Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Neuro-regeneration or Repair: Cell Therapy of Neurological Disorders as A Way Forward

Author(s): Xiao-Yan Song, Cun-xiu Fan, Atta-ur-Rahman, Muhammad Iqbal Choudhary and Xiao-Ping Wang*

Volume 22, Issue 14, 2024

Published on: 27 June, 2024

Page: [2272 - 2283] Pages: 12

DOI: 10.2174/1570159X22666240509092903

Price: $65

Abstract

The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Wilson’s disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.

[1]
Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol., 2020, 19(3), 255-265.
[http://dx.doi.org/10.1016/S1474-4422(19)30411-9] [PMID: 31813850]
[2]
Zhu, J.; Liu, Q.; Jiang, Y.; Wu, L.; Xu, G.; Liu, X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience, 2015, 290, 288-299.
[http://dx.doi.org/10.1016/j.neuroscience.2015.01.038] [PMID: 25637797]
[3]
Losurdo, M.; Pedrazzoli, M.; D’Agostino, C.; Elia, C.A.; Massenzio, F.; Lonati, E.; Mauri, M.; Rizzi, L.; Molteni, L.; Bresciani, E.; Dander, E.; D’Amico, G.; Bulbarelli, A.; Torsello, A.; Matteoli, M.; Buffelli, M.; Coco, S. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease. Stem Cells Transl. Med., 2020, 9(9), 1068-1084.
[http://dx.doi.org/10.1002/sctm.19-0327] [PMID: 32496649]
[4]
Giraldo, E.; Palmero-Canton, D.; Martinez-Rojas, B.; Sanchez-Martin, M.M.; Moreno-Manzano, V. Optogenetic modulation of neural progenitor cells improves neuroregenerative potential. Int. J. Mol. Sci., 2020, 22(1), 365.
[http://dx.doi.org/10.3390/ijms22010365] [PMID: 33396468]
[5]
Goldman, S.A. Disease targets and strategies for the therapeutic modulation of endogenous neural stem and progenitor cells. Clin. Pharmacol. Ther., 2007, 82(4), 453-460.
[http://dx.doi.org/10.1038/sj.clpt.6100337] [PMID: 17713467]
[6]
Dong, J.; Cui, Y.; Li, S.; Le, W. Current pharmaceutical treatments and alternative therapies of Parkinson’s disease. Curr. Neuropharmacol., 2016, 14(4), 339-355.
[http://dx.doi.org/10.2174/1570159X14666151120123025] [PMID: 26585523]
[7]
Perlow, M.J.; Freed, W.J.; Hoffer, B.J.; Seiger, A.; Olson, L.; Wyatt, R.J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 1979, 204(4393), 643-647.
[http://dx.doi.org/10.1126/science.571147] [PMID: 571147]
[8]
Lindvall, O.; Gustavii, B.; Åstedt, B.; Lindholm, T.; Rehncrona, S.; Brundin, P.; Widner, H.; Björklund, A.; Leenders, K.L.; Frackowiak, R.; Rothwell, J.C.; Marsden, C.D.; Johnels, B.; Steg, G.; Freedman, R.; Hopper, B.J.; Seiger, Å.; Strömberg, I.; Olson, M.B.L.; Olson, L. Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease. Lancet, 1988, 332(8626-8627), 1483-1484.
[http://dx.doi.org/10.1016/S0140-6736(88)90950-6] [PMID: 2904587]
[9]
Madrazo, I.; León, V.; Torres, C.; Aguilera, M.C.; Varela, G.; Alvarez, F.; Fraga, A.; Drucker-Colín, R.; Ostrosky, F.; Skurovich, M. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. N. Engl. J. Med., 1988, 318(1), 51.
[http://dx.doi.org/10.1056/NEJM198801073180115] [PMID: 3336384]
[10]
Freed, C.R.; Greene, P.E.; Breeze, R.E.; Tsai, W.Y.; DuMouchel, W.; Kao, R.; Dillon, S.; Winfield, H.; Culver, S.; Trojanowski, J.Q.; Eidelberg, D.; Fahn, S. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med., 2001, 344(10), 710-719.
[http://dx.doi.org/10.1056/NEJM200103083441002] [PMID: 11236774]
[11]
Moore, S.F.; Guzman, N.V.; Mason, S.L.; Williams-Gray, C.H.; Barker, R.A. Which patients with Parkinson’s disease participate in clinical trials? One centre’s experiences with a new cell based therapy trial (TRANSEURO). J. Parkinsons Dis., 2014, 4(4), 671-676.
[http://dx.doi.org/10.3233/JPD-140432] [PMID: 25170676]
[12]
Kirkeby, A.; Parmar, M.; Barker, R.A. Strategies for bringing stem cell-derived dopamine neurons to the clinic. Prog. Brain Res.,, 2017, 230, 165-190.
[http://dx.doi.org/10.1016/bs.pbr.2016.11.011] [PMID: 28552228]
[13]
Barker, R.A. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease. Nat. Med., 2019, 25(7), 1045-1053.
[http://dx.doi.org/10.1038/s41591-019-0507-2] [PMID: 31263283]
[14]
Xiao, J.J.; Yin, M.; Wang, Z.J.; Wang, X.P. Transplanted neural stem cells: Playing a neuroprotective role by ceruloplasmin in the substantia nigra of PD model rats? Oxid. Med. Cell. Longev., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/618631] [PMID: 26146528]
[15]
Parmar, M. Towards stem cell based therapies for Parkinson’s disease. Development, 2018, 145(1), dev156117.
[http://dx.doi.org/10.1242/dev.156117] [PMID: 29311261]
[16]
Garitaonandia, I.; Gonzalez, R.; Christiansen-Weber, T.; Abramihina, T.; Poustovoitov, M.; Noskov, A.; Sherman, G.; Semechkin, A.; Snyder, E.; Kern, R. Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinson’s disease. Sci. Rep., 2016, 6(1), 34478.
[http://dx.doi.org/10.1038/srep34478] [PMID: 27686862]
[17]
Wang, Y.K.; Zhu, W.W.; Wu, M.H.; Wu, Y.H.; Liu, Z.X.; Liang, L.M.; Sheng, C.; Hao, J.; Wang, L.; Li, W.; Zhou, Q.; Hu, B.Y. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease. Stem Cell Reports, 2018, 11(1), 171-182.
[http://dx.doi.org/10.1016/j.stemcr.2018.05.010] [PMID: 29910127]
[18]
Piao, J.; Zabierowski, S.; Dubose, B.N.; Hill, E.J.; Navare, M.; Claros, N.; Rosen, S.; Ramnarine, K.; Horn, C.; Fredrickson, C.; Wong, K.; Safford, B.; Kriks, S.; El Maarouf, A.; Rutishauser, U.; Henchcliffe, C.; Wang, Y.; Riviere, I.; Mann, S.; Bermudez, V.; Irion, S.; Studer, L.; Tomishima, M.; Tabar, V. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell, 2021, 28(2), 217-229.e7.
[http://dx.doi.org/10.1016/j.stem.2021.01.004] [PMID: 33545080]
[19]
Li, M.; Wang, Z.; Zheng, T.; Huang, T.; Liu, B.; Han, D.; Liu, S.; Liu, B.; Li, M.; Si, W.; Zhang, Y.A.; Niu, Y.; Chen, Z. Characterization of human-induced neural stem cells and derivatives following transplantation into the central nervous system of a nonhuman primate and rats. Stem Cells Int., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/1396735] [PMID: 36618021]
[20]
Loring, J.F. Autologous induced pluripotent stem cell-derived neurons to treat Parkinson’s disease. Stem Cells Dev., 2018, 27(14), 958-959.
[http://dx.doi.org/10.1089/scd.2018.0107] [PMID: 29790422]
[21]
Rivetti di Val Cervo, P.; Besusso, D.; Conforti, P.; Cattaneo, E. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat. Rev. Neurol., 2021, 17(6), 381-392.
[http://dx.doi.org/10.1038/s41582-021-00465-0] [PMID: 33658662]
[22]
Schweitzer, J.S.; Song, B.; Herrington, T.M.; Park, T.Y.; Lee, N.; Ko, S.; Jeon, J.; Cha, Y.; Kim, K.; Li, Q.; Henchcliffe, C.; Kaplitt, M.; Neff, C.; Rapalino, O.; Seo, H.; Lee, I.H.; Kim, J.; Kim, T.; Petsko, G.A.; Ritz, J.; Cohen, B.M.; Kong, S.W.; Leblanc, P.; Carter, B.S.; Kim, K.S. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med., 2020, 382(20), 1926-1932.
[http://dx.doi.org/10.1056/NEJMoa1915872] [PMID: 32402162]
[23]
Takahashi, J. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regen. Ther., 2020, 13, 18-22.
[http://dx.doi.org/10.1016/j.reth.2020.06.002] [PMID: 33490319]
[24]
Ghosh, S.; Durgvanshi, S.; Agarwal, S.; Raghunath, M.; Sinha, J.K. Current status of drug targets and emerging therapeutic strategies in the management of Alzheimer’s disease. Curr. Neuropharmacol., 2020, 18(9), 883-903.
[http://dx.doi.org/10.2174/1570159X18666200429011823] [PMID: 32348223]
[25]
Garcia-Contreras, M.; Thakor, A.S. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia. Cell Death Discov., 2021, 7(1), 98.
[http://dx.doi.org/10.1038/s41420-021-00471-7] [PMID: 33972507]
[26]
Moghadam, F.H.; Alaie, H.; Karbalaie, K.; Tanhaei, S.; Nasr Esfahani, M.H.; Baharvand, H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation, 2009, 78(2-3), 59-68.
[http://dx.doi.org/10.1016/j.diff.2009.06.005] [PMID: 19616885]
[27]
Hoveizi, E.; Mohammadi, T.; Moazedi, A.A.; Zamani, N.; Eskandary, A. Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model. Cytotherapy, 2018, 20(7), 964-973.
[http://dx.doi.org/10.1016/j.jcyt.2018.03.036] [PMID: 30025963]
[28]
Wray, S.; Fox, N.C. Stem cell therapy for Alzheimer’s disease: hope or hype? Lancet Neurol., 2016, 15(2), 133-135.
[http://dx.doi.org/10.1016/S1474-4422(15)00382-8] [PMID: 26704440]
[29]
Zhang, T.; Ke, W.; Zhou, X.; Qian, Y.; Feng, S.; Wang, R.; Cui, G.; Tao, R.; Guo, W.; Duan, Y.; Zhang, X.; Cao, X.; Shu, Y.; Yue, C.; Jing, N. Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimer’s disease. Stem Cell Reports, 2019, 13(6), 1022-1037.
[http://dx.doi.org/10.1016/j.stemcr.2019.10.012] [PMID: 31761676]
[30]
Comella-Bolla, A.; Orlandi, J.G.; Miguez, A.; Straccia, M.; García-Bravo, M.; Bombau, G.; Galofré, M.; Sanders, P.; Carrere, J.; Segovia, J.C.; Blasi, J.; Allen, N.D.; Alberch, J.; Soriano, J.; Canals, J.M. Human pluripotent stem cell-derived neurons are functionally mature in vitro and integrate into the mouse striatum following transplantation. Mol. Neurobiol., 2020, 57(6), 2766-2798.
[http://dx.doi.org/10.1007/s12035-020-01907-4] [PMID: 32356172]
[31]
Hayashi, Y.; Lin, H.T.; Lee, C.C.; Tsai, K.J. Effects of neural stem cell transplantation in Alzheimer’s disease models. J. Biomed. Sci., 2020, 27(1), 29.
[http://dx.doi.org/10.1186/s12929-020-0622-x] [PMID: 31987051]
[32]
Marsh, S.E.; Blurton-Jones, M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem. Int., 2017, 106, 94-100.
[http://dx.doi.org/10.1016/j.neuint.2017.02.006] [PMID: 28219641]
[33]
Chen, Y.; Pan, C.; Xuan, A.; Xu, L.; Bao, G.; Liu, F.; Fang, J.; Long, D. Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med. Sci. Monit., 2015, 21, 3608-3615.
[http://dx.doi.org/10.12659/MSM.894567] [PMID: 26590375]
[34]
Zhang, F.; Chen, S.Q.; Tong, M.M.; Wang, P.J.; Teng, G.J. 7.0 tesla high resolution MRI study on intracerebral migration of magnet-labeled neural stem cells in a mouse model of Alzheimer’s disease. Magn. Reson. Imaging, 2018, 54, 58-62.
[http://dx.doi.org/10.1016/j.mri.2018.08.005] [PMID: 30118826]
[35]
Apodaca, L.A.; Baddour, A.A.D.; Garcia, C., Jr; Alikhani, L.; Giedzinski, E.; Ru, N.; Agrawal, A.; Acharya, M.M.; Baulch, J.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 57.
[http://dx.doi.org/10.1186/s13195-021-00791-x] [PMID: 33676561]
[36]
Cui, Y.; Ma, S.; Zhang, C.; Cao, W.; Liu, M.; Li, D.; Lv, P.; Xing, Q.; Qu, R.; Yao, N.; Yang, B.; Guan, F. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav. Brain Res., 2017, 320, 291-301.
[http://dx.doi.org/10.1016/j.bbr.2016.12.021] [PMID: 28007537]
[37]
Lee, J.; Chang, W.S.; Shin, J.; Seo, Y.; Kong, C.; Song, B.W.; Na, Y.C.; Kim, B.S.; Chang, J.W. Non-invasively enhanced intracranial transplantation of mesenchymal stem cells using focused ultrasound mediated by overexpression of cell-adhesion molecules. Stem Cell Res. (Amst.), 2020, 43, 101726.
[http://dx.doi.org/10.1016/j.scr.2020.101726] [PMID: 32028085]
[38]
Hour, F.Q.; Moghadam, A.J.; Shakeri-Zadeh, A.; Bakhtiyari, M.; Shabani, R.; Mehdizadeh, M. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models. J. Control. Release, 2020, 321, 430-441.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.035] [PMID: 32097673]
[39]
Jung, M.; Kim, H.; Hwang, J.W.; Choi, Y.; Kang, M.; Kim, C.; Hong, J.; Lee, N.K.; Moon, S.; Chang, J.W.; Choi, S.; Oh, S.; Jang, H.; Na, D.L.; Kim, B.S. Iron oxide nanoparticle-incorporated mesenchymal stem cells for Alzheimer’s disease treatment. Nano Lett., 2023, 23(2), 476-490.
[http://dx.doi.org/10.1021/acs.nanolett.2c03682] [PMID: 36638236]
[40]
Kim, H.J.; Cho, K.R.; Jang, H.; Lee, N.K.; Jung, Y.H.; Kim, J.P.; Lee, J.I.; Chang, J.W.; Park, S.; Kim, S.T.; Moon, S.W.; Seo, S.W.; Choi, S.J.; Na, D.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial. Alzheimers Res. Ther., 2021, 13(1), 154.
[http://dx.doi.org/10.1186/s13195-021-00897-2] [PMID: 34521461]
[41]
Oskarsson, B.; Gendron, T.F.; Staff, N.P. Amyotrophic lateral sclerosis: An update for 2018. Mayo Clin. Proc., 2018, 93(11), 1617-1628.
[http://dx.doi.org/10.1016/j.mayocp.2018.04.007] [PMID: 30401437]
[42]
Mazzini, L.; Ferrari, D.; Andjus, P.R.; Buzanska, L.; Cantello, R.; De Marchi, F.; Gelati, M.; Giniatullin, R.; Glover, J.C.; Grilli, M.; Kozlova, E.N.; Maioli, M.; Mitrečić, D.; Pivoriunas, A.; Sanchez-Pernaute, R.; Sarnowska, A.; Vescovi, A.L.; Neurology, B.C.A.W. Advances in stem cell therapy for amyotrophic lateral sclerosis. Expert Opin. Biol. Ther., 2018, 18(8), 865-881.
[http://dx.doi.org/10.1080/14712598.2018.1503248] [PMID: 30025485]
[43]
Berry, J.D.; Cudkowicz, M.E.; Windebank, A.J.; Staff, N.P.; Owegi, M.; Nicholson, K.; McKenna-Yasek, D.; Levy, Y.S.; Abramov, N.; Kaspi, H.; Mehra, M.; Aricha, R.; Gothelf, Y.; Brown, R.H. NurOwn, phase 2, randomized, clinical trial in patients with ALS. Neurology, 2019, 93(24), e2294-e2305.
[http://dx.doi.org/10.1212/WNL.0000000000008620] [PMID: 31740545]
[44]
Forostyak, S.; Forostyak, O.; Kwok, J.C.F.; Romanyuk, N.; Rehorova, M.; Kriska, J.; Dayanithi, G.; Raha-Chowdhury, R.; Jendelova, P.; Anderova, M.; Fawcett, J.W.; Sykova, E. Transplantation of neural precursors derived from induced pluripotent cells preserve perineuronal nets and stimulate neural plasticity in ALS rats. Int. J. Mol. Sci., 2020, 21(24), 9593.
[http://dx.doi.org/10.3390/ijms21249593] [PMID: 33339362]
[45]
Sareen, D.; Gowing, G.; Sahabian, A.; Staggenborg, K.; Paradis, R.; Avalos, P.; Latter, J.; Ornelas, L.; Garcia, L.; Svendsen, C.N. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol., 2014, 522(12), 2707-2728.
[http://dx.doi.org/10.1002/cne.23578] [PMID: 24610630]
[46]
Malik, N.; Rao, M.S. A review of the methods for human iPSC derivation. Methods Mol. Biol., 2013, 997, 23-33.
[http://dx.doi.org/10.1007/978-1-62703-348-0_3] [PMID: 23546745]
[47]
Hamada, A.; Akagi, E.; Yamasaki, S.; Nakatao, H.; Obayashi, F.; Ohtaka, M.; Nishimura, K.; Nakanishi, M.; Toratani, S.; Okamoto, T. Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cell. Dev. Biol. Anim., 2020, 56(1), 85-95.
[http://dx.doi.org/10.1007/s11626-019-00412-w] [PMID: 31768763]
[48]
Lunetta, C.; Lizio, A.; Cabona, C.; Gerardi, F.; Sansone, V.A.; Corbo, M.; Scialò, C.; Angelucci, E.; Gualandi, F.; Marenco, P.; Grillo, G.; Cairoli, R.; Cesana, C.; Saccardi, R.; Melazzini, M.G.; Mancardi, G.; Caponnetto, C. A phase I/IIa clinical trial of autologous hematopoietic stem cell transplantation in amyotrophic lateral sclerosis. J. Neurol., 2022, 269(10), 5337-5346.
[http://dx.doi.org/10.1007/s00415-022-11185-w] [PMID: 35596795]
[49]
Suzuki, M.; McHugh, J.; Tork, C.; Shelley, B.; Klein, S.M.; Aebischer, P.; Svendsen, C.N. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One, 2007, 2(8), e689.
[http://dx.doi.org/10.1371/journal.pone.0000689] [PMID: 17668067]
[50]
Zalfa, C.; Rota Nodari, L.; Vacchi, E.; Gelati, M.; Profico, D.; Boido, M.; Binda, E.; De Filippis, L.; Copetti, M.; Garlatti, V.; Daniele, P.; Rosati, J.; De Luca, A.; Pinos, F.; Cajola, L.; Visioli, A.; Mazzini, L.; Vercelli, A.; Svelto, M.; Vescovi, A.L.; Ferrari, D. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats. Cell Death Dis., 2019, 10(5), 345.
[http://dx.doi.org/10.1038/s41419-019-1582-5] [PMID: 31024007]
[51]
Nichols, N.L.; Gowing, G.; Satriotomo, I.; Nashold, L.J.; Dale, E.A.; Suzuki, M.; Avalos, P.; Mulcrone, P.L.; McHugh, J.; Svendsen, C.N.; Mitchell, G.S. Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis. Am. J. Respir. Crit. Care Med., 2013, 187(5), 535-542.
[http://dx.doi.org/10.1164/rccm.201206-1072OC] [PMID: 23220913]
[52]
Thomsen, G.M.; Avalos, P.; Ma, A.A.; Alkaslasi, M.; Cho, N.; Wyss, L.; Vit, J.P.; Godoy, M.; Suezaki, P.; Shelest, O.; Bankiewicz, K.S.; Svendsen, C.N. Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis. Stem Cells, 2018, 36(7), 1122-1131.
[http://dx.doi.org/10.1002/stem.2825] [PMID: 29656478]
[53]
Khalid, M.U.; Masroor, T. The promise of stem cells in amyotrophic lateral sclerosis: A review of clinical trials. J. Pak. Med. Assoc., 2023, 73(2), s138-s142.
[http://dx.doi.org/10.47391/JPMA.AKUS-22] [PMID: 36788405]
[54]
Gotkine, M.; Caraco, Y.; Lerner, Y.; Blotnick, S.; Wanounou, M.; Slutsky, S.G.; Chebath, J.; Kuperstein, G.; Estrin, E.; Ben-Hur, T.; Hasson, A.; Molakandov, K.; Sonnenfeld, T.; Stark, Y.; Revel, A.; Revel, M.; Izrael, M. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results. J. Transl. Med., 2023, 21(1), 122.
[http://dx.doi.org/10.1186/s12967-023-03903-3] [PMID: 36788520]
[55]
Jaber, F.L.; Sharma, Y.; Gupta, S. Demonstrating potential of cell therapy for Wilson’s disease with the long-evans cinnamon rat model. Methods Mol. Biol., 2017, 1506, 161-178.
[http://dx.doi.org/10.1007/978-1-4939-6506-9_11] [PMID: 27830552]
[56]
Itoh, T.; Miyajima, A. Liver regeneration by stem/progenitor cells. Hepatology, 2014, 59(4), 1617-1626.
[http://dx.doi.org/10.1002/hep.26753] [PMID: 24115180]
[57]
Cao, Y.; Ji, C.; Lu, L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Ann. Transl. Med., 2020, 8(8), 562.
[http://dx.doi.org/10.21037/atm.2020.02.119] [PMID: 32775363]
[58]
Tsuchiya, A.; Takeuchi, S.; Watanabe, T.; Yoshida, T.; Nojiri, S.; Ogawa, M.; Terai, S. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as “conducting cells” for improvement of liver fibrosis and regeneration. Inflamm. Regen., 2019, 39(1), 18.
[http://dx.doi.org/10.1186/s41232-019-0107-z] [PMID: 31516638]
[59]
Sauer, V.; Siaj, R.; Todorov, T.; Zibert, A.; Schmidt, H.H.J. Overexpressed ATP7B protects mesenchymal stem cells from toxic copper. Biochem. Biophys. Res. Commun., 2010, 395(3), 307-311.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.158] [PMID: 20362556]
[60]
Zhang, D. A clinical study of bone mesenchymal stem cells for the treatment of hepatic fibrosis induced by hepatolenticular degeneration. Genet. Mol. Res., 2017, 16(1)
[http://dx.doi.org/10.4238/gmr16019352] [PMID: 28301671]
[61]
Fujiyoshi, J.; Yamaza, H.; Sonoda, S.; Yuniartha, R.; Ihara, K.; Nonaka, K.; Taguchi, T.; Ohga, S.; Yamaza, T. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci. Rep., 2019, 9(1), 1535.
[http://dx.doi.org/10.1038/s41598-018-38275-y] [PMID: 30733544]
[62]
Wang, S.H.; Wang, X.P. Generation of an induced pluripotent stem cell (iPSC) line (THSJTUi001-A) from a Wilson’s disease patient harboring a homozygous Arg778Leu mutation in ATP7B gene. Stem Cell Res. (Amst.), 2020, 49, 102050.
[http://dx.doi.org/10.1016/j.scr.2020.102050] [PMID: 33096383]
[63]
Roy-Chowdhury, J.; Schilsky, M.L. Gene therapy of Wilson disease: A “golden” opportunity using rAAV on the 50th anniversary of the discovery of the virus. J. Hepatol., 2016, 64(2), 265-267.
[http://dx.doi.org/10.1016/j.jhep.2015.11.017] [PMID: 26639392]
[64]
Greig, J.A.; Nordin, J.M.L.; Smith, M.K.; Ashley, S.N.; Draper, C.; Zhu, Y.; Bell, P.; Buza, E.L.; Wilson, J.M. a gene therapy approach to improve copper metabolism and prevent liver damage in a mouse model of Wilson disease. Hum. Gene Ther. Clin. Dev., 2019, 30(1), 29-39.
[http://dx.doi.org/10.1089/humc.2018.219] [PMID: 30693797]
[65]
Pöhler, M.; Guttmann, S.; Nadzemova, O.; Lenders, M.; Brand, E.; Zibert, A.; Schmidt, H.H.; Sandfort, V. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS One, 2020, 15(9), e0239411.
[http://dx.doi.org/10.1371/journal.pone.0239411] [PMID: 32997714]
[66]
Cai, H.; Cheng, X.; Wang, X.P. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease. Hepatology, 2022, 76(4), 1046-1057.
[http://dx.doi.org/10.1002/hep.32484] [PMID: 35340061]
[67]
Zolfaghari Baghbadorani, P.; Rayati Damavandi, A.; Moradi, S.; Ahmadi, M.; Bemani, P.; Aria, H.; Mottedayyen, H.; Rayati Damavandi, A.; Eskandari, N.; Fathi, F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev. Neurosci., 2023, 34(6), 613-633.
[http://dx.doi.org/10.1515/revneuro-2022-0102] [PMID: 36496351]
[68]
Sarkar, P.; Rice, C.M.; Scolding, N.J. Cell therapy for multiple sclerosis. CNS Drugs, 2017, 31(6), 453-469.
[http://dx.doi.org/10.1007/s40263-017-0429-9] [PMID: 28397112]
[69]
Pluchino, S.; Zanotti, L.; Rossi, B.; Brambilla, E.; Ottoboni, L.; Salani, G.; Martinello, M.; Cattalini, A.; Bergami, A.; Furlan, R.; Comi, G.; Constantin, G.; Martino, G. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature, 2005, 436(7048), 266-271.
[http://dx.doi.org/10.1038/nature03889] [PMID: 16015332]
[70]
Genchi, A.; Brambilla, E.; Sangalli, F.; Radaelli, M.; Bacigaluppi, M.; Furlan, R.; Andolfo, A.; Drago, D.; Magagnotti, C.; Scotti, G.M.; Greco, R.; Vezzulli, P.; Ottoboni, L.; Bonopane, M.; Capilupo, D.; Ruffini, F.; Belotti, D.; Cabiati, B.; Cesana, S.; Matera, G.; Leocani, L.; Martinelli, V.; Moiola, L.; Vago, L.; Panina-Bordignon, P.; Falini, A.; Ciceri, F.; Uglietti, A.; Sormani, M.P.; Comi, G.; Battaglia, M.A.; Rocca, M.A.; Storelli, L.; Pagani, E.; Gaipa, G.; Martino, G. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study. Nat. Med., 2023, 29(1), 75-85.
[http://dx.doi.org/10.1038/s41591-022-02097-3] [PMID: 36624312]
[71]
Shroff, G. Transplantation of human embryonic stem cells in patients with multiple sclerosis and lyme disease. Am. J. Case Rep., 2016, 17, 944-949.
[http://dx.doi.org/10.12659/AJCR.899745] [PMID: 27956736]
[72]
Genc, B.; Bozan, H.R.; Genc, S.; Genc, K. Stem cell therapy for multiple sclerosis. Adv. Exp. Med. Biol., 2018, 1084, 145-174.
[http://dx.doi.org/10.1007/5584_2018_247] [PMID: 30039439]
[73]
Burt, R.K.; Balabanov, R.; Burman, J.; Sharrack, B.; Snowden, J.A.; Oliveira, M.C.; Fagius, J.; Rose, J.; Nelson, F.; Barreira, A.A.; Carlson, K.; Han, X.; Moraes, D.; Morgan, A.; Quigley, K.; Yaung, K.; Buckley, R.; Alldredge, C.; Clendenan, A.; Calvario, M.A.; Henry, J.; Jovanovic, B.; Helenowski, I.B. Effect of nonmyeloablative hematopoietic stem cell transplantation vs. continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis. JAMA, 2019, 321(2), 165-174.
[http://dx.doi.org/10.1001/jama.2018.18743] [PMID: 30644983]
[74]
Petrou, P.; Kassis, I.; Levin, N.; Paul, F.; Backner, Y.; Benoliel, T.; Oertel, F.C.; Scheel, M.; Hallimi, M.; Yaghmour, N.; Hur, T.B.; Ginzberg, A.; Levy, Y.; Abramsky, O.; Karussis, D. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain, 2020, 143(12), 3574-3588.
[http://dx.doi.org/10.1093/brain/awaa333] [PMID: 33253391]
[75]
Dhir, N.; Medhi, B.; Prakash, A.; Goyal, M.K.; Modi, M.; Mohindra, S. Pre-clinical to clinical translational failures and current status of clinical trials in stroke therapy: A brief review. Curr. Neuropharmacol., 2020, 18(7), 596-612.
[http://dx.doi.org/10.2174/1570159X18666200114160844] [PMID: 31934841]
[76]
Grabowski, M.; Christofferson, R.H.; Brundin, P.; Johansson, B.B. Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats. Neuroscience, 1992, 51(3), 673-682.
[http://dx.doi.org/10.1016/0306-4522(92)90306-M] [PMID: 1488117]
[77]
Grabowski, M.; Brundin, P.; Johansson, B.B. Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: Ingrowth of afferent fibers from the host brain. Exp. Neurol., 1992, 116(2), 105-121.
[http://dx.doi.org/10.1016/0014-4886(92)90159-N] [PMID: 1577119]
[78]
Aihara, N.; Mizukawa, K.; Koide, K.; Mabe, H.; Nishino, H. Striatal grafts in infarct striatopallidum increase GABA release, reorganize GABAA receptor and improve water-maze learning in the rat. Brain Res. Bull., 1994, 33(5), 483-488.
[http://dx.doi.org/10.1016/0361-9230(94)90072-8] [PMID: 8186993]
[79]
Kondziolka, D.; Steinberg, G.K.; Wechsler, L.; Meltzer, C.C.; Elder, E.; Gebel, J.; DeCesare, S.; Jovin, T.; Zafonte, R.; Lebowitz, J.; Flickinger, J.C.; Tong, D.; Marks, M.P.; Jamieson, C.; Luu, D.; Bell-Stephens, T.; Teraoka, J. Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial. J. Neurosurg., 2005, 103(1), 38-45.
[http://dx.doi.org/10.3171/jns.2005.103.1.0038] [PMID: 16121971]
[80]
Savitz, S.I.; Dinsmore, J.; Wu, J.; Henderson, G.V.; Stieg, P.; Caplan, L.R. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc. Dis., 2005, 20(2), 101-107.
[http://dx.doi.org/10.1159/000086518] [PMID: 15976503]
[81]
Willis, C.M.; Nicaise, A.M.; Peruzzotti-Jametti, L.; Pluchino, S. The neural stem cell secretome and its role in brain repair. Brain Res., 2020, 1729146615.
[http://dx.doi.org/10.1016/j.brainres.2019.146615] [PMID: 31863730]
[82]
Hess, D.C.; Wechsler, L.R.; Clark, W.M.; Savitz, S.I.; Ford, G.A.; Chiu, D.; Yavagal, D.R.; Uchino, K.; Liebeskind, D.S.; Auchus, A.P.; Sen, S.; Sila, C.A.; Vest, J.D.; Mays, R.W. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol., 2017, 16(5), 360-368.
[http://dx.doi.org/10.1016/S1474-4422(17)30046-7] [PMID: 28320635]
[83]
Savitz, S.I.; Chopp, M.; Deans, R.; Carmichael, S.T.; Phinney, D.; Wechsler, L. Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke, 2011, 42(3), 825-829.
[http://dx.doi.org/10.1161/STROKEAHA.110.601914] [PMID: 21273569]
[84]
Savitz, S.I.; Cramer, S.C.; Wechsler, L.; Aronowski, J.; Boltze, J.; Borlongan, C.; Case, C.; Chase, T.; Chopp, M.; Carmichael, S.T.; Cramer, S.C.; Duncan, P.; Finklestein, S.; Fischkoff, S.; Guzman, R.; Hess, D.C.; Huang, D.; Hinson, J.; Kautz, S.; Kondziolka, D.; Mays, R.; Misra, V.; Mitsias, P.; Modo, M.; Muir, K.; Savitz, S.I.; Sinden, J.; Snyder, E.; Steinberg, G.; Vahidy, F.; Wechsler, L.; Willing, A.; Wolf, S.; Yankee, E.; Yavagal, D.R. Stem cells as an emerging paradigm in stroke 3: Enhancing the development of clinical trials. Stroke, 2014, 45(2), 634-639.
[http://dx.doi.org/10.1161/STROKEAHA.113.003379] [PMID: 24368562]
[85]
Muir, K.W.; Bulters, D.; Willmot, M.; Sprigg, N.; Dixit, A.; Ward, N.; Tyrrell, P.; Majid, A.; Dunn, L.; Bath, P.; Howell, J.; Stroemer, P.; Pollock, K.; Sinden, J. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2). J. Neurol. Neurosurg. Psychiatry, 2020, 91(4), 396-401.
[http://dx.doi.org/10.1136/jnnp-2019-322515] [PMID: 32041820]
[86]
Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; Yankee, E.W.; Schwartz, N.E. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg., 2018, 1-11.
[PMID: 30497166]
[87]
Shichinohe, H.; Kawabori, M.; Iijima, H.; Teramoto, T.; Abumiya, T.; Nakayama, N.; Kazumata, K.; Terasaka, S.; Arato, T.; Houkin, K. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol., 2017, 17(1), 179.
[http://dx.doi.org/10.1186/s12883-017-0955-6] [PMID: 28886699]
[88]
Wei, L.; Fraser, J.L.; Lu, Z.Y.; Hu, X.; Yu, S.P. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol. Dis., 2012, 46(3), 635-645.
[http://dx.doi.org/10.1016/j.nbd.2012.03.002] [PMID: 22426403]
[89]
Sakata, H.; Niizuma, K.; Wakai, T.; Narasimhan, P.; Maier, C.M.; Chan, P.H. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice. Stroke, 2012, 43(9), 2423-2429.
[http://dx.doi.org/10.1161/STROKEAHA.112.656900] [PMID: 22713489]
[90]
Doeppner, T.R.; Ewert, T.A.S.; Tönges, L.; Herz, J.; Zechariah, A.; ElAli, A.; Ludwig, A.K.; Giebel, B.; Nagel, F.; Dietz, G.P.H.; Weise, J.; Hermann, D.M.; Bähr, M. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells, 2012, 30(6), 1297-1310.
[http://dx.doi.org/10.1002/stem.1098] [PMID: 22593021]
[91]
Moniche, F.; Cabezas-Rodriguez, J.A.; Valverde, R.; Escudero-Martinez, I.; Lebrato-Hernandez, L.; Pardo-Galiana, B.; Ainz, L.; Medina-Rodriguez, M.; de la Torre, J.; Escamilla-Gomez, V.; Ortega-Quintanilla, J.; Zapata-Arriaza, E.; de Albóniga-Chindurza, A.; Mancha, F.; Gamero, M.A.; Perez, S.; Espinosa-Rosso, R.; Forero-Diaz, L.; Moya, M.; Piñero, P.; Calderón-Cabrera, C.; Nogueras, S.; Jimenez, R.; Martin, V.; Delgado, F.; Ochoa-Sepúlveda, J.J.; Quijano, B.; Mata, R.; Santos-González, M.; Carmona-Sanchez, G.; Herrera, C.; Gonzalez, A.; Montaner, J. Safety and efficacy of intra-arterial bone marrow mononuclear cell transplantation in patients with acute ischaemic stroke in Spain (IBIS trial): a phase 2, randomised, open-label, standard-of-care controlled, multicentre trial. Lancet Neurol., 2023, 22(2), 137-146.
[http://dx.doi.org/10.1016/S1474-4422(22)00526-9] [PMID: 36681446]
[92]
Iaccarino, C.; Carretta, A.; Nicolosi, F.; Morselli, C. Epidemiology of severe traumatic brain injury. J. Neurosurg. Sci., 2018, 62(5), 535-541.
[http://dx.doi.org/10.23736/S0390-5616.18.04532-0] [PMID: 30182649]
[93]
Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic brain injury. Cell Transplant., 2017, 26(7), 1118-1130.
[http://dx.doi.org/10.1177/0963689717714102] [PMID: 28933211]
[94]
Gardner, R.C.; Yaffe, K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell Neurosci.,, 2015, 66(Pt B), 75-80.
[http://dx.doi.org/10.1016/j.mcn.2015.03.001] [PMID: 25748121]
[95]
Glushakova, O.Y.; Johnson, D.; Hayes, R.L. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J. Neurotrauma, 2014, 31(13), 1180-1193.
[http://dx.doi.org/10.1089/neu.2013.3080] [PMID: 24564198]
[96]
Boltze, J.; Reich, D.M.; Hau, S.; Reymann, K.G.; Strassburger, M.; Lobsien, D.; Wagner, D.C.; Kamprad, M.; Stahl, T. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant., 2012, 21(4), 723-737.
[http://dx.doi.org/10.3727/096368911X586783] [PMID: 21929866]
[97]
Weston, N.M.; Sun, D. The Potential of stem cells in treatment of traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2018, 18(1), 1.
[http://dx.doi.org/10.1007/s11910-018-0812-z] [PMID: 29372464]
[98]
Dela Peña, I.; Sanberg, P.R.; Acosta, S.; Tajiri, N.; Lin, S.Z.; Borlongan, C.V. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor. J. Neurosurg. Sci., 2014, 58(3), 145-149.
[PMID: 24844175]
[99]
Nguyen, H.; Aum, D.; Mashkouri, S.; Rao, G.; Vega Gonzales-Portillo, J.D.; Reyes, S.; Borlongan, C.V. Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases. Expert Rev. Neurother., 2016, 16(8), 915-926.
[http://dx.doi.org/10.1080/14737175.2016.1184086] [PMID: 27152762]
[100]
Kim, H.J.; Lee, J.H.; Kim, S.H. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J. Neurotrauma, 2010, 27(1), 131-138.
[http://dx.doi.org/10.1089/neu.2008.0818] [PMID: 19508155]
[101]
Lanfranconi, S.; Locatelli, F.; Corti, S.; Candelise, L.; Comi, G.P.; Baron, P.L.; Strazzer, S.; Bresolin, N.; Bersano, A. Growth factors in ischemic stroke. J. Cell. Mol. Med., 2009, 15(8), 1645-1687.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00987.x] [PMID: 20015202]
[102]
Kawabori, M.; Weintraub, A.H.; Imai, H.; Zinkevych, I.; McAllister, P.; Steinberg, G.K.; Frishberg, B.M.; Yasuhara, T.; Chen, J.W.; Cramer, S.C.; Achrol, A.S.; Schwartz, N.E.; Suenaga, J.; Lu, D.C.; Semeniv, I.; Nakamura, H.; Kondziolka, D.; Chida, D.; Kaneko, T.; Karasawa, Y.; Paadre, S.; Nejadnik, B.; Bates, D.; Stonehouse, A.H.; Richardson, R.M.; Okonkwo, D.O. Cell Therapy for Chronic TBI. Neurology, 2021, 96(8), e1202-e1214.
[http://dx.doi.org/10.1212/WNL.0000000000011450] [PMID: 33397772]
[103]
Merson, T.D.; Bourne, J.A. Endogenous neurogenesis following ischaemic brain injury: Insights for therapeutic strategies. Int. J. Biochem. Cell Biol., 2014, 56, 4-19.
[http://dx.doi.org/10.1016/j.biocel.2014.08.003] [PMID: 25128862]
[104]
Liska, M.G.; Crowley, M.G.; Nguyen, H.; Borlongan, C.V. Biobridge concept in stem cell therapy for ischemic stroke. J. Neurosurg. Sci., 2017, 61(2), 173-179.
[PMID: 27406955]
[105]
Badner, A.; Cummings, B. The endogenous progenitor response following traumatic brain injury: a target for cell therapy paradigms. Neural Regen. Res., 2022, 17(11), 2351-2354.
[http://dx.doi.org/10.4103/1673-5374.335833] [PMID: 35535870]
[106]
Tajiri, N.; Kaneko, Y.; Shinozuka, K.; Ishikawa, H.; Yankee, E.; McGrogan, M.; Case, C.; Borlongan, C.V. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One, 2013, 8(9), e74857.
[http://dx.doi.org/10.1371/journal.pone.0074857] [PMID: 24023965]
[107]
Luarte, A.; Bátiz, L.F.; Wyneken, U.; Lafourcade, C. Potential therapies by stem cell-derived exosomes in CNS diseases: Focusing on the neurogenic niche. Stem Cells Int., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/5736059] [PMID: 27195011]
[108]
Zhang, Y.; Chopp, M.; Zhang, Z.G.; Katakowski, M.; Xin, H.; Qu, C.; Ali, M.; Mahmood, A.; Xiong, Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int., 2017, 111, 69-81.
[http://dx.doi.org/10.1016/j.neuint.2016.08.003] [PMID: 27539657]
[109]
Chang, C.P.; Chio, C.C.; Cheong, C.U.; Chao, C.M.; Cheng, B.C.; Lin, M.T. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin. Sci. (Lond.), 2013, 124(3), 165-176.
[http://dx.doi.org/10.1042/CS20120226] [PMID: 22876972]
[110]
Liu, X.Y.; Wei, M.G.; Liang, J.; Xu, H.H.; Wang, J.J.; Wang, J.; Yang, X.P.; Lv, F.F.; Wang, K.Q.; Duan, J.H.; Tu, Y.; Zhang, S.; Chen, C.; Li, X.H. Injury‐preconditioning secretome of umbilical cord mesenchymal stem cells amplified the neurogenesis and cognitive recovery after severe traumatic brain injury in rats. J. Neurochem., 2020, 153(2), 230-251.
[http://dx.doi.org/10.1111/jnc.14859] [PMID: 31465551]
[111]
Badner, A.; Reinhardt, E.K.; Nguyen, T.V.; Midani, N.; Marshall, A.T.; Lepe, C.A.; Echeverria, K.; Lepe, J.J.; Torrecampo, V.; Bertan, S.H.; Tran, S.H.; Anderson, A.J.; Cummings, B.J. Freshly thawed cryobanked human neural stem cells engraft within endogenous neurogenic niches and restore cognitive function after chronic traumatic brain injury. J. Neurotrauma, 2021, 38(19), 2731-2746.
[http://dx.doi.org/10.1089/neu.2021.0045] [PMID: 34130484]
[112]
Kawabori, M.; Chida, D.; Nejadnik, B.; Stonehouse, A.H.; Okonkwo, D.O. Cell therapies for acute and chronic traumatic brain injury. Curr. Med. Res. Opin., 2022, 38(12), 2183-2189.
[http://dx.doi.org/10.1080/03007995.2022.2141482] [PMID: 36314422]
[113]
Sharma, A.K.; Sane, H.M.; Kulkarni, P.P.; Gokulchandran, N.; Biju, H.; Badhe, P.B. Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury- a clinical study. Cell Regen. , 2020, 9(1), 3.
[http://dx.doi.org/10.1186/s13619-020-00043-7] [PMID: 32588151]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy