Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

LncRNA LINC00466 Promotes the Progression of Breast Cancer via miR-4731-5p/EPHA2 Pathway

In Press, (this is not the final "Version of Record"). Available online 09 May, 2024
Author(s): Xue Han, Fan Shi, Shujun Guo, Yao Li, Hongtao Wang, Chuanwang Song and Shiwu Wu*
Published on: 09 May, 2024

DOI: 10.2174/0113892010290582240419051056

Price: $95

Abstract

Background: Breast Cancer (BC) is a female malignancy with a high mortality rate. Novel diagnostic and prognostic biomarkers are valuable for reducing BC mortality. Our study is designed to undrape the precise role of the LINC00466/miR-4731-5p/EPHA2 axis in BC.

Methods: The Cancer Genome Atlas (TCGA) sequencing dataset was utilized to compare the levels of LINC00466. The levels of LINC00466, miR-4731-5p, and EPHA2 were tested by qRTPCR. Cell proliferation and cycle were detected by CCK-8 assay and flow cytometer. In vivo role of LINC00466 was tested by Xenograft nude models. Binding sites were predicted by TargetScan and Starbase. The binding relationship was employed by Dual-luciferase reporter gene assay and RNA pull-down assay.

Results: LINC00466 was increased in human breast cancer tissues. LINC00466 was negatively associated with miR-4731-5p and positively correlated with EPHA2 in human breast cancer tissues. Down-regulation of LINC00466 suppressed the proliferation and arrested the cell cycle of breast cancer cells, and inhibited tumor growth in vivo.

Conclusion: LINC00466 promoted BC development via mediating the miR-4731-5p/EPHA2 axis, which has the potential value as a promising therapeutic target in BC.

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Aich, M.; Chakraborty, D. Role of lncRNAs in stem cell maintenance and differentiation. Curr. Top. Dev. Biol., 2020, 138, 73-112.
[http://dx.doi.org/10.1016/bs.ctdb.2019.11.003] [PMID: 32220299]
[4]
Razavi, H.; Katanforosh, A. Identification of novel key regulatory lncRNAs in gastric adenocarcinoma. BMC Genomics, 2022, 23(1), 352.
[http://dx.doi.org/10.1186/s12864-022-08578-6] [PMID: 35525925]
[5]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[6]
Fernando, T.R.; Contreras, J.R.; Zampini, M.; Rodriguez-Malave, N.I.; Alberti, M.O.; Anguiano, J.; Tran, T.M.; Palanichamy, J.K.; Gajeton, J.; Ung, N.M.; Aros, C.J.; Waters, E.V.; Casero, D.; Basso, G.; Pigazzi, M.; Rao, D.S. The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Mol. Cancer, 2017, 16(1), 126.
[http://dx.doi.org/10.1186/s12943-017-0692-x] [PMID: 28724437]
[7]
Rynkeviciene, R.; Simiene, J.; Strainiene, E.; Stankevicius, V.; Usinskiene, J.; Miseikyte Kaubriene, E.; Meskinyte, I.; Cicenas, J.; Suziedelis, K. Non-coding RNAs in glioma. Cancers, 2018, 11(1), 17.
[http://dx.doi.org/10.3390/cancers11010017] [PMID: 30583549]
[8]
Wang, C.; Chen, L.; Yang, Y.; Zhang, M.; Wong, G. Identification of bladder cancer prognostic biomarkers using an ageing gene-related competitive endogenous RNA network. Oncotarget, 2017, 8(67), 111742-111753.
[http://dx.doi.org/10.18632/oncotarget.22905] [PMID: 29340088]
[9]
Wu, Q.; Xiang, S.; Ma, J.; Hui, P.; Wang, T.; Meng, W.; Shi, M.; Wang, Y. Long non‐coding RNA CASC 15 regulates gastric cancer cell proliferation, migration and epithelial mesenchymal transition by targeting CDKN 1A and ZEB 1. Mol. Oncol., 2018, 12(6), 799-813.
[http://dx.doi.org/10.1002/1878-0261.12187] [PMID: 29489064]
[10]
Yao, K.; Wang, Q.; Jia, J.; Zhao, H. A competing endogenous RNA network identifies novel mRNA, miRNA and lncRNA markers for the prognosis of diabetic pancreatic cancer. Tumour Biol., 2017, 39(6)
[http://dx.doi.org/10.1177/1010428317707882] [PMID: 28639886]
[11]
Li, Z.; Xie, X.; Fan, X.; Li, X. Long non-coding RNA MINCR regulates miR-876-5p/GSPT1 axis to aggravate glioma progression. Neurochem. Res., 2020, 45(7), 1690-1699.
[http://dx.doi.org/10.1007/s11064-020-03029-8] [PMID: 32333234]
[12]
Dong, H.X.; Wang, R.; Jin, X.Y.; Zeng, J.; Pan, J. LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa‐mir‐22‐3p. J. Cell. Physiol., 2018, 233(5), 4126-4136.
[http://dx.doi.org/10.1002/jcp.26215] [PMID: 29030962]
[13]
Yuan, S.; Liu, Q.; Hu, Z.; Zhou, Z.; Wang, G.; Li, C.; Xie, W.; Meng, G.; Xiang, Y.; Wu, N.; Wu, L.; Yu, Z.; Bai, L.; Li, Y. Long non-coding RNA MUC5B-AS1 promotes metastasis through mutually regulating MUC5B expression in lung adenocarcinoma. Cell Death Dis., 2018, 9(5), 450.
[http://dx.doi.org/10.1038/s41419-018-0472-6] [PMID: 29670111]
[14]
Bian, Z.; Zhou, M.; Cui, K.; Yang, F.; Cao, Y.; Sun, S.; Liu, B.; Gong, L.; Li, J.; Wang, X.; Li, C.; Yao, S.; Yin, Y.; Huang, S.; Fei, B.; Huang, Z. SNHG17 promotes colorectal tumorigenesis and metastasis via regulating Trim23-PES1 axis and miR-339-5p-FOSL2-SNHG17 positive feedback loop. J. Exp. Clin. Cancer Res., 2021, 40(1), 360.
[http://dx.doi.org/10.1186/s13046-021-02162-8] [PMID: 34782005]
[15]
Tam, C.; Wong, J.H.; Tsui, S.K.W.; Zuo, T.; Chan, T.F.; Ng, T.B. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: Updates in recent years. Appl. Microbiol. Biotechnol., 2019, 103(12), 4649-4677.
[http://dx.doi.org/10.1007/s00253-019-09837-5] [PMID: 31062053]
[16]
Huang, L.; Li, X.; Ye, H.; Liu, Y.; Liang, X.; Yang, C.; Hua, L.; Yan, Z.; Zhang, X. Long non-coding RNA NCK1-AS1 promotes the tumorigenesis of glioma through sponging microRNA-138-2-3p and activating the TRIM24/Wnt/β-catenin axis. J. Exp. Clin. Cancer Res., 2020, 39(1), 63.
[http://dx.doi.org/10.1186/s13046-020-01567-1] [PMID: 32293515]
[17]
Zhao, M.; Shao, Y.; Xu, J.; Zhang, B.; Li, C.; Gong, J. LINC00466 impacts cell proliferation, metastasis and sensitivity to temozolomide of glioma by sponging miR-137 to regulate PPP1R14B expression. OncoTargets Ther., 2021, 14, 1147-1159.
[http://dx.doi.org/10.2147/OTT.S273264] [PMID: 33642868]
[18]
Ma, T.; Hu, Y.; Guo, Y.; Yan, B. Tumor-promoting activity of long noncoding RNA LINC00466 in lung adenocarcinoma viamiR-144-regulated HOXA10 axis. Am. J. Pathol., 2019, 189(11), 2154-2170.
[http://dx.doi.org/10.1016/j.ajpath.2019.06.014] [PMID: 31381886]
[19]
Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[20]
Naeli, P.; Winter, T.; Hackett, A.P.; Alboushi, L.; Jafarnejad, S.M. The intricate balance between microRNA‐induced mRNA decay and translational repression. FEBS J., 2023, 290(10), 2508-2524.
[http://dx.doi.org/10.1111/febs.16422] [PMID: 35247033]
[21]
Xu, K.; Han, B.; Bai, Y.; Ma, X.Y.; Ji, Z.N.; Xiong, Y.; Miao, S.K.; Zhang, Y.Y.; Zhou, L.M. MiR-451a suppressing BAP31 can inhibit proliferation and increase apoptosis through inducing ER stress in colorectal cancer. Cell Death Dis., 2019, 10(3), 152.
[http://dx.doi.org/10.1038/s41419-019-1403-x] [PMID: 30770794]
[22]
Wilson, K.; Shiuan, E.; Brantley-Sieders, D.M. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene, 2021, 40(14), 2483-2495.
[http://dx.doi.org/10.1038/s41388-021-01714-8] [PMID: 33686241]
[23]
Zhao, P.; Sun, J.; Huang, X.; Zhang, X.; Liu, X.; Liu, R.; Du, G.; Gan, W.; Yang, C.; Tang, Y.; Chen, C.; Jiang, D. Targeting the KLF5-EphA2 axis can restrain cancer stemness and overcome chemoresistance in basal-like breast cancer. Int. J. Biol. Sci., 2023, 19(6), 1861-1874.
[http://dx.doi.org/10.7150/ijbs.82567] [PMID: 37063424]
[24]
Zhou, Y.; Oki, R.; Tanaka, A.; Song, L.; Takashima, A.; Hamada, N.; Yokoyama, S.; Yano, S.; Sakurai, H. Cellular stress induces non-canonical activation of the receptor tyrosine kinase EphA2 through the p38-MK2-RSK signaling pathway. J. Biol. Chem., 2023, 299(5), 104699.
[http://dx.doi.org/10.1016/j.jbc.2023.104699] [PMID: 37059179]
[25]
Kroenke, C.H.; Michael, Y.L.; Poole, E.M.; Kwan, M.L.; Nechuta, S.; Leas, E.; Caan, B.J.; Pierce, J.; Shu, X.O.; Zheng, Y.; Chen, W.Y. Postdiagnosis social networks and breast cancer mortality in the after breast cancer pooling project. Cancer, 2017, 123(7), 1228-1237.
[http://dx.doi.org/10.1002/cncr.30440] [PMID: 27943274]
[26]
Shan, Y.; Ma, J.; Pan, Y.; Hu, J.; Liu, B.; Jia, L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis., 2018, 9(7), 722.
[http://dx.doi.org/10.1038/s41419-018-0759-7] [PMID: 29915311]
[27]
Sun, W.; Jiang, C.; Ji, Y.; Xiao, C.; Song, H. Long noncoding RNAs: New regulators of resistance to systemic therapies for gastric cancer. BioMed Res. Int., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/8853269] [PMID: 33506041]
[28]
Zhao, L.; Sun, H.; Kong, H.; Chen, Z.; Chen, B.; Zhou, M.; Zhou, M. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT phenotype formation through sponging Mir-382. Cell. Physiol. Biochem., 2017, 42(6), 2145-2158.
[http://dx.doi.org/10.1159/000479990] [PMID: 28813705]
[29]
Mao, Y.; Liu, R.; Zhou, H.; Yin, S.; Zhao, Q.; Ding, X.; Wang, H. Transcriptome analysis of miRNA–lncRNA–mRNA interactions in the malignant transformation process of gastric cancer initiation. Cancer Gene Ther., 2017, 24(6), 267-275.
[http://dx.doi.org/10.1038/cgt.2017.14] [PMID: 28524153]
[30]
Noh, J.H.; Kim, K.M.; McClusky, W.G.; Abdelmohsen, K.; Gorospe, M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip. Rev. RNA, 2018, 9(3), e1471.
[http://dx.doi.org/10.1002/wrna.1471] [PMID: 29516680]
[31]
Meng, Q.; Liu, M.; Cheng, R. LINC00461/miR-4478/E2F1 feedback loop promotes non-small cell lung cancer cell proliferation and migration. Biosci. Rep., 2020, 40(2), BSR20191345.
[http://dx.doi.org/10.1042/BSR20191345] [PMID: 31934717]
[32]
Hou, J.; Wang, Y.; Zhang, H.; Hu, Y.; Xin, X.; Li, X. Silencing of LINC00461 enhances radiosensitivity of lung adenocarcinoma cells by down‐regulating HOXA10 via microRNA‐195. J. Cell. Mol. Med., 2020, 24(5), 2879-2890.
[http://dx.doi.org/10.1111/jcmm.14859] [PMID: 31967713]
[33]
Yao, Y.; Zhang, T.; Qi, L.; Liu, R.; Liu, G.; Wang, X.; Li, J.; Li, J.; Sun, C. Competitive endogenous RNA network construction and comparison of lung squamous cell carcinoma in smokers and nonsmokers. Dis. Markers, 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/5292787] [PMID: 31885738]
[34]
Wang, J.J.; Huang, Y.Q.; Song, W.; Li, Y.F.; Wang, H.; Wang, W.J.; Huang, M. Comprehensive analysis of the lncRNA associated competing endogenous RNA network in breast cancer. Oncol. Rep., 2019, 42(6), 2572-2582.
[http://dx.doi.org/10.3892/or.2019.7374] [PMID: 31638237]
[35]
Gao, C.; Li, H.; Zhuang, J.; Zhang, H.; Wang, K.; Yang, J.; Liu, C.; Liu, L.; Zhou, C.; Sun, C. The construction and analysis of ceRNA networks in invasive breast cancer: A study based on The Cancer Genome Atlas. Cancer Manag. Res., 2018, 11, 1-11.
[http://dx.doi.org/10.2147/CMAR.S182521] [PMID: 30588106]
[36]
Debnath, T.; Deb Nath, N.C.; Kim, E.K.; Lee, K.G. Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct., 2017, 8(10), 3432-3442.
[http://dx.doi.org/10.1039/C7FO00739F] [PMID: 28782785]
[37]
Liu, C.; Liu, R.; Zhang, D.; Deng, Q.; Liu, B.; Chao, H.P.; Rycaj, K.; Takata, Y.; Lin, K.; Lu, Y.; Zhong, Y.; Krolewski, J.; Shen, J.; Tang, D.G. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat. Commun., 2017, 8(1), 14270.
[http://dx.doi.org/10.1038/ncomms14270] [PMID: 28112170]
[38]
Ingenito, F.; Roscigno, G.; Affinito, A.; Nuzzo, S.; Scognamiglio, I.; Quintavalle, C.; Condorelli, G. The role of Exo-miRNAs in cancer: A focus on therapeutic and diagnostic applications. Int. J. Mol. Sci., 2019, 20(19), 4687.
[http://dx.doi.org/10.3390/ijms20194687] [PMID: 31546654]
[39]
Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci., 2018, 75(3), 467-484.
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[40]
Yan, Z.; Zhang, W.; Xiong, Y.; Wang, Y.; Li, Z. Long noncoding RNA FLVCR1-AS1 aggravates biological behaviors of glioma cells via targeting miR-4731-5p/E2F2 axis. Biochem. Biophys. Res. Commun., 2020, 521(3), 716-720.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.106] [PMID: 31699367]
[41]
Ishigaki, H.; Minami, T.; Morimura, O.; Kitai, H.; Horio, D.; Koda, Y.; Fujimoto, E.; Negi, Y.; Nakajima, Y.; Niki, M.; Kanemura, S.; Shibata, E.; Mikami, K.; Takahashi, R.; Yokoi, T.; Kuribayashi, K.; Kijima, T. EphA2 inhibition suppresses proliferation of small-cell lung cancer cells through inducing cell cycle arrest. Biochem. Biophys. Res. Commun., 2019, 519(4), 846-853.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.076] [PMID: 31558317]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy