Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Background: Breast Cancer (BC) is a female malignancy with a high mortality rate. Novel diagnostic and prognostic biomarkers are valuable for reducing BC mortality. Our study is designed to undrape the precise role of the LINC00466/miR-4731-5p/EPHA2 axis in BC.
Methods: The Cancer Genome Atlas (TCGA) sequencing dataset was utilized to compare the levels of LINC00466. The levels of LINC00466, miR-4731-5p, and EPHA2 were tested by qRTPCR. Cell proliferation and cycle were detected by CCK-8 assay and flow cytometer. In vivo role of LINC00466 was tested by Xenograft nude models. Binding sites were predicted by TargetScan and Starbase. The binding relationship was employed by Dual-luciferase reporter gene assay and RNA pull-down assay.
Results: LINC00466 was increased in human breast cancer tissues. LINC00466 was negatively associated with miR-4731-5p and positively correlated with EPHA2 in human breast cancer tissues. Down-regulation of LINC00466 suppressed the proliferation and arrested the cell cycle of breast cancer cells, and inhibited tumor growth in vivo.
Conclusion: LINC00466 promoted BC development via mediating the miR-4731-5p/EPHA2 axis, which has the potential value as a promising therapeutic target in BC.
[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Aich, M.; Chakraborty, D. Role of lncRNAs in stem cell maintenance and differentiation. Curr. Top. Dev. Biol., 2020, 138, 73-112.
[http://dx.doi.org/10.1016/bs.ctdb.2019.11.003] [PMID: 32220299]
[http://dx.doi.org/10.1016/bs.ctdb.2019.11.003] [PMID: 32220299]
[4]
Razavi, H.; Katanforosh, A. Identification of novel key regulatory lncRNAs in gastric adenocarcinoma. BMC Genomics, 2022, 23(1), 352.
[http://dx.doi.org/10.1186/s12864-022-08578-6] [PMID: 35525925]
[http://dx.doi.org/10.1186/s12864-022-08578-6] [PMID: 35525925]
[5]
Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding RNA and cancer: A new paradigm. Cancer Res., 2017, 77(15), 3965-3981.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[6]
Fernando, T.R.; Contreras, J.R.; Zampini, M.; Rodriguez-Malave, N.I.; Alberti, M.O.; Anguiano, J.; Tran, T.M.; Palanichamy, J.K.; Gajeton, J.; Ung, N.M.; Aros, C.J.; Waters, E.V.; Casero, D.; Basso, G.; Pigazzi, M.; Rao, D.S. The lncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Mol. Cancer, 2017, 16(1), 126.
[http://dx.doi.org/10.1186/s12943-017-0692-x] [PMID: 28724437]
[http://dx.doi.org/10.1186/s12943-017-0692-x] [PMID: 28724437]
[7]
Rynkeviciene, R.; Simiene, J.; Strainiene, E.; Stankevicius, V.; Usinskiene, J.; Miseikyte Kaubriene, E.; Meskinyte, I.; Cicenas, J.; Suziedelis, K. Non-coding RNAs in glioma. Cancers, 2018, 11(1), 17.
[http://dx.doi.org/10.3390/cancers11010017] [PMID: 30583549]
[http://dx.doi.org/10.3390/cancers11010017] [PMID: 30583549]
[8]
Wang, C.; Chen, L.; Yang, Y.; Zhang, M.; Wong, G. Identification of bladder cancer prognostic biomarkers using an ageing gene-related competitive endogenous RNA network. Oncotarget, 2017, 8(67), 111742-111753.
[http://dx.doi.org/10.18632/oncotarget.22905] [PMID: 29340088]
[http://dx.doi.org/10.18632/oncotarget.22905] [PMID: 29340088]
[9]
Wu, Q.; Xiang, S.; Ma, J.; Hui, P.; Wang, T.; Meng, W.; Shi, M.; Wang, Y. Long non‐coding RNA CASC 15 regulates gastric cancer cell proliferation, migration and epithelial mesenchymal transition by targeting CDKN 1A and ZEB 1. Mol. Oncol., 2018, 12(6), 799-813.
[http://dx.doi.org/10.1002/1878-0261.12187] [PMID: 29489064]
[http://dx.doi.org/10.1002/1878-0261.12187] [PMID: 29489064]
[10]
Yao, K.; Wang, Q.; Jia, J.; Zhao, H. A competing endogenous RNA network identifies novel mRNA, miRNA and lncRNA markers for the prognosis of diabetic pancreatic cancer. Tumour Biol., 2017, 39(6)
[http://dx.doi.org/10.1177/1010428317707882] [PMID: 28639886]
[http://dx.doi.org/10.1177/1010428317707882] [PMID: 28639886]
[11]
Li, Z.; Xie, X.; Fan, X.; Li, X. Long non-coding RNA MINCR regulates miR-876-5p/GSPT1 axis to aggravate glioma progression. Neurochem. Res., 2020, 45(7), 1690-1699.
[http://dx.doi.org/10.1007/s11064-020-03029-8] [PMID: 32333234]
[http://dx.doi.org/10.1007/s11064-020-03029-8] [PMID: 32333234]
[12]
Dong, H.X.; Wang, R.; Jin, X.Y.; Zeng, J.; Pan, J. LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa‐mir‐22‐3p. J. Cell. Physiol., 2018, 233(5), 4126-4136.
[http://dx.doi.org/10.1002/jcp.26215] [PMID: 29030962]
[http://dx.doi.org/10.1002/jcp.26215] [PMID: 29030962]
[13]
Yuan, S.; Liu, Q.; Hu, Z.; Zhou, Z.; Wang, G.; Li, C.; Xie, W.; Meng, G.; Xiang, Y.; Wu, N.; Wu, L.; Yu, Z.; Bai, L.; Li, Y. Long non-coding RNA MUC5B-AS1 promotes metastasis through mutually regulating MUC5B expression in lung adenocarcinoma. Cell Death Dis., 2018, 9(5), 450.
[http://dx.doi.org/10.1038/s41419-018-0472-6] [PMID: 29670111]
[http://dx.doi.org/10.1038/s41419-018-0472-6] [PMID: 29670111]
[14]
Bian, Z.; Zhou, M.; Cui, K.; Yang, F.; Cao, Y.; Sun, S.; Liu, B.; Gong, L.; Li, J.; Wang, X.; Li, C.; Yao, S.; Yin, Y.; Huang, S.; Fei, B.; Huang, Z. SNHG17 promotes colorectal tumorigenesis and metastasis via regulating Trim23-PES1 axis and miR-339-5p-FOSL2-SNHG17 positive feedback loop. J. Exp. Clin. Cancer Res., 2021, 40(1), 360.
[http://dx.doi.org/10.1186/s13046-021-02162-8] [PMID: 34782005]
[http://dx.doi.org/10.1186/s13046-021-02162-8] [PMID: 34782005]
[15]
Tam, C.; Wong, J.H.; Tsui, S.K.W.; Zuo, T.; Chan, T.F.; Ng, T.B. LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: Updates in recent years. Appl. Microbiol. Biotechnol., 2019, 103(12), 4649-4677.
[http://dx.doi.org/10.1007/s00253-019-09837-5] [PMID: 31062053]
[http://dx.doi.org/10.1007/s00253-019-09837-5] [PMID: 31062053]
[16]
Huang, L.; Li, X.; Ye, H.; Liu, Y.; Liang, X.; Yang, C.; Hua, L.; Yan, Z.; Zhang, X. Long non-coding RNA NCK1-AS1 promotes the tumorigenesis of glioma through sponging microRNA-138-2-3p and activating the TRIM24/Wnt/β-catenin axis. J. Exp. Clin. Cancer Res., 2020, 39(1), 63.
[http://dx.doi.org/10.1186/s13046-020-01567-1] [PMID: 32293515]
[http://dx.doi.org/10.1186/s13046-020-01567-1] [PMID: 32293515]
[17]
Zhao, M.; Shao, Y.; Xu, J.; Zhang, B.; Li, C.; Gong, J. LINC00466 impacts cell proliferation, metastasis and sensitivity to temozolomide of glioma by sponging miR-137 to regulate PPP1R14B expression. OncoTargets Ther., 2021, 14, 1147-1159.
[http://dx.doi.org/10.2147/OTT.S273264] [PMID: 33642868]
[http://dx.doi.org/10.2147/OTT.S273264] [PMID: 33642868]
[18]
Ma, T.; Hu, Y.; Guo, Y.; Yan, B. Tumor-promoting activity of long noncoding RNA LINC00466 in lung adenocarcinoma viamiR-144-regulated HOXA10 axis. Am. J. Pathol., 2019, 189(11), 2154-2170.
[http://dx.doi.org/10.1016/j.ajpath.2019.06.014] [PMID: 31381886]
[http://dx.doi.org/10.1016/j.ajpath.2019.06.014] [PMID: 31381886]
[19]
Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[20]
Naeli, P.; Winter, T.; Hackett, A.P.; Alboushi, L.; Jafarnejad, S.M. The intricate balance between microRNA‐induced mRNA decay and translational repression. FEBS J., 2023, 290(10), 2508-2524.
[http://dx.doi.org/10.1111/febs.16422] [PMID: 35247033]
[http://dx.doi.org/10.1111/febs.16422] [PMID: 35247033]
[21]
Xu, K.; Han, B.; Bai, Y.; Ma, X.Y.; Ji, Z.N.; Xiong, Y.; Miao, S.K.; Zhang, Y.Y.; Zhou, L.M. MiR-451a suppressing BAP31 can inhibit proliferation and increase apoptosis through inducing ER stress in colorectal cancer. Cell Death Dis., 2019, 10(3), 152.
[http://dx.doi.org/10.1038/s41419-019-1403-x] [PMID: 30770794]
[http://dx.doi.org/10.1038/s41419-019-1403-x] [PMID: 30770794]
[22]
Wilson, K.; Shiuan, E.; Brantley-Sieders, D.M. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene, 2021, 40(14), 2483-2495.
[http://dx.doi.org/10.1038/s41388-021-01714-8] [PMID: 33686241]
[http://dx.doi.org/10.1038/s41388-021-01714-8] [PMID: 33686241]
[23]
Zhao, P.; Sun, J.; Huang, X.; Zhang, X.; Liu, X.; Liu, R.; Du, G.; Gan, W.; Yang, C.; Tang, Y.; Chen, C.; Jiang, D. Targeting the KLF5-EphA2 axis can restrain cancer stemness and overcome chemoresistance in basal-like breast cancer. Int. J. Biol. Sci., 2023, 19(6), 1861-1874.
[http://dx.doi.org/10.7150/ijbs.82567] [PMID: 37063424]
[http://dx.doi.org/10.7150/ijbs.82567] [PMID: 37063424]
[24]
Zhou, Y.; Oki, R.; Tanaka, A.; Song, L.; Takashima, A.; Hamada, N.; Yokoyama, S.; Yano, S.; Sakurai, H. Cellular stress induces non-canonical activation of the receptor tyrosine kinase EphA2 through the p38-MK2-RSK signaling pathway. J. Biol. Chem., 2023, 299(5), 104699.
[http://dx.doi.org/10.1016/j.jbc.2023.104699] [PMID: 37059179]
[http://dx.doi.org/10.1016/j.jbc.2023.104699] [PMID: 37059179]
[25]
Kroenke, C.H.; Michael, Y.L.; Poole, E.M.; Kwan, M.L.; Nechuta, S.; Leas, E.; Caan, B.J.; Pierce, J.; Shu, X.O.; Zheng, Y.; Chen, W.Y. Postdiagnosis social networks and breast cancer mortality in the after breast cancer pooling project. Cancer, 2017, 123(7), 1228-1237.
[http://dx.doi.org/10.1002/cncr.30440] [PMID: 27943274]
[http://dx.doi.org/10.1002/cncr.30440] [PMID: 27943274]
[26]
Shan, Y.; Ma, J.; Pan, Y.; Hu, J.; Liu, B.; Jia, L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis., 2018, 9(7), 722.
[http://dx.doi.org/10.1038/s41419-018-0759-7] [PMID: 29915311]
[http://dx.doi.org/10.1038/s41419-018-0759-7] [PMID: 29915311]
[27]
Sun, W.; Jiang, C.; Ji, Y.; Xiao, C.; Song, H. Long noncoding RNAs: New regulators of resistance to systemic therapies for gastric cancer. BioMed Res. Int., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/8853269] [PMID: 33506041]
[http://dx.doi.org/10.1155/2021/8853269] [PMID: 33506041]
[28]
Zhao, L.; Sun, H.; Kong, H.; Chen, Z.; Chen, B.; Zhou, M.; Zhou, M. The Lncrna-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT phenotype formation through sponging Mir-382. Cell. Physiol. Biochem., 2017, 42(6), 2145-2158.
[http://dx.doi.org/10.1159/000479990] [PMID: 28813705]
[http://dx.doi.org/10.1159/000479990] [PMID: 28813705]
[29]
Mao, Y.; Liu, R.; Zhou, H.; Yin, S.; Zhao, Q.; Ding, X.; Wang, H. Transcriptome analysis of miRNA–lncRNA–mRNA interactions in the malignant transformation process of gastric cancer initiation. Cancer Gene Ther., 2017, 24(6), 267-275.
[http://dx.doi.org/10.1038/cgt.2017.14] [PMID: 28524153]
[http://dx.doi.org/10.1038/cgt.2017.14] [PMID: 28524153]
[30]
Noh, J.H.; Kim, K.M.; McClusky, W.G.; Abdelmohsen, K.; Gorospe, M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip. Rev. RNA, 2018, 9(3), e1471.
[http://dx.doi.org/10.1002/wrna.1471] [PMID: 29516680]
[http://dx.doi.org/10.1002/wrna.1471] [PMID: 29516680]
[31]
Meng, Q.; Liu, M.; Cheng, R. LINC00461/miR-4478/E2F1 feedback loop promotes non-small cell lung cancer cell proliferation and migration. Biosci. Rep., 2020, 40(2), BSR20191345.
