Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Therapeutic Effects of Melatonin in the Regulation of Ferroptosis: A Review of Current Evidence

Author(s): Mohammad Hossein Pourhanifeh, Azam Hosseinzadeh, Fereshteh Koosha, Russel J. Reiter and Saeed Mehrzadi*

Volume 25, Issue 8, 2024

Published on: 03 May, 2024

Page: [543 - 557] Pages: 15

DOI: 10.2174/0113894501284110240426074746

Price: $65

Abstract

Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.

Graphical Abstract

[1]
Li J, Cao F, Yin H, et al. Ferroptosis: Past, present and future. Cell Death Dis 2020; 11(2): 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[2]
Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis. Mol Cell 2019; 73(2): 354-363.e3.
[http://dx.doi.org/10.1016/j.molcel.2018.10.042] [PMID: 30581146]
[3]
Yang WS, Stockwell BR. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol 2016; 26(3): 165-76.
[http://dx.doi.org/10.1016/j.tcb.2015.10.014] [PMID: 26653790]
[4]
Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab 2020; 32(6): 920-37.
[http://dx.doi.org/10.1016/j.cmet.2020.10.011] [PMID: 33217331]
[5]
Chen X, Comish PB, Tang D, Kang R. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol 2021; 9: 637162.
[http://dx.doi.org/10.3389/fcell.2021.637162] [PMID: 33553189]
[6]
Huang L, Liao X, Sun H, Jiang X, Liu Q, Zhang L. Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis. J Cell Mol Med 2019; 23(6): 4153-64.
[http://dx.doi.org/10.1111/jcmm.14302] [PMID: 30993878]
[7]
Wang W, Green M, Choi JE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019; 569(7755): 270-4.
[http://dx.doi.org/10.1038/s41586-019-1170-y] [PMID: 31043744]
[8]
Wang Y, Tang B, Zhu J, et al. Emerging mechanisms and targeted therapy of ferroptosis in neurological diseases and neuro-oncology. Int J Biol Sci 2022; 18(10): 4260-74.
[http://dx.doi.org/10.7150/ijbs.72251] [PMID: 35844784]
[9]
Wang K, Chen XZ, Wang YH, et al. Emerging roles of ferroptosis in cardiovascular diseases. Cell Death Discov 2022; 8(1): 394.
[http://dx.doi.org/10.1038/s41420-022-01183-2] [PMID: 36127318]
[10]
Lin Y, Xu W, Hou Y, et al. The multifaceted role of ferroptosis in kidney diseases. Chem Biol Interact 2022; 365: 110107.
[http://dx.doi.org/10.1016/j.cbi.2022.110107] [PMID: 35985518]
[11]
Mou Y, Wang J, Wu J, et al. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol 2019; 12(1): 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[12]
Pourhanifeh MH, Dehdashtian E, Hosseinzadeh A, Sezavar SH, Mehrzadi S. Clinical application of melatonin in the treatment of cardiovascular diseases: Current evidence and new insights into the cardioprotective and cardiotherapeutic properties. Cardiovasc Drugs Ther 2022; 36(1): 131-55.
[http://dx.doi.org/10.1007/s10557-020-07052-3] [PMID: 32926271]
[13]
Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: Sources, regulation, and potential functions. Cell Mol Life Sci 2014; 71(16): 2997-3025.
[http://dx.doi.org/10.1007/s00018-014-1579-2] [PMID: 24554058]
[14]
Bubenik GA, Konturek SJ. Melatonin and aging: Prospects for human treatment. J Physiol Pharmacol 2011; 62(1): 13-9.
[15]
Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int J Endocrinol 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/1835195] [PMID: 29104591]
[16]
Hosseinzadeh A, Kamrava SK, Moore BCJ, et al. Molecular aspects of melatonin treatment in tinnitus: A review. Curr Drug Targets 2019; 20(11): 1112-28.
[http://dx.doi.org/10.2174/1389450120666190319162147] [PMID: 30892162]
[17]
Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Melatonin and regulation of miRNAs: Novel targeted therapy for cancerous and noncancerous disease. Epigenomics 2021; 13(1): 65-81.
[http://dx.doi.org/10.2217/epi-2020-0241] [PMID: 33350862]
[18]
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886: 173471.
[http://dx.doi.org/10.1016/j.ejphar.2020.173471] [PMID: 32877658]
[19]
Pourhanifeh MH, Hosseinzadeh A, Juybari KB, Mehrzadi S. Correction to: Melatonin and urological cancers: A new therapeutic approach. Cancer Cell Int 2020; 20(1): 466.
[http://dx.doi.org/10.1186/s12935-020-01564-6] [PMID: 33005099]
[20]
Reiter RJ, Sharma R, Tan D-X, Huang G, de Almeida Chuffa LG, Anderson G. Melatonin modulates tumor metabolism and mitigates metastasis. Expert Rev Endocrinol Metab 2023; 18(4): 321-36.
[http://dx.doi.org/10.1080/17446651.2023.2237103]
[21]
Bahrampour Juybari K, Pourhanifeh MH, Hosseinzadeh A, Hemati K, Mehrzadi S. Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res 2020; 287: 198108.
[http://dx.doi.org/10.1016/j.virusres.2020.198108] [PMID: 32768490]
[22]
Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S. Melatonin: New insights on its therapeutic properties in diabetic complications. Diabetol Metab Syndr 2020; 12(1): 30.
[http://dx.doi.org/10.1186/s13098-020-00537-z] [PMID: 32280378]
[23]
Martín Giménez VM, de las Heras N, Lahera V, Tresguerres JAF, Reiter RJ, Manucha W. Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases. Front Aging Neurosci 2022; 14: 888292.
[http://dx.doi.org/10.3389/fnagi.2022.888292] [PMID: 35721030]
[24]
Moradian F, Pourhanifeh MH, Mehrzadi S, Karimi-Behnagh A, Hosseinzadeh A. Therapeutic potentials of melatonin in the treatment of lymphoma: A review of current evidence. Fundam Clin Pharmacol 2022; 36(5): 777-89.
[http://dx.doi.org/10.1111/fcp.12780] [PMID: 35384044]
[25]
Galaris D, Barbouti A, Pantopoulos K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res 2019; 1866(12): 118535.
[http://dx.doi.org/10.1016/j.bbamcr.2019.118535] [PMID: 31446062]
[26]
Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol 2020; 8: 590226.
[http://dx.doi.org/10.3389/fcell.2020.590226] [PMID: 33117818]
[27]
Waldvogel-Abramowski S, Waeber G, Gassner C, et al. Physiology of iron metabolism. Transfus Med Hemother 2014; 41(3): 213-21.
[http://dx.doi.org/10.1159/000362888] [PMID: 25053935]
[28]
Sherman HG, Jovanovic C, Stolnik S, Baronian K, Downard AJ, Rawson FJ. New perspectives on iron uptake in eukaryotes. Front Mol Biosci 2018; 5: 97.
[http://dx.doi.org/10.3389/fmolb.2018.00097] [PMID: 30510932]
[29]
Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. Biochimica et Biophysica Acta (BBA) -. Molecular Cell Research 2006; 1763(7): 723-36.
[30]
Stehling O, Lill R. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 2013; 5(8): a011312.
[http://dx.doi.org/10.1101/cshperspect.a011312] [PMID: 23906713]
[31]
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered iron metabolism and impact in cancer biology, metastasis, and immunology. Front Oncol 2020; 10: 476.
[http://dx.doi.org/10.3389/fonc.2020.00476] [PMID: 32328462]
[32]
Yan H, Zou T, Tuo Q, et al. Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6(1): 49.
[http://dx.doi.org/10.1038/s41392-020-00428-9] [PMID: 33536413]
[33]
Chen H, Wang C, Liu Z, et al. Ferroptosis and its multifaceted role in cancer: Mechanisms and therapeutic approach. Antioxidants 2022; 11(8): 1504.
[http://dx.doi.org/10.3390/antiox11081504] [PMID: 36009223]
[34]
Srinivasan V, Pandi-Perumal SR, Brzezinski A, Bhatnagar KP, Cardinali DP. Melatonin, immune function and cancer. Recent Pat Endocr Metab Immune Drug Discov 2011; 5(2): 109-23.
[http://dx.doi.org/10.2174/187221411799015408] [PMID: 22074586]
[35]
Mehrzadi S, Motevalian M, Rezaei Kanavi M, Fatemi I, Ghaznavi H, Shahriari M. Protective effect of melatonin in the diabetic rat retina. Fundam Clin Pharmacol 2018; 32(4): 414-21.
[http://dx.doi.org/10.1111/fcp.12361] [PMID: 29495082]
[36]
Juybari KB, Hosseinzadeh A, Ghaznavi H, et al. Melatonin as a modulator of degenerative and regenerative signaling pathways in injured retinal ganglion cells. Curr Pharm Des 2019; 25(28): 3057-73.
[http://dx.doi.org/10.2174/1381612825666190829151314] [PMID: 31465274]
[37]
Mehrzadi S, Karimi MY, Fatemi A, Reiter RJ, Hosseinzadeh A. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control: Beneficial effects of melatonin. Pharmacol Ther 2021; 224: 107825.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107825] [PMID: 33662449]
[38]
Reiter RJ, Sharma R, Rosales-Corral S, de Campos Zuccari DAP, de Almeida Chuffa LG. Melatonin: A mitochondrial resident with a diverse skill set. Life Sci 2022; 301: 120612.
[http://dx.doi.org/10.1016/j.lfs.2022.120612] [PMID: 35523285]
[39]
Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocr J 2005; 27(2): 101-10.
[http://dx.doi.org/10.1385/ENDO:27:2:101] [PMID: 16217123]
[40]
Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol Cell Endocrinol 2012; 351(2): 152-66.
[http://dx.doi.org/10.1016/j.mce.2012.01.004] [PMID: 22245784]
[41]
Hardeland R, Tan DX, Reiter RJ. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 2009; 47(2): 109-26.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00701.x] [PMID: 19573038]
[42]
Prin M, Bertazzo J, Walker LA, Scott B, Eckle T. Enhancing circadian rhythms—the circadian MEGA bundle as novel approach to treat critical illness. Ann Transl Med 2023; 11(9): 319.
[43]
Hosseinzadeh A, Dehdashtian E, Jafari-Sabet M, Mehrzadi S. The effects of vitamin D3 and melatonin combination on pentylenetetrazole-induced seizures in mice. Cent Nerv Syst Agents Med Chem 2022; 22(2): 118-24.
[44]
Markus RP, Sousa KS, da Silveira Cruz-Machado S, Fernandes PA, Ferreira ZS. Possible role of pineal and extra-pineal melatonin in surveillance, immunity, and first-line defense. Int J Mol Sci 2021; 22(22): 12143.
[http://dx.doi.org/10.3390/ijms222212143] [PMID: 34830026]
[45]
Hardeland R. Aging, melatonin, and the pro- and anti-inflammatory networks. Int J Mol Sci 2019; 20(5): 1223.
[http://dx.doi.org/10.3390/ijms20051223] [PMID: 30862067]
[46]
Hemati K, Pourhanifeh MH, Dehdashtian E, et al. Melatonin and morphine: Potential beneficial effects of co-use. Fundam Clin Pharmacol 2021; 35(1): 25-39.
[http://dx.doi.org/10.1111/fcp.12566] [PMID: 32415694]
[47]
Talib WH, Alsayed AR, Abuawad A, Daoud S, Mahmod AI. Melatonin in cancer treatment: Current knowledge and future opportunities. Molecules 2021; 26(9): 2506.
[http://dx.doi.org/10.3390/molecules26092506] [PMID: 33923028]
[48]
Pourhanifeh MH, Kamali M, Mehrzadi S, Hosseinzadeh A. Melatonin and neuroblastoma: A novel therapeutic approach. Mol Biol Rep 2021; 48(5): 4659-65.
[http://dx.doi.org/10.1007/s11033-021-06439-1] [PMID: 34061325]
[49]
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128: 46-63.
[http://dx.doi.org/10.1016/j.pneurobio.2015.02.001] [PMID: 25697044]
[50]
Mańka S, Majewska E. Immunoregulatory action of melatonin. The mechanism of action and the effect on inflammatory cells. Postepy Hig Med Dosw 2016; 70(0): 1059-67.
[http://dx.doi.org/10.5604/17322693.1221001] [PMID: 27708210]
[51]
Hardeland R. Melatonin and inflammation—Story of a double-edged blade. J Pineal Res 2018; 65(4): e12525.
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[52]
Steinhilber D, Brungs M, Werz O, et al. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem 1995; 270(13): 7037-40.
[http://dx.doi.org/10.1074/jbc.270.13.7037] [PMID: 7706239]
[53]
Bagherifard A, Hosseinzadeh A, Koosha F, et al. Melatonin and bone-related diseases: An updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34(10): 1677-701.
[http://dx.doi.org/10.1007/s00198-023-06836-1] [PMID: 37393580]
[54]
Hosseinzadeh A, Bagherifard A, Koosha F, et al. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci 2022; 307: 120866.
[http://dx.doi.org/10.1016/j.lfs.2022.120866] [PMID: 35944663]
[55]
Reiter RJ. Functional pleiotropy of the neurohormone melatonin: antioxidant protection and neuroendocrine regulation. Front Neuroendocrinol 1995; 16(4): 383-415.
[http://dx.doi.org/10.1006/frne.1995.1014] [PMID: 8557171]
[56]
Poeggeler B, Reiter RJ, Tan DX, Chen LD, Manchester LC. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: A hypothesis. J Pineal Res 1993; 14(4): 151-68.
