Abstract
Hydrodynamic gene delivery to the liver has potential as a safe and effective approach for clinical liver gene therapy. However, the simplicity of the technique in rodents – an intravenous injection – belies the theoretical and practical complexity for clinical application. A key issue is that outflow obstruction of the DNA solution from the liver is a critical factor for raising intrahepatic vascular pressure, which in turn provides the force to swell the liver and effect gene delivery. For conventional hydrodynamic gene delivery via tail vein injection, this outflow obstruction is provided naturally by the vascular resistance of the gut, spleen and pancreas. For regional hydrodynamic gene delivery to the liver, outflow obstruction to create a closed system requires surgical intervention, making it unlikely that minimally invasive techniques will be possible in the clinic. Intrinsic factors, in particular compliance (elasticity) of the liver are likely to be crucial in determining the degree of swelling for a given level of intrahepatic vascular pressure. Liver compliance is likely to be the major reason for the low level of hydrodynamic gene delivery in the pig model, and will influence the effectiveness of the approach in man, both in general and in different disease states.
Keywords: Hydrodynamic gene delivery, liver, gene therapy, mechanisms, clinical application
Current Gene Therapy
Title: Hydrodynamic Gene Delivery to the Liver: Theoretical and Practical Issues for Clinical Application
Volume: 9 Issue: 2
Author(s): Greta J. Sawyer, Mohamed Rela, Mark Davenport, Michael Whitehorne, Xiaohong Zhang and John W. Fabre
Affiliation:
Keywords: Hydrodynamic gene delivery, liver, gene therapy, mechanisms, clinical application
Abstract: Hydrodynamic gene delivery to the liver has potential as a safe and effective approach for clinical liver gene therapy. However, the simplicity of the technique in rodents – an intravenous injection – belies the theoretical and practical complexity for clinical application. A key issue is that outflow obstruction of the DNA solution from the liver is a critical factor for raising intrahepatic vascular pressure, which in turn provides the force to swell the liver and effect gene delivery. For conventional hydrodynamic gene delivery via tail vein injection, this outflow obstruction is provided naturally by the vascular resistance of the gut, spleen and pancreas. For regional hydrodynamic gene delivery to the liver, outflow obstruction to create a closed system requires surgical intervention, making it unlikely that minimally invasive techniques will be possible in the clinic. Intrinsic factors, in particular compliance (elasticity) of the liver are likely to be crucial in determining the degree of swelling for a given level of intrahepatic vascular pressure. Liver compliance is likely to be the major reason for the low level of hydrodynamic gene delivery in the pig model, and will influence the effectiveness of the approach in man, both in general and in different disease states.
Export Options
About this article
Cite this article as:
Sawyer J. Greta, Rela Mohamed, Davenport Mark, Whitehorne Michael, Zhang Xiaohong and Fabre W. John, Hydrodynamic Gene Delivery to the Liver: Theoretical and Practical Issues for Clinical Application, Current Gene Therapy 2009; 9 (2) . https://dx.doi.org/10.2174/156652309787909535
DOI https://dx.doi.org/10.2174/156652309787909535 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Hyperandrogenism, Insulin Resistance and Hyperinsulinemia as Cardiovascular Risk Factors in Diabetes Mellitus
Current Diabetes Reviews Syncope in a Child with Pulmonary Hypertension and Positive Gene Tests for Hereditary Hemorrhagic Telangiectasia and Long QT Syndrome
Cardiovascular & Hematological Agents in Medicinal Chemistry Adult Neurogenic and Antidepressant Effects of Adiponectin: A Potential Replacement for Exercise
CNS & Neurological Disorders - Drug Targets Pharmacotherapy of Abdominal Aortic Aneurysms
Current Vascular Pharmacology Critical Questions for Preclinical Trials on Safety and Efficacy of Vascular Endothelial Growth Factor-Based Therapeutic Angiogenesis for Ischemic Stroke
CNS & Neurological Disorders - Drug Targets Effects of Hypertension, Diabetes Mellitus, Obesity and Other Factors on Kidney Haemodynamics
Current Vascular Pharmacology Management of Prehypertension: Current Status and Future Strategies
Current Hypertension Reviews Pulmonary Hypertension: Role of Combination Therapy
Current Vascular Pharmacology CPR Technique for Infants and Children
Current Pediatric Reviews Preventive Strategies for Ventilator Associated Pneumonia
Current Respiratory Medicine Reviews Acoustic Radiation Force Impulse (ARFI) Imaging: A Review
Current Medical Imaging EPO Relies upon Novel Signaling of Wnt1 that Requires Akt1, FoxO3a,GSK-3β, and β-Catenin to Foster Vascular Integrity during Experimental Diabetes
Current Neurovascular Research Hyperpolarized Metabolic MR in the Study of Cardiac Function and Disease
Current Pharmaceutical Design Bioengineering RNA Silencing Across the Life Kingdoms
Recent Patents on Biotechnology Multi-output Model with Box-Jenkins Operators of Quadratic Indices for Prediction of Malaria and Cancer Inhibitors Targeting Ubiquitin- Proteasome Pathway (UPP) Proteins
Current Protein & Peptide Science The Role of Amino Acids in the Modulation of Cardiac Metabolism During Ischemia and Heart Failure
Current Pharmaceutical Design How to Avoid Multiple Gestations Following ART?
Current Women`s Health Reviews Erythropoietin and Oxidative Stress
Current Neurovascular Research Adiponectin and its Role in Cardiovascular Diseases
Cardiovascular & Hematological Disorders-Drug Targets Computational and Pharmacogenomic Insights on Hypertension Treatment: Rational Drug Design and Optimization Strategies
Current Drug Targets