[http://dx.doi.org/10.1042/BSR20191345] [PMID: 31934717]
[http://dx.doi.org/10.1042/BSR20191345] [PMID: 31934717]
[32]
Hou, J.; Wang, Y.; Zhang, H.; Hu, Y.; Xin, X.; Li, X. Silencing of LINC00461 enhances radiosensitivity of lung adenocarcinoma cells by down‐regulating HOXA10 via microRNA‐195. J. Cell. Mol. Med., 2020, 24(5), 2879-2890.
[http://dx.doi.org/10.1111/jcmm.14859] [PMID: 31967713]
[http://dx.doi.org/10.1111/jcmm.14859] [PMID: 31967713]
[33]
Yao, Y.; Zhang, T.; Qi, L.; Liu, R.; Liu, G.; Wang, X.; Li, J.; Li, J.; Sun, C. Competitive endogenous RNA network construction and comparison of lung squamous cell carcinoma in smokers and nonsmokers. Dis. Markers, 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/5292787] [PMID: 31885738]
[http://dx.doi.org/10.1155/2019/5292787] [PMID: 31885738]
[34]
Wang, J.J.; Huang, Y.Q.; Song, W.; Li, Y.F.; Wang, H.; Wang, W.J.; Huang, M. Comprehensive analysis of the lncRNA associated competing endogenous RNA network in breast cancer. Oncol. Rep., 2019, 42(6), 2572-2582.
[http://dx.doi.org/10.3892/or.2019.7374] [PMID: 31638237]
[http://dx.doi.org/10.3892/or.2019.7374] [PMID: 31638237]
[35]
Gao, C.; Li, H.; Zhuang, J.; Zhang, H.; Wang, K.; Yang, J.; Liu, C.; Liu, L.; Zhou, C.; Sun, C. The construction and analysis of ceRNA networks in invasive breast cancer: A study based on The Cancer Genome Atlas. Cancer Manag. Res., 2018, 11, 1-11.
[http://dx.doi.org/10.2147/CMAR.S182521] [PMID: 30588106]
[http://dx.doi.org/10.2147/CMAR.S182521] [PMID: 30588106]
[36]
Debnath, T.; Deb Nath, N.C.; Kim, E.K.; Lee, K.G. Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct., 2017, 8(10), 3432-3442.
[http://dx.doi.org/10.1039/C7FO00739F] [PMID: 28782785]
[http://dx.doi.org/10.1039/C7FO00739F] [PMID: 28782785]
[37]
Liu, C.; Liu, R.; Zhang, D.; Deng, Q.; Liu, B.; Chao, H.P.; Rycaj, K.; Takata, Y.; Lin, K.; Lu, Y.; Zhong, Y.; Krolewski, J.; Shen, J.; Tang, D.G. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat. Commun., 2017, 8(1), 14270.
[http://dx.doi.org/10.1038/ncomms14270] [PMID: 28112170]
[http://dx.doi.org/10.1038/ncomms14270] [PMID: 28112170]
[38]
Ingenito, F.; Roscigno, G.; Affinito, A.; Nuzzo, S.; Scognamiglio, I.; Quintavalle, C.; Condorelli, G. The role of Exo-miRNAs in cancer: A focus on therapeutic and diagnostic applications. Int. J. Mol. Sci., 2019, 20(19), 4687.
[http://dx.doi.org/10.3390/ijms20194687] [PMID: 31546654]
[http://dx.doi.org/10.3390/ijms20194687] [PMID: 31546654]
[39]
Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci., 2018, 75(3), 467-484.
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[40]
Yan, Z.; Zhang, W.; Xiong, Y.; Wang, Y.; Li, Z. Long noncoding RNA FLVCR1-AS1 aggravates biological behaviors of glioma cells via targeting miR-4731-5p/E2F2 axis. Biochem. Biophys. Res. Commun., 2020, 521(3), 716-720.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.106] [PMID: 31699367]
[http://dx.doi.org/10.1016/j.bbrc.2019.10.106] [PMID: 31699367]
[41]
Ishigaki, H.; Minami, T.; Morimura, O.; Kitai, H.; Horio, D.; Koda, Y.; Fujimoto, E.; Negi, Y.; Nakajima, Y.; Niki, M.; Kanemura, S.; Shibata, E.; Mikami, K.; Takahashi, R.; Yokoi, T.; Kuribayashi, K.; Kijima, T. EphA2 inhibition suppresses proliferation of small-cell lung cancer cells through inducing cell cycle arrest. Biochem. Biophys. Res. Commun., 2019, 519(4), 846-853.
[http://dx.doi.org/10.1016/j.bbrc.2019.09.076] [PMID: 31558317]
[http://dx.doi.org/10.1016/j.bbrc.2019.09.076] [PMID: 31558317]