[http://dx.doi.org/10.1111/j.1600-079X.1993.tb00498.x] [PMID: 8102180]
[57]
Hosseinzadeh A, Mehrzadi S, Dehdashtian E, Karimi MY. The anticonvulsant activity of thiamine, vitamin D3, and melatonin combination on pentylenetetrazole-induced seizures in mice. Curr Drug Ther 2022; 17(4): 281-8.
[http://dx.doi.org/10.2174/1574885517666220531104009]
[58]
Dehdashtian E, Hosseinzadeh A, Hemati K, Karimi MY, Fatemi I, Mehrzadi S. Anti-convulsive effect of thiamine and melatonin combination in mice: Involvement of oxidative stress. Cent Nerv Syst Agents Med Chem 2021; 21(2): 125-9.
[http://dx.doi.org/10.2174/1871524921666210623161212]
[59]
Tamura H, Jozaki M, Tanabe M, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci 2020; 21(3): 1135.
[http://dx.doi.org/10.3390/ijms21031135] [PMID: 32046301]
[60]
Reiter RJ, Tan DX, Manchester C, Lopez Burillo S, Juan MS, Mayo C. Melatonin: Detoxification of oxygen and nitrogen-based toxic reactants. Adv Exp Med Biol 2003; 527: 539-48.
[http://dx.doi.org/10.1007/978-1-4615-0135-0_62] [PMID: 15206772]
[61]
Nikoui V, Hosseinzadeh A, Khotab SJ, Mousavi SZ, Abolmaali M, Mehrzadi S. Antidepressant-like properties of Melatonin and Atorvastatin combination following the restraint stress in Mice: A study of Oxidative stress factors. Cent Nerv Syst Agents Med Chem 2022.
[PMID: 36411564]
[62]
Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 2017; 20(2): 185-204.
[http://dx.doi.org/10.1007/s10456-017-9552-y] [PMID: 28361267]
[63]
Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol 2009; 50(3): 604-20.
[http://dx.doi.org/10.1016/j.jhep.2008.12.011] [PMID: 19157625]
[64]
Braile M, Marcella S, Cristinziano L, et al. VEGF-A in cardiomyocytes and heart diseases. Int J Mol Sci 2020; 21(15): 5294.
[http://dx.doi.org/10.3390/ijms21155294] [PMID: 32722551]
[65]
Laquer V, Hoang V, Nguyen A, Kelly KM. Angiogenesis in cutaneous disease: Part II. J Am Acad Dermatol 2009; 61(6): 945-58.
[http://dx.doi.org/10.1016/j.jaad.2009.05.053] [PMID: 19925925]
[66]
Tanaka S, Tanaka T, Nangaku M. Hypoxia and dysregulated angiogenesis in kidney disease. Kidney Dis 2015; 1(1): 80-9.
[http://dx.doi.org/10.1159/000381515]
[67]
Akbarzadeh M, Nouri M, Banekohal MV, et al. Effects of combination of melatonin and laser irradiation on ovarian cancer cells and endothelial lineage viability. Lasers Med Sci 2016; 31(8): 1565-72.
[http://dx.doi.org/10.1007/s10103-016-2016-6] [PMID: 27365110]
[68]
Xu Y, Cui K, Li J, et al. Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res 2020; 69(1): e12660.
[http://dx.doi.org/10.1111/jpi.12660] [PMID: 32323368]
[69]
Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S. Antiangiogenic effects of melatonin in endothelial cell cultures. Microvasc Res 2013; 87: 25-33.
[http://dx.doi.org/10.1016/j.mvr.2013.02.008] [PMID: 23473980]
[70]
Mihanfar A, Yousefi B, Ghazizadeh Darband S, Sadighparvar S, Kaviani M, Majidinia M. Melatonin increases 5-flurouracil-mediated apoptosis of colorectal cancer cells through enhancing oxidative stress and downregulating survivin and XIAP. Bioimpacts 2020; 11(4): 253-61.
[http://dx.doi.org/10.34172/bi.2021.36] [PMID: 34631487]
[71]
Zakki SA, Muhammad JS, Li JL, Sun L, Li ML, Feng QW. Melatonin triggers the anticancer potential of phenylarsine oxide via induction of apoptosis through ROS generation and JNK activation. Metallomics 2020; 12: 396-407.
[http://dx.doi.org/10.1039/c9mt00238c]
[72]
Hidayat M, Chaudhry S, Salman S, Lone KP. Melatonin prevents apoptosis in brains of neonates induced by maternal hypothyroidism. Journal of Ayub Medical College, Abbottabad: JAMC 2019; 31(4): 580-5.
[PMID: 31933316]
[73]
Önder GÖ, Sezer G, Özdamar S, Yay A. Melatonin has an inhibitory effect on MCF-7 and MDA-MB-231 human breast cancer cell lines by inducing autophagy and apoptosis. Fundam Clin Pharmacol 2022; 36(6): 1038-56.
[http://dx.doi.org/10.1111/fcp.12813] [PMID: 35778975]
[74]
Jie L, Hong R, Zhang Y, Sha L, Chen W, Ren X. Melatonin alleviates liver fibrosis by inhibiting autophagy. Curr Med Sci 2022; 42(3): 498-504.
[http://dx.doi.org/10.1007/s11596-022-2530-7] [PMID: 35583587]
[75]
Qiu Y, Ma Y, Jiang M, et al. Melatonin alleviates LPS-induced pyroptotic cell death in human stem cell-derived cardiomyocytes by activating autophagy. Stem Cells Int 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/8120403] [PMID: 34873405]
[76]
Cui Y, Yang M, Wang Y, et al. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. FASEB J 2021; 35(4): e21485.
[http://dx.doi.org/10.1096/fj.202002247RR] [PMID: 33709562]
[77]
Pourhanifeh MH, Mahdavinia M, Reiter RJ, Asemi Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J Cell Physiol 2019; 234(8): 12142-8.
[http://dx.doi.org/10.1002/jcp.28129] [PMID: 30618091]
[78]
Pourhanifeh MH, Sharifi M, Reiter RJ, Davoodabadi A, Asemi Z. Melatonin and non-small cell lung cancer: New insights into signaling pathways. Cancer Cell Int 2019; 19(1): 131.
[http://dx.doi.org/10.1186/s12935-019-0853-7] [PMID: 31123430]
[79]
Chen S, Li Y, Fu S, et al. Melatonin alleviates arginine vasopressin-induced cardiomyocyte apoptosis via increasing Mst1-Nrf2 pathway activity to reduce oxidative stress. Biochem Pharmacol 2022; 206: 115265.
[http://dx.doi.org/10.1016/j.bcp.2022.115265] [PMID: 36183803]
[80]
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: the possible involvement of macrophage apoptotic factors. J Pineal Res 2022; 74(2): e12847.
[PMID: 36456538]
[81]
Bicer Y, Elbe H, Karayakali M, et al. Neuroprotection by melatonin against acrylamide-induced brain damage in pinealectomized rats. J Chem Neuroanat 2022; 125: 102143.
[http://dx.doi.org/10.1016/j.jchemneu.2022.102143] [PMID: 35952951]
[82]
Roy J, Wong KY, Aquili L, et al. Role of melatonin in Alzheimer’s disease: From preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 2022; 65: 100986.
[http://dx.doi.org/10.1016/j.yfrne.2022.100986] [PMID: 35167824]
[83]
Xu C, He Z, Li J. Melatonin as a potential neuroprotectant: Mechanisms in subarachnoid hemorrhage-induced early brain injury. Front Aging Neurosci 2022; 14: 899678.
[http://dx.doi.org/10.3389/fnagi.2022.899678] [PMID: 35572137]
[84]
Zhou Q, Lin L, Li H, et al. Melatonin reduces neuroinflammation and improves axonal hypomyelination by modulating M1/M2 microglia polarization via JAK2-STAT3-Telomerase pathway in postnatal rats exposed to lipopolysaccharide. Mol Neurobiol 2021; 58(12): 6552-76.
[http://dx.doi.org/10.1007/s12035-021-02568-7] [PMID: 34585328]
[85]
Coskun A, Yegen C, Arbak S, et al. Melatonin in preservation solutions prevents ischemic injury in rat kidneys. PLoS One 2022; 17(8): e0273921.
[http://dx.doi.org/10.1371/journal.pone.0273921] [PMID: 36044512]
[86]
Siddhi J, Sherkhane B, Kalavala AK, Arruri V, Velayutham R, Kumar A. Melatonin prevents diabetes-induced nephropathy by modulating the AMPK/SIRT1 axis: Focus on autophagy and mitochondrial dysfunction. Cell Biol Int 2022; 46(12): 2142-57.
[http://dx.doi.org/10.1002/cbin.11899] [PMID: 36086947]
[87]
Sun J, Pan J, Liu Q, Cheng J, Tang Q, Ji Y. Melatonin attenuates mitochondrial damage in aristolochic acid-induced acute kidney injury. Biomol Ther 2022; 31(1): 97-107.
[88]
Liu Q, Sun Y, Zhu Y, Qiao S, Cai J, Zhang Z. Melatonin relieves liver fibrosis induced by Txnrd3 knockdown and nickel exposure via IRE1/NF-kB/NLRP3 and PERK/TGF-β1 axis activation. Life Sci 2022; 301: 120622.
[http://dx.doi.org/10.1016/j.lfs.2022.120622] [PMID: 35537548]
[89]
Crespo I, San-Miguel B, Sánchez DI, et al. Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin. J Pineal Res 2016; 61(2): 168-76.
[http://dx.doi.org/10.1111/jpi.12335] [PMID: 27101794]
[90]
Oleshchuk O, Ivankiv Y, Falfushynska H, Mudra A, Lisnychuk N. Hepatoprotective effect of melatonin in toxic liver injury in rats. Medicina 2019; 55(6): 304.
[http://dx.doi.org/10.3390/medicina55060304] [PMID: 31238587]
[91]
Andelic N. The epidemiology of traumatic brain injury. Lancet Neurol 2013; 12(1): 28-9.
[http://dx.doi.org/10.1016/S1474-4422(12)70294-6] [PMID: 23177533]
[92]
Rubiano AM, Carney N, Chesnut R, Puyana JC. Global neurotrauma research challenges and opportunities. Nature 2015; 527(7578): S193-7.
[http://dx.doi.org/10.1038/nature16035] [PMID: 26580327]
[93]
Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 2017; 16(12): 987-1048.
[http://dx.doi.org/10.1016/S1474-4422(17)30371-X] [PMID: 29122524]
[94]
Cheng P, Yin P, Ning P, et al. Trends in traumatic brain injury mortality in China, 2006–2013: A population-based longitudinal study. PLoS Med 2017; 14(7): e1002332.
[http://dx.doi.org/10.1371/journal.pmed.1002332] [PMID: 28700591]
[95]
Kobeissy FH. Brain neurotrauma: Molecular, neuropsychological, and rehabilitation aspects 2015.
[96]
Roozenbeek B, Maas AIR, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 2013; 9(4): 231-6.
[http://dx.doi.org/10.1038/nrneurol.2013.22] [PMID: 23443846]
[97]
Hu X, Xu Y, Xu H, et al. Progress in understanding ferroptosis and its targeting for therapeutic benefits in traumatic brain and spinal cord injuries. Front Cell Dev Biol 2021; 9: 705786.
[http://dx.doi.org/10.3389/fcell.2021.705786] [PMID: 34422826]
[98]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[99]
Bayir H, Kagan VE, Tyurina YY, et al. Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr Res 2002; 51(5): 571-8.
[http://dx.doi.org/10.1203/00006450-200205000-00005] [PMID: 11978879]
[100]
Tyurin VA, Tyurina YY, Borisenko GG, et al. Oxidative stress following traumatic brain injury in rats: quantitation of biomarkers and detection of free radical intermediates. J Neurochem 2000; 75(5): 2178-89.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0752178.x] [PMID: 11032908]
[101]
Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S. Ferroptosis and cell death mechanisms in Parkinson’s disease. Neurochem Int 2017; 104: 34-48.
[http://dx.doi.org/10.1016/j.neuint.2017.01.004] [PMID: 28082232]
[102]
Wu C, Du M, Yu R, et al. A novel mechanism linking ferroptosis and endoplasmic reticulum stress via the circPtpn14/miR-351-5p/5-LOX signaling in melatonin-mediated treatment of traumatic brain injury. Free Radic Biol Med 2022; 178: 271-94.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.12.007] [PMID: 34883251]
[103]
Rui T, Wang H, Li Q, et al. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res 2021; 70(2): e12704.
[http://dx.doi.org/10.1111/jpi.12704] [PMID: 33206394]
[104]
Gou Z, Su X, Hu X, et al. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway. Brain Res Bull 2020; 163: 40-8.
[http://dx.doi.org/10.1016/j.brainresbull.2020.07.011] [PMID: 32679060]
[105]
Lai Z, Zhang L, Su J, Cai D, Xu Q. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res 2016; 1630: 25-37.
[http://dx.doi.org/10.1016/j.brainres.2015.10.050] [PMID: 26541582]
[106]
Wang Y, Tao Y. Research progress on regulatory T cells in acute kidney injury. J Immunol Res 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/174164] [PMID: 26273681]
[107]
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 2015; 26(8): 1765-76.
[http://dx.doi.org/10.1681/ASN.2015010006] [PMID: 25810494]
[108]
Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: An integrated clinical syndrome. Kidney Int 2012; 82(5): 516-24.
[http://dx.doi.org/10.1038/ki.2012.208] [PMID: 22673882]
[109]
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int 2012; 81(5): 442-8.
[http://dx.doi.org/10.1038/ki.2011.379] [PMID: 22113526]
[110]
Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z. Regulated cell death in AKI. J Am Soc Nephrol 2014; 25(12): 2689-701.
[http://dx.doi.org/10.1681/ASN.2014030262] [PMID: 24925726]
[111]
Hsu RK, McCulloch CE, Dudley RA, Lo LJ, Hsu C. Temporal changes in incidence of dialysis-requiring AKI. J Am Soc Nephrol 2013; 24(1): 37-42.
[http://dx.doi.org/10.1681/ASN.2012080800] [PMID: 23222124]
[112]
Waikar SS, Curhan GC, Wald R, McCarthy EP, Chertow GM. Declining mortality in patients with acute renal failure, 1988 to 2002. J Am Soc Nephrol 2006; 17(4): 1143-50.
[http://dx.doi.org/10.1681/ASN.2005091017] [PMID: 16495376]
[113]
Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med 2015; 41(8): 1411-23.
[http://dx.doi.org/10.1007/s00134-015-3934-7] [PMID: 26162677]
[114]
Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical decision support for in-hospital AKI. J Am Soc Nephrol 2018; 29(2): 654-60.
[http://dx.doi.org/10.1681/ASN.2017070765] [PMID: 29097621]
[115]
Pannu N, Nadim MK. An overview of drug-induced acute kidney injury. Crit Care Med 2008; 36(4) (Suppl.): S216-23.
[http://dx.doi.org/10.1097/CCM.0b013e318168e375] [PMID: 18382197]
[116]
Xie Y, Hou W, Song X, et al. Ferroptosis: Process and function. Cell Death Differ 2016; 23(3): 369-79.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[117]
Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014; 16(12): 1180-91.
[http://dx.doi.org/10.1038/ncb3064] [PMID: 25402683]
[118]
Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA 2014; 111(47): 16836-41.
[http://dx.doi.org/10.1073/pnas.1415518111] [PMID: 25385600]
[119]
Qiu W, An S, Wang T, et al. Melatonin suppresses ferroptosis via activation of the Nrf2/HO-1 signaling pathway in the mouse model of sepsis-induced acute kidney injury. Int Immunopharmacol 2022; 112: 109162.
[http://dx.doi.org/10.1016/j.intimp.2022.109162] [PMID: 36067654]
[120]
Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013; 83(6): 1029-41.
[http://dx.doi.org/10.1038/ki.2012.439] [PMID: 23325084]
[121]
Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A. Mitochondrial dysfunction in age-related macular degeneration: Melatonin as a potential treatment. Expert Opin Ther Targets 2020; 24(4): 359-78.
[http://dx.doi.org/10.1080/14728222.2020.1737015] [PMID: 32116056]
[122]
Huang Y, Jiang L, Liu X, et al. Melatonin alleviates acute kidney injury by inhibiting NRF2/Slc7a11 axis-mediated ferroptosis. Oxid Med Cell Longev 2022; 2022: 1-24.
[http://dx.doi.org/10.1155/2022/4776243] [PMID: 35979396]
[123]
Yan Y, Teng H, Hang Q, et al. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat Commun 2023; 14(1): 3673.
[http://dx.doi.org/10.1038/s41467-023-39401-9] [PMID: 37339981]
[124]
Thursz M, Kamath PS, Mathurin P, Szabo G, Shah VH. Alcohol-related liver disease: Areas of consensus, unmet needs and opportunities for further study. J Hepatol 2019; 70(3): 521-30.
[http://dx.doi.org/10.1016/j.jhep.2018.10.041] [PMID: 30658117]
[125]
Wu X, Fan X, Miyata T, et al. Recent advances in understanding of pathogenesis of alcohol-associated liver disease. Annu Rev Pathol 2023; 18(1): 411-38.
[http://dx.doi.org/10.1146/annurev-pathmechdis-031521-030435] [PMID: 36270295]
[126]
Mukherji A, Bailey SM, Staels B, Baumert TF. The circadian clock and liver function in health and disease. J Hepatol 2019; 71(1): 200-11.
[http://dx.doi.org/10.1016/j.jhep.2019.03.020] [PMID: 30930223]
[127]
Yao Y, Zuo A, Deng Q, et al. Physcion protects against ethanol-induced liver injury by reprogramming of circadian clock. Front Pharmacol 2020; 11: 573074.
[http://dx.doi.org/10.3389/fphar.2020.573074] [PMID: 33381029]
[128]
Mao L, Zhao T, Song Y, et al. The emerging role of ferroptosis in non-cancer liver diseases: Hype or increasing hope? Cell Death Dis 2020; 11(7): 518.
[http://dx.doi.org/10.1038/s41419-020-2732-5] [PMID: 32647111]
[129]
Liu CY, Wang M, Yu HM, et al. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci Biotechnol Biochem 2020; 84(8): 1621-8.
[http://dx.doi.org/10.1080/09168451.2020.1763155] [PMID: 32419644]
[130]
Capelletti MM, Manceau H, Puy H, Peoc’h K. Ferroptosis in liver diseases: An overview. Int J Mol Sci 2020; 21(14): 4908.
[http://dx.doi.org/10.3390/ijms21144908] [PMID: 32664576]
[131]
Zhou Z, Ye TJ, DeCaro E, et al. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis. Am J Pathol 2020; 190(1): 82-92.
[http://dx.doi.org/10.1016/j.ajpath.2019.09.012] [PMID: 31610175]
[132]
You M, Zhou Z, Daniels M, Jogasuria A. Endocrine Adiponectin-FGF15/19 axis in ethanol-induced inflammation and alcoholic liver injury. Gene Expr 2018; 18(2): 103-13.
[http://dx.doi.org/10.3727/105221617X15093738210295] [PMID: 29096734]
[133]
Zhao Y, Zhang R, Wang Z, et al. Melatonin prevents against ethanol-induced liver injury by mitigating ferroptosis via targeting brain and muscle ARNT-like 1 in mice liver and hepg2 cells. J Agric Food Chem 2022; 70(40): 12953-67.
[http://dx.doi.org/10.1021/acs.jafc.2c04337] [PMID: 36166594]
[134]
Rendón-Ramírez A. Alcoholism: Common and oxidative damage biomarkers. J Clin Toxico 2014; 1-8.
[135]
Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: New insights into disease mechanisms. Cell Death Discov 2021; 7(1): 276.
[http://dx.doi.org/10.1038/s41420-021-00660-4] [PMID: 34611144]
[136]
Poole L, Dolin C, Arteel G. Organ–organ crosstalk and alcoholic liver disease. Biomolecules 2017; 7(4): 62.
[http://dx.doi.org/10.3390/biom7030062] [PMID: 28812994]
[137]
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273-85.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[138]
Zhou Z, Ye TJ, Bonavita G, et al. Adipose-specific lipin-1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice. Hepatol Commun 2019; 3(5): 656-69.
[http://dx.doi.org/10.1002/hep4.1333] [PMID: 31061954]
[139]
Chen S, Zhu J, Zang X, Zhai Y. The Emerging Role of Ferroptosis in Liver Diseases. Front Cell Dev Biol 2021; 9: 801365.
[http://dx.doi.org/10.3389/fcell.2021.801365] [PMID: 34970553]
[140]
Venegas C, García JA, Escames G, et al. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J Pineal Res 2012; 52(2): 217-27.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00931.x] [PMID: 21884551]
[141]
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81: 101717.
[http://dx.doi.org/10.1016/j.arr.2022.101717] [PMID: 35961513]
[142]
Hu S, Yin S, Jiang X, Huang D, Shen G. Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis. Eur J Pharmacol 2009; 616(1-3): 287-92.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.044] [PMID: 19576882]
[143]
Stępniak J, Krawczyk-Lipiec J, Lewiński A, Karbownik-Lewińska M. Sorafenib versus lenvatinib causes stronger oxidative damage to membrane lipids in noncancerous tissues of the thyroid, liver, and kidney: Effective protection by melatonin and indole-3-propionic acid. Biomedicines 2022; 10(11): 2890.
[http://dx.doi.org/10.3390/biomedicines10112890] [PMID: 36428458]
[144]
Wang G, Cheng S, Li J, et al. Source apportionment and seasonal variation of PM2.5 carbonaceous aerosol in the Beijing-Tianjin-Hebei Region of China. Environ Monit Assess 2015; 187(3): 143.
[http://dx.doi.org/10.1007/s10661-015-4288-x] [PMID: 25716523]
[145]
Yan K, Hou T, Zhu L, Ci X, Peng L. PM2.5 inhibits system Xc-activity to induce ferroptosis by activating the AMPK-Beclin1 pathway in acute lung injury. Ecotoxicol Environ Saf 2022; 245: 114083.
[http://dx.doi.org/10.1016/j.ecoenv.2022.114083] [PMID: 36137421]
[146]
Fanizza C, De Berardis B, Ietto F, et al. Analysis of major pollutants and physico-chemical characteristics of PM2.5 at an urban site in Rome. Sci Total Environ 2018; 616-617: 1457-68.
[http://dx.doi.org/10.1016/j.scitotenv.2017.10.168] [PMID: 29074245]
[147]
Li R, Zhou R, Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases (Review). Oncol Lett 2018; 15(5): 7506-14.
[http://dx.doi.org/10.3892/ol.2018.8355] [PMID: 29725457]
[148]
Schraufnagel DE, Balmes JR, Cowl CT, et al. Air pollution and noncommunicable diseases. Chest 2019; 155(2): 417-26.
[http://dx.doi.org/10.1016/j.chest.2018.10.041] [PMID: 30419237]
[149]
Wang Y, Shen Z, Zhao S, et al. Sipeimine ameliorates PM2.5-induced lung injury by inhibiting ferroptosis via the PI3K/Akt/Nrf2 pathway: A network pharmacology approach. Ecotoxicol Environ Saf 2022; 239: 113615.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113615] [PMID: 35567927]
[150]
Qin F, Fan Z, Xu M, et al. Amelioration of ambient particulate matter (PM2.5)-induced lung injury in rats by aerobic exercise training. Front Physiol 2021; 12: 731594.
[http://dx.doi.org/10.3389/fphys.2021.731594] [PMID: 34764879]
[151]
Wang M, Aaron CP, Madrigano J, et al. Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function. JAMA 2019; 322(6): 546-56.
[http://dx.doi.org/10.1001/jama.2019.10255] [PMID: 31408135]
[152]
Xue T, Zhu T, Peng W, et al. Clean air actions in China, PM2.5 exposure, and household medical expenditures: A quasi-experimental study. PLoS Med 2021; 18(1): e1003480.
[http://dx.doi.org/10.1371/journal.pmed.1003480] [PMID: 33406088]
[153]
Ran Z, An Y, Zhou J, et al. Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice. Environ Pollut 2021; 272: 115987.
[http://dx.doi.org/10.1016/j.envpol.2020.115987] [PMID: 33213950]
[154]
Guo L, Bai S, Ding S, Zhao L, Xu S, Wang X. PM2.5 exposure induces lung injury and fibrosis by regulating ferroptosis via TGF-β signaling. Dis Markers 2022; 2022: 1-11.
[http://dx.doi.org/10.1155/2022/7098463] [PMID: 36204510]
[155]
Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36: 101679.
[http://dx.doi.org/10.1016/j.redox.2020.101679] [PMID: 32818797]
[156]
Zhou L, Su X, Li B, et al. PM2.5 exposure impairs sperm quality through testicular damage dependent on NALP3 inflammasome and miR-183/96/182 cluster targeting FOXO1 in mouse. Ecotoxicol Environ Saf 2019; 169: 551-63.
[http://dx.doi.org/10.1016/j.ecoenv.2018.10.108] [PMID: 30476817]
[157]
Li Y, Cao Y, Xiao J, et al. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 2020; 27(9): 2635-50.
[http://dx.doi.org/10.1038/s41418-020-0528-x] [PMID: 32203170]
[158]
Liu P, Feng Y, Li H, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 2020; 25(1): 10.
[http://dx.doi.org/10.1186/s11658-020-00205-0] [PMID: 32161620]
[159]
Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut 2019; 254(Pt A): 112937.
[160]
Wang X, Wang Y, Huang D, et al. Astragaloside IV regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice. Int Immunopharmacol 2022; 112: 109186.
[http://dx.doi.org/10.1016/j.intimp.2022.109186] [PMID: 36115280]
[161]
Wang Y, Zhao S, Jia N, et al. Pretreatment with rosavin attenuates PM2.5-induced lung injury in rats through antiferroptosis via PI3K/Akt/Nrf2 signaling pathway. Phytother Res 2023; 37(1): 195-210.
[http://dx.doi.org/10.1002/ptr.7606] [PMID: 36097321]
[162]
Carvalho-Sousa CE, Pereira EP, Kinker GS, et al. Immune-pineal axis protects rat lungs exposed to polluted air. J Pineal Res 2020; 68(3): e12636.
[http://dx.doi.org/10.1111/jpi.12636] [PMID: 32043640]
[163]
Li X, Liu X. Effects of PM2.5 on chronic airway diseases: A review of research progress. Atmosphere 2021; 12(8): 1068.
[http://dx.doi.org/10.3390/atmos12081068]
[164]
Liu X, Zhao J, Zheng R. DNA damage of tumor-associated lymphocytes and total antioxidant capacity in cancerous patients. Mutat Res Genet Toxicol Environ Mutagen 2003; 539(1-2): 1-8.
[http://dx.doi.org/10.1016/S1383-5718(03)00112-8] [PMID: 12948809]
[165]
Wang W, Gao J. Effects of melatonin on protecting against lung injury (Review). Exp Ther Med 2021; 21(3): 228.
[http://dx.doi.org/10.3892/etm.2021.9659] [PMID: 33603837]
[166]
Chiu MH, Su CL, Chen CF, Chen KH, Wang D, Wang JJ. Protective effect of melatonin on liver ischemia-reperfusion induced pulmonary microvascular injury in rats. Transplant Proc 2012; 44(4): 962-5.
[http://dx.doi.org/10.1016/j.transproceed.2012.01.097] [PMID: 22564597]
[167]
Guohua F, Tieyuan Z, Xinping M, Juan X. Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol Environ Saf 2021; 223: 112588.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112588] [PMID: 34364124]
[168]
Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Breakdown of an ironclad defense system: The critical role of nrf2 in mediating ferroptosis. Cell Chem Biol 2020; 27(4): 436-47.
[http://dx.doi.org/10.1016/j.chembiol.2020.03.011] [PMID: 32275864]
[169]
Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis 2021; 12(4): 339.
[http://dx.doi.org/10.1038/s41419-021-03614-x] [PMID: 33795647]
[170]
Volkova M, Russell R III. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev 2012; 7(4): 214-20.
[http://dx.doi.org/10.2174/157340311799960645] [PMID: 22758622]
[171]
Sun L, Wang H, Xu D, Yu S, Zhang L, Li X. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered 2022; 13(1): 48-60.
[http://dx.doi.org/10.1080/21655979.2021.2004980] [PMID: 34898356]
[172]
Shabalala S, Muller CJF, Louw J, Johnson R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci 2017; 180: 160-70.
[http://dx.doi.org/10.1016/j.lfs.2017.05.003] [PMID: 28478263]
[173]
Li X, Liang J, Qu L, et al. Exploring the role of ferroptosis in the doxorubicin-induced chronic cardiotoxicity using a murine model. Chem Biol Interact 2022; 363: 110008.
[http://dx.doi.org/10.1016/j.cbi.2022.110008] [PMID: 35667395]
[174]
Fitzmaurice C, Dicker D, Pain A, et al. The Global Burden of Cancer 2013. JAMA Oncol 2015; 1(4): 505-27.
[http://dx.doi.org/10.1001/jamaoncol.2015.0735] [PMID: 26181261]
[175]
Peng Y, Wang L, Zhang Z, et al. Puerarin activates adaptive autophagy and protects the myocardium against doxorubicin-induced cardiotoxicity via the 14–3-3γ/PKCε pathway. Biomed Pharmacother 2022; 153: 113403.
[http://dx.doi.org/10.1016/j.biopha.2022.113403] [PMID: 36076529]
[176]
Lefrak EA, Piťha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 1973; 32(2): 302-14.
[http://dx.doi.org/10.1002/1097-0142(197308)32:2<302::AID-CNCR2820320205>3.0.CO;2-2] [PMID: 4353012]
[177]
Minotti G, Ronchi R, Salvatorelli E, Menna P, Cairo G. Doxorubicin irreversibly inactivates iron regulatory proteins 1 and 2 in cardiomyocytes: Evidence for distinct metabolic pathways and implications for iron-mediated cardiotoxicity of antitumor therapy. Cancer Res 2001; 61(23): 8422-8.
[PMID: 11731422]
[178]
Ichikawa Y, Ghanefar M, Bayeva M, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 2014; 124(2): 617-30.
[http://dx.doi.org/10.1172/JCI72931] [PMID: 24382354]
[179]
Liu X, Li D, Pi W, Wang B, Xu S, Yu L. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol 2022; 113(Pt A): 109379.
[180]
Ling G, Wang X, Tan N, et al. Mechanisms and drug intervention for doxorubicin-induced cardiotoxicity based on mitochondrial bioenergetics. Oxid Med Cell Longev 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/7176282] [PMID: 36275901]
[181]
Govender J, Loos B, Engelbrecht AM. Melatonin: A protective role against doxorubicin-induced cardiotoxicity. Future Oncol 2015; 11(14): 2003-6.
[http://dx.doi.org/10.2217/fon.15.48] [PMID: 26198826]
[182]
Alghasham AA. Comparative assessment of melatonin-afforded protection in liver, kidney and heart of male mice against doxorubicin induced toxicity. Pharmacol Pharm 2013; 4(8): 590-8.
[http://dx.doi.org/10.4236/pp.2013.48085]
[183]
Abe K, Ikeda M, Ide T, et al. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Sci Signal 2022; 15(758): eabn8017.
[http://dx.doi.org/10.1126/scisignal.abn8017] [PMID: 36318618]
[184]
Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 2019; 116(7): 2672-80.
[http://dx.doi.org/10.1073/pnas.1821022116] [PMID: 30692261]
[185]
Yu Y, Yan Y, Niu F, et al. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 2021; 7(1): 193.
[http://dx.doi.org/10.1038/s41420-021-00579-w] [PMID: 34312370]
[186]
He H, Wang L, Qiao Y, Yang B, Yin D, He M. Epigallocatechin-3-gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy. Redox Biol 2021; 48: 102185.
[http://dx.doi.org/10.1016/j.redox.2021.102185] [PMID: 34775319]
[187]
Hou K, Shen J, Yan J, et al. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine 2021; 69: 103456.
[http://dx.doi.org/10.1016/j.ebiom.2021.103456] [PMID: 34233258]
[188]
Chen H, Zhu J, Le Y, et al. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine 2022; 99: 153964.
[http://dx.doi.org/10.1016/j.phymed.2022.153964] [PMID: 35180677]
[189]
Liu Y, Zeng L, Yang Y, Chen C, Wang D, Wang H. Acyl-CoA thioesterase 1 prevents cardiomyocytes from Doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis 2020; 11(9): 756.
[http://dx.doi.org/10.1038/s41419-020-02948-2] [PMID: 32934217]
[190]
van Gent M, Sparrer KMJ, Gack MU. TRIM proteins and their roles in antiviral host defenses. Annu Rev Virol 2018; 5(1): 385-405.
[http://dx.doi.org/10.1146/annurev-virology-092917-043323] [PMID: 29949725]
[191]
Sun X, Sun P, Zhen D, et al. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol Appl Pharmacol 2022; 437: 115902.
[http://dx.doi.org/10.1016/j.taap.2022.115902] [PMID: 35093381]
[192]
Govender J, Loos B, Marais E, Engelbrecht AM. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: A review of the protective role of melatonin. J Pineal Res 2014; 57(4): 367-80.
[http://dx.doi.org/10.1111/jpi.12176] [PMID: 25230823]
[193]
Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021; 139: 111708.
[http://dx.doi.org/10.1016/j.biopha.2021.111708] [PMID: 34243633]
[194]
Morishima I, Okumura K, Matsui H, et al. Zinc accumulation in adriamycin-induced cardiomyopathy in rats: Effects of melatonin, a cardioprotective antioxidant. J Pineal Res 1999; 26(4): 204-10.
[http://dx.doi.org/10.1111/j.1600-079X.1999.tb00585.x] [PMID: 10340722]
[195]
Li H, Wang C, Sun P, Liu D, Du G, Tian J. Melatonin attenuates doxorubicin-induced cardiotoxicity through preservation of YAP expression. J Cell Mol Med 2020; 24(6): 3634-46.
[http://dx.doi.org/10.1111/jcmm.15057] [PMID: 32068341]
[196]
Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R. Cardiovascular diseases: Protective effects of melatonin. J Pineal Res 2008; 44(1): 16-25.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00518.x] [PMID: 18078444]
[197]
Hanna M, Seddiek H, Aboulhoda BE, et al. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front Physiol 2022; 13: 1050598.
[http://dx.doi.org/10.3389/fphys.2022.1050598] [PMID: 36531171]
[198]
Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 2006; 194(2) (Suppl.): S3-S11.
[http://dx.doi.org/10.1016/j.ajog.2005.08.047] [PMID: 16448873]
[199]
Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet 2019; 393(10169): 364-76.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[200]
Liu P, Wang W, Li Z, et al. Ferroptosis: A new regulatory mechanism in osteoporosis. Oxid Med Cell Longev 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/2634431] [PMID: 35082963]
[201]
Fujita T. Osteoporosis--concept, classification and epidemiology. Jpn J Clin Med 1994; 52(9): 2275-80.
[PMID: 7967067]
[202]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[203]
Yang Y, Lin Y, Wang M, et al. Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res 2022; 10(1): 26.
[http://dx.doi.org/10.1038/s41413-022-00198-w] [PMID: 35260560]
[204]
Ma H, Wang X, Zhang W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid Med Cell Longev 2020; 2020: 1-18.
[http://dx.doi.org/10.1155/2020/9067610] [PMID: 33343809]
[205]
Liu F, Zhang WL, Meng HZ, Cai ZY, Yang MW. Regulation of DMT1 on autophagy and apoptosis in osteoblast. Int J Med Sci 2017; 14(3): 275-83.
[http://dx.doi.org/10.7150/ijms.17860] [PMID: 28367088]
[206]
Zhang WL, Meng HZ, Yang MW. Regulation of DMT1 on bone microstructure in type 2 diabetes. Int J Med Sci 2015; 12(5): 441-9.
[http://dx.doi.org/10.7150/ijms.11986] [PMID: 26078704]
[207]
Gao L, Hua W, Tian L, et al. Molecular mechanism of ferroptosis in orthopedic diseases. Cells 2022; 11(19): 2979.
[http://dx.doi.org/10.3390/cells11192979] [PMID: 36230941]
[208]
Wang X, Ma H, Sun J, et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol Trace Elem Res 2022; 200(1): 298-307.
[http://dx.doi.org/10.1007/s12011-021-02627-z] [PMID: 33594527]
[209]
Ge W, Jie J, Yao J, Li W, Cheng Y, Lu W. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts. Mol Med Rep 2022; 25(4): 140.
[http://dx.doi.org/10.3892/mmr.2022.12656] [PMID: 35211757]
[210]
Xiong Y, Chen L, Lin Z, et al. The regulatory role of ferroptosis in bone homeostasis. Stem Cells Int 2022; 2022: 1-9.
[http://dx.doi.org/10.1155/2022/3568597] [PMID: 35873534]
[211]
MacDonald IJ, Tsai HC, Chang AC, Huang CC, Yang SF, Tang CH. Melatonin inhibits osteoclastogenesis and osteolytic bone metastasis: Implications for osteoporosis. Int J Mol Sci 2021; 22(17): 9435.
[http://dx.doi.org/10.3390/ijms22179435] [PMID: 34502344]
[212]
Liu X, Wang T, Wang W, et al. Emerging potential therapeutic targets of ferroptosis in skeletal diseases. Oxid Med Cell Longev 2022; 2022: 1-19.
[http://dx.doi.org/10.1155/2022/3112388] [PMID: 35941905]
[213]
Kubo Y, Wruck CJ, Fragoulis A, et al. Role of Nrf2 in fracture healing: Clinical aspects of oxidative stress. Calcif Tissue Int 2019; 105(4): 341-52.
[http://dx.doi.org/10.1007/s00223-019-00576-3] [PMID: 31236620]
[214]
Buckley L, Humphrey MB. Glucocorticoid-induced osteoporosis. N Engl J Med 2018; 379(26): 2547-56.
[http://dx.doi.org/10.1056/NEJMcp1800214] [PMID: 30586507]
[215]
Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: Ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 2013; 24(3): 109-19.
[http://dx.doi.org/10.1016/j.tem.2012.11.005] [PMID: 23312823]
[216]
Li M, Yang N, Hao L, et al. Melatonin inhibits the ferroptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid-induced osteoporosis. Oxid Med Cell Longev 2022; 2022: 1-22.
[http://dx.doi.org/10.1155/2022/8223737] [PMID: 36035224]
[217]
Lu J, Yang J, Zheng Y, Chen X, Fang S. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep 2019; 9(1): 16130.
[http://dx.doi.org/10.1038/s41598-019-52513-x] [PMID: 31695092]
[218]
Leng Y, McEvoy CT, Allen IE, Yaffe K. Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment. JAMA Neurol 2017; 74(10): 1237-45.
[http://dx.doi.org/10.1001/jamaneurol.2017.2180] [PMID: 28846764]
[219]
Wang X, Wang Z, Cao J, Dong Y, Chen Y. Melatonin alleviates acute sleep deprivation-induced memory loss in mice by suppressing hippocampal ferroptosis. Front Pharmacol 2021; 12: 708645.
[http://dx.doi.org/10.3389/fphar.2021.708645] [PMID: 34335271]
[220]
NaveenKumar SK, Hemshekhar M, Kemparaju K, Girish KS. Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: Protection by Melatonin. Biochim Biophys Acta Mol Basis Dis 2019; 1865(9): 2303-16.
[http://dx.doi.org/10.1016/j.bbadis.2019.05.009] [PMID: 31102787]
[221]
NaveenKumar SK, SharathBabu BN, Hemshekhar M, Kemparaju K, Girish KS, Mugesh G. The role of reactive oxygen species and ferroptosis in heme-mediated activation of human platelets. ACS Chem Biol 2018; 13(8): 1996-2002.
[http://dx.doi.org/10.1021/acschembio.8b00458] [PMID: 29869870]
[222]
Thiagarajan R, Manikandan R. Antioxidants and cataract. Free Radic Res 2013; 47(5): 337-45.
[http://dx.doi.org/10.3109/10715762.2013.777155] [PMID: 23438873]
[223]
Mi Y, Wei C, Sun L, et al. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother 2023; 157: 114048.
[http://dx.doi.org/10.1016/j.biopha.2022.114048] [PMID: 36463827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy