Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Amelioration of Neurochemical Alteration and Memory and Depressive Behavior in Sepsis by Allopurinol, a Tryptophan 2,3-Dioxygenase Inhibitor

Author(s): Kiuanne Lino Lobo Metzker, Khiany Mathias, Richard Simon Machado, Sandra Bonfante, Larissa Joaquim, Marina Goulart da Silva, Guilherme Cabreira Daros, Elisa Mitkus Flores Lins, Fernanda Belle, Carolina Giassi Alano, Rafaela Tezza Matiola, Isabela da Silva Lemos, Lucinéia Gainski Danielski, Fernanda Frederico Gava, Rafael Mariano de Bitencourt, Franciane Bobinski, Emilio Luiz Streck, Gislaine Zilli Reus and Fabricia Petronilho*

Volume 23, Issue 12, 2024

Published on: 06 May, 2024

Page: [1499 - 1515] Pages: 17

DOI: 10.2174/0118715273282363240415045927

Price: $65

Abstract

Background: In response to inflammation and other stressors, tryptophan is catalyzed by Tryptophan 2,3-Dioxygenase (TDO), which leads to activation of the kynurenine pathway. Sepsis is a serious condition in which the body responds improperly to an infection, and the brain is the inflammation target in this condition.

Objective: This study aimed to determine if the induction of TDO contributes to the permeability of the Blood-Brain Barrier (BBB), mortality, neuroinflammation, oxidative stress, and mitochondrial dysfunction, besides long-term behavioral alterations in a preclinical model of sepsis.

Methods: Male Wistar rats with two months of age were submitted to the sepsis model using Cecal Ligation and Perforation (CLP). The rats received allopurinol (Allo, 20 mg/kg, gavage), a TDO inhibitor, or a vehicle once a day for seven days.

Results: Sepsis induction increased BBB permeability, IL-6 level, neutrophil infiltrate, nitric oxide formation, and oxidative stress, resulting in energy impairment in 24h after CLP and Allo administration restored these parameters. Regarding memory, Allo restored short-term memory impairment and decreased depressive behavior. However, no change in survival rate was verified.

Conclusion: In summary, TDO inhibition effectively prevented depressive behavior and memory impairment 10 days after CLP by reducing acute BBB permeability, neuroinflammation, oxidative stress, and mitochondrial alteration.

[1]
Singer M. The new sepsis consensus definitions (Sepsis-3): The good, the not-so-bad, and the actually-quite-pretty. Intensive Care Med 2016; 42(12): 2027-9.
[http://dx.doi.org/10.1007/s00134-016-4600-4] [PMID: 27815587]
[2]
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the global burden of disease study. Lancet 2020; 395(10219): 200-11.
[http://dx.doi.org/10.1016/S0140-6736(19)32989-7] [PMID: 31954465]
[3]
Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010; 304(16): 1787-94.
[http://dx.doi.org/10.1001/jama.2010.1553] [PMID: 20978258]
[4]
Hensley MK, Prescott HC. Bad brains, bad outcomes: Acute neurologic dysfunction and late death after sepsis. Crit Care Med 2018; 46(6): 1001-2.
[http://dx.doi.org/10.1097/CCM.0000000000003097] [PMID: 29762396]
[5]
Prescott HC, Costa DK. Improving long-term outcomes after sepsis. Crit Care Clin 2018; 34(1): 175-88.
[http://dx.doi.org/10.1016/j.ccc.2017.08.013] [PMID: 29149939]
[6]
Rogers AJ, McGeachie M, Baron RM, Gazourian L, Haspel JA, Nakahira K. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One 2014; 9(1): e87538.
[http://dx.doi.org/10.1371/journal.pone.0087538]
[7]
Maddison DC, Giorgini F. The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 2015; 40: 134-41.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.002] [PMID: 25773161]
[8]
Curzon G, Green AR. Regional and subcellular changes in the concentration of 5‐hydroxytryptamine and 5‐hydroxyindoleacetic acid in the rat brain caused by hydrocortisone, DL‐α‐methyltryptophan l‐kynurenine and immobilization. Br J Pharmacol 1971; 43(1): 39-52.
[http://dx.doi.org/10.1111/j.1476-5381.1971.tb07155.x] [PMID: 5136463]
[9]
Curzon G, Green AR. Effects of immobilization on rat liver tryptophan pyrrolase and brain 5‐hydroxytryptamine metabolism. Br J Pharmacol 1969; 37(3): 689-97.
[http://dx.doi.org/10.1111/j.1476-5381.1969.tb08507.x] [PMID: 5348471]
[10]
Badawy AAB, Dawood S, Bano S. Kynurenine pathway of tryptophan metabolism in pathophysiology and therapy of major depressive disorder. World J Psychiatry 2023; 13(4): 141-8.
[http://dx.doi.org/10.5498/wjp.v13.i4.141] [PMID: 37123095]
[11]
Giustina AD, Danielski LG, Novochadlo MM, Goldim MPS, Joaquim L, Metzker KLL. Vitamin B6 reduces oxidative stress in lungs and liver in experimental sepsis. An Acad Bras Cienc 2019; 91(4): e20190434.
[http://dx.doi.org/10.1590/0001-3765201920190434]
[12]
Danielski LG, Della Giustina A, Goldim MP, Florentino D, Mathias K, Garbossa L. Vitamin b6 reduces neurochemical and long-term cognitive alterations after polymicrobial sepsis: Involvement of the kynurenine pathway modulation. Mol Neurobiol 2017; 2017: 1-14.
[PMID: 28879460]
[13]
Welch AN, Badawy A A B. Tryptophan pyrrolase in haem regulation. Experiments with administered haematin and the relationship between the haem saturation of tryptophan pyrrolase and the activity of 5-aminolaevulinate synthase in rat liver. Biochem J 1980; 192(2): 403-10.
[http://dx.doi.org/10.1042/bj1920403] [PMID: 7236220]
[14]
Hubbard WJ, Choudhry M, Schwacha MG, et al. Cecal ligation and puncture. Shock 2005; 24 (Suppl. 1): 52-7.
[http://dx.doi.org/10.1097/01.shk.0000191414.94461.7e] [PMID: 16374373]
[15]
Réus GZ, Becker IRT, Scaini G, et al. The inhibition of the kynurenine pathway prevents behavioral disturbances and oxidative stress in the brain of adult rats subjected to an animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81: 55-63.
[http://dx.doi.org/10.1016/j.pnpbp.2017.10.009] [PMID: 29030243]
[16]
Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 1988; 8(2): 282-4.
[http://dx.doi.org/10.1038/jcbfm.1988.59] [PMID: 3343300]
[17]
Cancelier AC, Petronilho F, Reinke A, et al. Inflammatory and oxidative parameters in cord blood as diagnostic of early-onset neonatal sepsis: A case-control study. Pediatr Crit Care Med 2009; 10(4): 467-71.
[http://dx.doi.org/10.1097/PCC.0b013e318198b0e3] [PMID: 19307820]
[18]
Young LM, Kheifets JB, Ballaron SJ, Young JM. Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 1989; 26(3-4): 335-41.
[http://dx.doi.org/10.1007/BF01967298] [PMID: 2567568]
[19]
Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 1982; 126(1): 131-8.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[20]
Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol 1990; 186: 421-31.
[http://dx.doi.org/10.1016/0076-6879(90)86135-I ] [PMID: 2233309]
[21]
Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990; 186(1): 464-78.
[http://dx.doi.org/10.1016/0076-6879(90)86141-H] [PMID: 1978225]
[22]
Bannister J. Assays for superoxide dismutase. Methods Biochem Anal 1987; 32: 279-312.
[23]
Aebi H. Catalase in vitro. Methods Enzymol 1984; 105(C): 121-6.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[24]
Fischer JC, Ruitenbeek W, Berden JA, et al. Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 1985; 153(1): 23-36.
[http://dx.doi.org/10.1016/0009-8981(85)90135-4 ] [PMID: 3000647]
[25]
Cassina A, Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 1996; 328(2): 309-16.
[http://dx.doi.org/10.1006/abbi.1996.0178] [PMID: 8645009]
[26]
Rustin P, Chretien D, Bourgeron T, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 1994; 228(1): 35-51.
[http://dx.doi.org/10.1016/0009-8981(94)90055-8] [PMID: 7955428]
[27]
Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[28]
Carvalho D, Petronilho F, Vuolo F, et al. The nociceptin/orphanin FQ-NOP receptor antagonist effects on an animal model of sepsis. Intensive Care Med 2008; 34(12): 2284-90.
[http://dx.doi.org/10.1007/s00134-008-1313-3] [PMID: 18846364]
[29]
Tuon L, Comim CM, Petronilho F, et al. Time-dependent behavioral recovery after sepsis in rats. Intensive Care Med 2008; 34(9): 1724-31.
[http://dx.doi.org/10.1007/s00134-008-1129-1] [PMID: 18542919]
[30]
Réus GZ, Carlessi AS, Titus SE, et al. A single dose of S ‐ketamine induces long‐term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol 2015; 75(11): 1268-81.
[http://dx.doi.org/10.1002/dneu.22283] [PMID: 25728399]
[31]
Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun 2015; 43: 54-9.
[http://dx.doi.org/10.1016/j.bbi.2014.07.002] [PMID: 25019583]
[32]
Zarbato GF, de Souza Goldim MP, Giustina AD, et al. Dimethyl fumarate limits neuroinflammation and oxidative stress and improves cognitive impairment after polymicrobial sepsis. Neurotox Res 2018; 34(3): 418-30.
[http://dx.doi.org/10.1007/s12640-018-9900-8] [PMID: 29713994]
[33]
Michels M, Danieslki LG, Vieira A, et al. CD40-CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Mol Med 2015; 21(1): 219-26.
[http://dx.doi.org/10.2119/molmed.2015.00070] [PMID: 25822797]
[34]
Barichello T, Generoso JS, Simões LR, et al. Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis. Mol Neurobiol 2016; 53(3): 1770-81.
[http://dx.doi.org/10.1007/s12035-015-9107-4] [PMID: 25744564]
[35]
Calabresi P, Castrioto A, Di Filippo M, Picconi B. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 2013; 12(8): 811-21.
[36]
Plaschke K, Fichtenkamm P, Schramm C, et al. Early postoperative delirium after open-heart cardiac surgery is associated with decreased bispectral EEG and increased cortisol and interleukin-6. Intensive Care Med 2010; 36(12): 2081-9.
[http://dx.doi.org/10.1007/s00134-010-2004-4] [PMID: 20689917]
[37]
Maes M, Berk M, Goehler L, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 2012; 10(1): 66.
[http://dx.doi.org/10.1186/1741-7015-10-66] [PMID: 22747645]
[38]
Anderson G, Kubera M, Duda W, Lasoń W, Berk M, Maes M. Increased IL-6 trans-signaling in depression: Focus on the tryptophan catabolite pathway, melatonin and neuroprogression. Pharmacol Rep 2013; 65(6): 1647-54.
[http://dx.doi.org/10.1016/S1734-1140(13)71526-3] [PMID: 24553013]
[39]
Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: When physiology meets pathology. Nat Rev Neurosci 2012; 13(7): 465-77.
[http://dx.doi.org/10.1038/nrn3257] [PMID: 22678511]
[40]
Changsirivathanathamrong D, Wang Y, Rajbhandari D, et al. Tryptophan metabolism to kynurenine is a potential novel contributor to hypotension in human sepsis. Crit Care Med 2011; 39(12): 2678-83.
[http://dx.doi.org/10.1097/CCM.0b013e31822827f2] [PMID: 21765346]
[41]
Barichello T, Lemos JC, Generoso JS, et al. Oxidative stress, cytokine/chemokine and disruption of blood-brain barrier in neonate rats after meningitis by Streptococcus agalactiae. Neurochem Res 2011; 36(10): 1922-30.
[http://dx.doi.org/10.1007/s11064-011-0514-2] [PMID: 21633926]
[42]
Kovach MA, Standiford TJ. The function of neutrophils in sepsis. Curr Opin Infect Dis 2012; 25(3): 321-7.
[http://dx.doi.org/10.1097/QCO.0b013e3283528c9b] [PMID: 22421753]
[43]
Amanzada A, Malik IA, Nischwitz M, Sultan S, Naz N, Ramadori G. Myeloperoxidase and elastase are only expressed by neutrophils in normal and in inflammed liver. Histochem Cell Biol 2011; 135(3): 305-15.
[http://dx.doi.org/10.1007/s00418-011-0787-1] [PMID: 21327394]
[44]
Novochadlo M, Goldim MP, Bonfante S, et al. Folic acid alleviates the blood brain barrier permeability and oxidative stress and prevents cognitive decline in sepsis-surviving rats. Microvasc Res 2021; 137: 104193.
[http://dx.doi.org/10.1016/j.mvr.2021.104193] [PMID: 34062190]
[45]
Danielski LG, Giustina AD, Badawy M, et al. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Mol Neurobiol 2018; 55(2): 1045-53.
[http://dx.doi.org/10.1007/s12035-016-0356-7] [PMID: 28092082]
[46]
Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 2007; 42(2): 153-64.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.030] [PMID: 17189821]
[47]
Ayal TB. Alternative kynurenic acid synthesis routes studied in the rat cerebellum. Front Cell Neurosci 2015; 9: 178.
[48]
Prado De Carvalho L, Bochet P, Rossier J. The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochem Int 1996; 28(4): 445-52.
[http://dx.doi.org/10.1016/0197-0186(95)00091-7] [PMID: 8740453]
[49]
Della Giustina A, Goldim MP, Danielski LG, Florentino D, Garbossa L, Joaquim L. Fish oil-rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition 2018; 70: 110417.
[PMID: 30867119]
[50]
Florentino D, Della Giustina A, de Souza Goldim MP, et al. Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochem Int 2020; 135: 104712.
[http://dx.doi.org/10.1016/j.neuint.2020.104712]
[51]
Giustina AD, Bonfante S, Zarbato GF, et al. Dimethyl Fumarate Modulates Oxidative Stress and Inflammation in Organs After Sepsis in Rats. Inflammation 2018; 41(1): 315-27.
[http://dx.doi.org/10.1007/s10753-017-0689-z] [PMID: 29124567]
[52]
Savio LEB. P2X7 receptor signaling contributes to sepsis-associated brain dysfunction. Mol Neurobiol 2017; 54(8): 6459-70.
[53]
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants 2021; 10(7): 1069.
[http://dx.doi.org/10.3390/antiox10071069] [PMID: 34356302]
[54]
Ganzella M, Jardim FM, Boeck CR, Vendite D. Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 2006; 55(4): 397-402.
[http://dx.doi.org/10.1016/j.neures.2006.05.003] [PMID: 16766071]
[55]
Comim CM, Rezin GT, Scaini G, et al. Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion 2008; 8(4): 313-8.
[http://dx.doi.org/10.1016/j.mito.2008.07.002] [PMID: 18657632]
[56]
Santiago APSA, Chaves EA, Oliveira MF, Galina A. Reactive oxygen species generation is modulated by mitochondrial kinases: Correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie 2008; 90(10): 1566-77.
[http://dx.doi.org/10.1016/j.biochi.2008.06.013] [PMID: 18634844]
[57]
Reyes-Ocampo J. Mitochondrial dysfunction related to cell damage induced by 3-hydroxykynurenine and 3-hydroxyanthranilic acid: Non-dependent-effect of early reactive oxygen species production. Neurotoxicology 2015; 50: 81-91.
[58]
Colín-González AL, Maya-López M, Pedraza-Chaverrí J, Ali SF, Chavarría A, Santamaría A. The Janus faces of 3-hydroxykynurenine: Dual redox modulatory activity and lack of neurotoxicity in the rat striatum. Brain Res 2014; 1589: 1-14.
[http://dx.doi.org/10.1016/j.brainres.2014.09.034] [PMID: 25251594]
[59]
Danielski LG, Giustina AD, Bonfante S, et al. NLRP3 activation contributes to acute brain damage leading to memory impairment in sepsis-surviving rats. Mol Neurobiol 2020; 57(12): 5247-62.
[http://dx.doi.org/10.1007/s12035-020-02089-9] [PMID: 32870491]
[60]
Goldim MP, Danielski LG, Rodrigues JF, et al. Oxidative stress in the choroid plexus contributes to blood-cerebrospinal fluid barrier disruption during sepsis development. Microvasc Res 2019; 123: 19-24.
[http://dx.doi.org/10.1016/j.mvr.2018.12.001] [PMID: 30552905]
[61]
Sprung CL. Impact of encephalopathy on mortality in the sepsis syndrome. The veterans administration systemic sepsis cooperative study group. Crit Care Med 1990; 18(8): 801-6.
[62]
Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39(2): 165-228.
[http://dx.doi.org/10.1007/s00134-012-2769-8] [PMID: 23361625]
[63]
Barichello T, Sayana P, Giridharan VV, et al. Long-term cognitive outcomes after Sepsis: A translational systematic review. Mol Neurobiol 2019; 56(1): 186-251.
[http://dx.doi.org/10.1007/s12035-018-1048-2] [PMID: 29687346]
[64]
Kaur J, Singhi P, Singhi S, Malhi P, Saini AG. Neurodevelopmental and behavioral outcomes in children with sepsis-associated encephalopathy admitted to pediatric intensive care unit. J Child Neurol 2016; 31(6): 683-90.
[http://dx.doi.org/10.1177/0883073815610431] [PMID: 26500243]
[65]
Petronilho F, Périco SR, Vuolo F, et al. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav Immun 2012; 26(6): 904-10.
[http://dx.doi.org/10.1016/j.bbi.2012.03.007] [PMID: 22497789]
[66]
Garbossa L, Joaquim L, Danielski LG, et al. The effect of modafinil on passive avoidance memory, brain level of BDNF and oxidative stress markers in sepsis survivor rats. Int J Neurosci 2022; 1-9.
[http://dx.doi.org/10.1080/00207454.2022.2154076] [PMID: 36448768]
[67]
Parrott JM, Redus L, O’Connor JC. Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflammation 2016; 13(1): 124.
[http://dx.doi.org/10.1186/s12974-016-0590-y] [PMID: 27233247]
[68]
Mor A, Tankiewicz-Kwedlo A, Krupa A, Pawlak D. Role of kynurenine pathway in oxidative stress during neurodegenerative disorders. Cells 2021; 10(7): 1603.
[http://dx.doi.org/10.3390/cells10071603] [PMID: 34206739]
[69]
Skorobogatov K, De Picker L, Verkerk R, et al. Brain versus blood: A systematic review on the concordance between peripheral and central kynurenine pathway measures in psychiatric disorders. Front Immunol 2021; 12: 716980.
[http://dx.doi.org/10.3389/fimmu.2021.716980] [PMID: 34630391]
[70]
van der Vliet A, Bast A. Effect of oxidative stress on receptors and signal transmission. Chem Biol Interact 1992; 85(2-3): 95-116.
[http://dx.doi.org/10.1016/0009-2797(92)90055-P ] [PMID: 1493612]
[71]
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15: 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[72]
Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 2015; 51: 164-75.
[http://dx.doi.org/10.1016/j.psyneuen.2014.09.025] [PMID: 25462890]
[73]
Jones C, Griffiths RD. Mental and physical disability after sepsis. Minerva Anestesiol 2013; 79(11): 1306-12.
[PMID: 23857443]
[74]
Jackson KC II, St Onge EL. Antidepressant pharmacotherapy: Considerations for the pain clinician. Pain Pract 2003; 3(2): 135-43.
[http://dx.doi.org/10.1046/j.1533-2500.2003.03020.x] [PMID: 17163912]
[75]
Comim CM, Cassol- OJ Jr, Constantino LC, et al. Depressive-like parameters in sepsis survivor rats. Neurotox Res 2010; 17(3): 279-86.
[http://dx.doi.org/10.1007/s12640-009-9101-6] [PMID: 19705213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy