PMID: 28628038]
[83]
Wu J, Ryskamp D, Birnbaumer L, Bezprozvanny I. Inhibition of TRPC1-dependent store-operated calcium entry improves synaptic stability and motor performance in a mouse model of Huntington’s disease. J Huntingtons Dis 2018; 7(1): 35-50.
[http://dx.doi.org/10.3233/JHD-170266] [PMID: 29480205]
[84]
Duan W, Guo M, Yi L, et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther 2020; 27(3-4): 157-69.
[http://dx.doi.org/10.1038/s41434-019-0116-1] [PMID: 31819203]
[85]
Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 2016; 24(3): 564-9.
[http://dx.doi.org/10.1038/mt.2015.192] [PMID: 26449883]
[86]
Sternberg SH, Doudna JA. Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell 2015; 58(4): 568-74.
[http://dx.doi.org/10.1016/j.molcel.2015.02.032] [PMID: 26000842]
[87]
Xiao-Jie L, Hui-Ying X, Zun-Ping K, Jin-Lian C, Li-Juan J. CRISPR-Cas9: a new and promising player in gene therapy. J Med Genet 2015; 52(5): 289-96.
[http://dx.doi.org/10.1136/jmedgenet-2014-102968] [PMID: 25713109]
[88]
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 2014; 124(10): 4154-61.
[http://dx.doi.org/10.1172/JCI72992] [PMID: 25271723]
[89]
Alberti F, Corre C. Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 2019; 36(9): 1237-48.
[http://dx.doi.org/10.1039/C8NP00081F] [PMID: 30680376]
[90]
Drost J, Artegiani B, Clevers H. The generation of organoids for studying Wnt signaling. Methods Mol Biol 2016; 1481: 141-59.
[http://dx.doi.org/10.1007/978-1-4939-6393-5_15] [PMID: 27590160]
[91]
Freedman BS, Brooks CR, Lam AQ, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 2015; 6(1): 8715.
[http://dx.doi.org/10.1038/ncomms9715] [PMID: 26493500]
[92]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[93]
Liu JJ, Orlova N, Oakes BL, et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 2019; 566(7743): 218-23.
[http://dx.doi.org/10.1038/s41586-019-0908-x] [PMID: 30718774]
[94]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[95]
Jayavaradhan R, Pillis DM, Goodman M, et al. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites. Nat Commun 2019; 10(1): 2866.
[http://dx.doi.org/10.1038/s41467-019-10735-7] [PMID: 31253785]
[96]
Hruscha A, Krawitz P, Rechenberg A, et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 2013; 140(24): 4982-7.
[http://dx.doi.org/10.1242/dev.099085] [PMID: 24257628]
[97]
Shen B, Brown KM, Lee TD, Sibley LD. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio 2014; 5(3): e01114-14.
[http://dx.doi.org/10.1128/mBio.01114-14] [PMID: 24825012]
[98]
Daley JM, Sung P. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol Cell Biol 2014; 34(8): 1380-8.
[http://dx.doi.org/10.1128/MCB.01639-13] [PMID: 24469398]
[99]
Guo X, Zhang T, Hu Z, et al. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 2014; 141(3): 707-14.
[http://dx.doi.org/10.1242/dev.099853] [PMID: 24401372]
[100]
Taymans JM, Vandenberghe LH, Haute CVD, et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 2007; 18(3): 195-206.
[http://dx.doi.org/10.1089/hum.2006.178] [PMID: 17343566]
[101]
Kleinstiver BP, Tsai SQ, Prew MS, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 2016; 34(8): 869-74.
[http://dx.doi.org/10.1038/nbt.3620] [PMID: 27347757]
[102]
Monteys AM, Ebanks SA, Keiser MS, Davidson BL. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 2017; 25(1): 12-23.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.010] [PMID: 28129107]
[103]
Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 2015; 33(1): 73-80.
[http://dx.doi.org/10.1038/nbt.3081] [PMID: 25357182]
[104]
Wang M, Zuris JA, Meng F, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 2016; 113(11): 2868-73.
[http://dx.doi.org/10.1073/pnas.1520244113] [PMID: 26929348]
[105]
Poon C, McMahon D, Hynynen K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology 2017; 120: 20-37.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.014] [PMID: 26907805]
[106]
Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017; 20(8): 1172-9.
[http://dx.doi.org/10.1038/nn.4593] [PMID: 28671695]
[107]
Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The Neurotropic Properties of AAV-PHP.B Are Limited to C57BL/6J Mice. Mol Ther 2018; 26(3): 664-8.
[http://dx.doi.org/10.1016/j.ymthe.2018.01.018] [PMID: 29428298]
[108]
Bhardwaj S, Kesari KK, Rachamalla M, et al. CRISPR/Cas9 gene editing: New hope for Alzheimer’s disease therapeutics. J Adv Res 2022; 40: 207-21.
[http://dx.doi.org/10.1016/j.jare.2021.07.001] [PMID: 36100328]
[109]
Yan M, Li J. Combined application of CRISPR-Cas and stem cells for clinical and basic research. Cell Regen 2020; 9(1): 19.
[http://dx.doi.org/10.1186/s13619-020-00062-4] [PMID: 33033974]
[110]
Biehl JK, Russell B. Introduction to stem cell therapy. J Cardiovasc Nurs 2009; 24(2): 98-103.
[http://dx.doi.org/10.1097/JCN.0b013e318197a6a5] [PMID: 19242274]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy