Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Optimization of Phloretin-loaded Nanospanlastics for Targeting of FAS/SREBP1c/AMPK/ OB-Rb Signaling Pathway in HFD-induced Obesity

In Press, (this is not the final "Version of Record"). Available online 02 May, 2024
Author(s): Mohamed Alamir, Mohamed A. Hussein*, Heba M. Aboud, Mohamed H. Khedr and Mohamed I. Zanaty
Published on: 02 May, 2024

DOI: 10.2174/0113892010278684240105115516

Price: $95

Abstract

Objectives: Obese patients are at increased risk for CVD, which is the main cause of premature death and has been a major cause of disability and ill health in recent years. PTN, a natural dihydrochalcone flavonoid, has a variety of pharmacological characteristics. This article aimed to prepare PTN-NSLs to evaluate their anti-obesity activity.

Methods: Morphology, Particle size, zeta potential, UV-vis, entrapment efficiency, FT-IR spectra, and an in vitro release study of PTN-NSLs were described. PTN-NSLs were also tested for their anti-obesity properties in obese rats. The LD50 of PTN-NSLs was calculated, as was the 1/20 LD50 prepared for the treatment of obese rats. Also, the level of glycemic, oxidative stress and inflammatory biomarkers were estimated in the obese rat’s model.

Results: The synthesized PTN-NSLs were uniform, spherically shaped, and well dispersed with no aggregation noted, with a size range of 114.06 ± 8.35 nm. The measured zeta potential value of PTN-NSLs was -32.50.8 mv. Also, the UV spectra of PTN and PTN-NSLs have strong absorption at 225 and 285 nm. Also, the LD50 of PTN-NSLs was found to be 2750 mg/kg.b.w. Moreover, administrating obese rats with PTN-NSLs resulted in improved glycemic features as well as GSH, SOD, GPx, GR, IL10, TBARs, and IL-6 levels, as well as attenuated FAS, SREBP1c, AMPK, ACO, CPT1, and OB-Rb gene expression.

Conclusions: Administration of PTN-NSLs significantly attenuated the levels of glycemic, oxidative stress, and inflammatory biomarkers. The biochemical and PCR findings are aided by histological investigations. Also, the present findings imply that PTN-NSLs might be a promising pharmacological tool for the treatment of obesity-related diseases.

[1]
Blundell, J.E.; Dulloo, A.G.; Salvador, J.; Frühbeck, G. Beyond BMI--phenotyping the obesities. Obes. Facts, 2014, 7(5), 322-328.
[http://dx.doi.org/10.1159/000368783] [PMID: 25485991]
[2]
Khalil, M.; Shanmugam, H.; Abdallah, H.; John Britto, J.S.; Galerati, I. Gómez-Ambrosi, J.; Frühbeck, G.; Portincasa, P. The potential of the mediterranean diet to improve mitochondrial function in experimental models of obesity and metabolic syndrome. Nutrients, 2022, 14(15), 3112.
[http://dx.doi.org/10.3390/nu14153112] [PMID: 35956289]
[3]
Finicelli, M.; Squillaro, T.; Di Cristo, F.; Di Salle, A.; Melone, M.A.B.; Galderisi, U.; Peluso, G. Metabolic syndrome, mediterranean diet, and polyphenols: Evidence and perspectives. J. Cell. Physiol., 2019, 234(5), 5807-5826.
[http://dx.doi.org/10.1002/jcp.27506] [PMID: 30317573]
[4]
Myung, J.H.; Kim, B.R.; Yoon, S.H.; Kwon, Y.K.; Park, S.S.; Pyun, S.B. Relationship between cardiorespiratory fitness and preoperative evaluation findings in patients with morbid obesity undergoing sleeve gastrectomy. Medicine, 2021, 100(37), e27263.
[http://dx.doi.org/10.1097/MD.0000000000027263] [PMID: 34664878]
[5]
Salah, A.; Hussein, A.; Hassan, S.; Hussein, M.; Bassiouny, K. Green synthesis of RES-CMCS: A promising modulator of the glut-4/leptin signaling pathway in HFD-induced insulin resistance. Biomed. Res. Ther., 2022, 9(7), 5166-5178.
[http://dx.doi.org/10.15419/bmrat.v9i7.753]
[6]
Hussein, M.A. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet. Free Radic. Antioxid., 2011, 1(1), 49-60.
[http://dx.doi.org/10.5530/ax.2011.1.9]
[7]
Shehata, M.R.; Mohamed, M.M.A.; Shoukry, M.M.; Hussein, M.A.; Hussein, F.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine. J. Coord. Chem., 2015, 68(6), 1101-1114.
[http://dx.doi.org/10.1080/00958972.2015.1007962]
[8]
Shurrab, N.T.; Arafa, E.S.A. Metformin: A review of its therapeutic efficacy and adverse effects. Obes. Med., 2020, 17, 100186.
[http://dx.doi.org/10.1016/j.obmed.2020.100186]
[9]
Mohammed Abdalla, H., Jr; Soad Mohamed, A.G. In vivo hepato-protective properties of purslane extracts on paracetamol-induced liver damage. Malays. J. Nutr., 2010, 16(1), 161-170.
[PMID: 22691863]
[10]
Tian, X.R.; Feng, J.T.; Ma, Z.Q.; Xie, N.; Zhang, J.; Zhang, X.; Tang, H.F. Three new glycosides from the whole plant of Clematis lasiandra Maxim and their cytotoxicity. Phytochem. Lett., 2014, 10, 168-172.
[http://dx.doi.org/10.1016/j.phytol.2014.09.004]
[11]
Zhang, T.T.; Yang, L.; Jiang, J.G. Bioactive comparison of main components from unripe fruits of Rubus chingii Hu and identification of the effective component. Food Funct., 2015, 6(7), 2205-2214.
[http://dx.doi.org/10.1039/C5FO00406C] [PMID: 26053738]
[12]
Diana, A.A.; Mohammed, A.H.; Suzan, S.A.; Soha, A.H.; Michael, W. Salvia officinalis improves glycemia and suppresses pro-inflammatory features in obese rats with metabolic syndrome. Curr. Pharm. Biotechnol., 2023.
[http://dx.doi.org/10.2174/1389201024666230811104740]
[13]
Kalinowska, M.; Gryko, K.; Wróblewska, A.M.; Jabłońska-Trypuć, A.; Karpowicz, D. Phenolic content, chemical composition and anti-/pro-oxidant activity of Gold Milenium and Papierowka apple peel extracts. Sci. Rep., 2020, 10(1), 14951.
[http://dx.doi.org/10.1038/s41598-020-71351-w] [PMID: 32917912]
[14]
Mariadoss, A.V.A.; Vinayagam, R.; Xu, B.; Venkatachalam, K.; Sankaran, V.; Vijayakumar, S.; Bakthavatsalam, S.R.; A. Mohamed, S.; David, E. Phloretin loaded chitosan nanoparticles enhance the antioxidants and apoptotic mechanisms in DMBA induced experimental carcinogenesis. Chem. Biol. Interact., 2019, 308, 11-19.
[http://dx.doi.org/10.1016/j.cbi.2019.05.008] [PMID: 31071336]
[15]
Mariadoss, A.V.A.; Vinayagam, R.; Senthilkumar, V.; Paulpandi, M.; Murugan, K.; Xu, B. K M, G.; Kotakadi, V.S.; David, E. Phloretin loaded chitosan nanoparticles augments the pH-dependent mitochondrial-mediated intrinsic apoptosis in human oral cancer cells. Int. J. Biol. Macromol., 2019, 130, 997-1008.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.031] [PMID: 30844461]
[16]
Alsanea, S.; Gao, M.; Liu, D. Phloretin prevents high-fat diet-induced obesity and improves metabolic homeostasis. AAPS J., 2017, 19(3), 797-805.
[http://dx.doi.org/10.1208/s12248-017-0053-0] [PMID: 28197827]
[17]
Wang, Y.; Li, D.; Lin, H.; Jiang, S.; Han, L.; Hou, S.; Lin, S.; Cheng, Z.; Bian, W.; Zhang, X.; He, Y.; Zhang, K. Enhanced oral bioavailability and bioefficacy of phloretin using mixed polymeric modified self‐nanoemulsions. Food Sci. Nutr., 2020, 8(7), 3545-3558.
[http://dx.doi.org/10.1002/fsn3.1637] [PMID: 32724617]
[18]
Abu-Azzam, O.; Nasr, M. In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis. Pharm. Dev. Technol., 2020, 25(8), 930-935.
[http://dx.doi.org/10.1080/10837450.2020.1764032] [PMID: 32363977]
[19]
Fahmy, A.M.; El-Setouhy, D.A.; Habib, B.A.; Tayel, S.A. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: Entrapment efficiency vs. particle size. AAPS PharmSciTech, 2019, 20(3), 95-107.
[http://dx.doi.org/10.1208/s12249-019-1306-2] [PMID: 30694404]
[20]
Abdelrahman, F.E.; Elsayed, I.; Gad, M.K.; Elshafeey, A.H.; Mohamed, M.I. Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int. J. Pharm., 2017, 530(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.050] [PMID: 28733244]
[21]
El Menshawe, S.F.; Nafady, M.M.; Aboud, H.M.; Kharshoum, R.M.; Elkelawy, A.M.M.H.; Hamad, D.S. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: Mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv., 2019, 26(1), 1140-1154.
[http://dx.doi.org/10.1080/10717544.2019.1686087] [PMID: 31736366]
[22]
Kakkar, S.; Kaur, I.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery. Int. J. Pharm., 2011, 413(1-2), 202-210.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.027] [PMID: 21540093]
[23]
Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments. Int. J. Pharm., 2015, 483(1-2), 77-88.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.012] [PMID: 25666025]
[24]
Elsherif, N.I.; Shamma, R.N.; Abdelbary, G. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation. AAPS PharmSciTech, 2017, 18(2), 551-562.
[http://dx.doi.org/10.1208/s12249-016-0528-9] [PMID: 27138036]
[25]
Al-mahallawi, A.M.; Khowessah, O.M.; Shoukri, R.A. Enhanced non invasive trans -tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int. J. Pharm., 2017, 522(1-2), 157-164.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.005] [PMID: 28279741]
[26]
Hussein, M.A.; Ismail, N.E.M.; Mohamed, A.H.; Borik, R.M.; Ali, A.A.; Mosaad, Y.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity. Bioinform. Biol. Insights, 2021, 15.
[http://dx.doi.org/10.1177/11779322211055891] [PMID: 34840499]
[27]
Boshra, S.A.; Hussein, M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed., 2016, 8, 217-227.
[28]
Hussein, M.A.; Borik, R.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol., 2022, 23(9), 1179-1203.
[http://dx.doi.org/10.2174/1389201022666210601170650] [PMID: 34077343]
[29]
Gobba, N.A.E.K.; Hussein Ali, A.; El Sharawy, D.E.; Hussein, M.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch. Environ. Occup. Health, 2018, 73(3), 189-202.
[http://dx.doi.org/10.1080/19338244.2017.1314930] [PMID: 28375782]
[30]
M., Fayed A.; A Abdalla, E.; Hassan, S.A.; A Hussein, M.; M Roshdy, T. Downregulation of TLR4-NF-?B-p38 MAPK signalling in cholestatic rats treated with cranberry extract. Pak. J. Biol. Sci., 2022, 25(2), 112-122.
[http://dx.doi.org/10.3923/pjbs.2022.112.122] [PMID: 35233999]
[31]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[32]
Salar, R.K.; Kumar, N. Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles. Resource-Efficient Technol., 2016, 2(4), 199-214.
[http://dx.doi.org/10.1016/j.reffit.2016.10.006]
[33]
Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll., 2012, 28(1), 224-241.
[http://dx.doi.org/10.1016/j.foodhyd.2011.12.017]
[34]
Zhai, G.X. Guo; Tan; Liu, Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int. J. Nanomedicine, 2011, 6, 1621-1630.
[http://dx.doi.org/10.2147/IJN.S22411] [PMID: 21904452]
[35]
Tamilselvan, N.; Raghavan, C.V. Formulation and characterization of Anti alzheimer’s drug loaded chitosan nanoparticles and its in vitro biological evaluation. J. Young Pharm., 2014, 7(1), 28-35.
[http://dx.doi.org/10.5530/jyp.2015.1.6]
[36]
Liu, Y.; Wang, B.; Zhang, Q.; Liu, K.; Wu, Q. Physicochemical properties and lipophilicity of polydatin-lecithin complex. Trop. J. Pharm. Res., 2016, 14(12), 2217-2222.
[http://dx.doi.org/10.4314/tjpr.v14i12.10]
[37]
Abal, P.; Louzao, M.; Antelo, A.; Alvarez, M.; Cagide, E. Vilariño, N.; Vieytes, M.; Botana, L. Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50) and No Observed Adverse Effect Level (NOAEL). Toxins, 2017, 9(3), 75.
[http://dx.doi.org/10.3390/toxins9030075] [PMID: 28245573]
[38]
Assinewe, V.A.; Baum, B.R.; Gagnon, D.; Arnason, J.T. Phytochemistry of wild populations of Panax quinquefolius L. (North American ginseng). J. Agric. Food Chem., 2003, 51(16), 4549-4553.
[http://dx.doi.org/10.1021/jf030042h] [PMID: 14705875]
[39]
Troisi, R.J.; Cowie, C.C.; Harris, M.I. Diurnal variation in fasting plasma glucose: implications for diagnosis of diabetes in patients examined in the afternoon. JAMA, 2000, 284(24), 3157-3159.
[http://dx.doi.org/10.1001/jama.284.24.3157] [PMID: 11135780]
[40]
Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem., 1982, 28(10), 2077-2080.
[http://dx.doi.org/10.1093/clinchem/28.10.2077] [PMID: 6812986]
[41]
Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic determination of total serum cholesterol. Clin. Chem., 1974, 20(4), 470-475.
[http://dx.doi.org/10.1093/clinchem/20.4.470] [PMID: 4818200]
[42]
Burstein, M.; Scholnick, H.R.; Morfin, R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res., 1970, 11(6), 583-595.
[http://dx.doi.org/10.1016/S0022-2275(20)42943-8] [PMID: 4100998]
[43]
Nithiya, T.; Rajangam, U. Preventive effect of phloretin on components of glycoprotein changes in streptozotocin induced diabetic rats. Int. J. Diab. Endocrinol., 2017, 2, 30-35.
[44]
Lee, A.; Morley, J.E. Metformin decreases food consumption and induces weight loss in subjects with obesity with type II non-insulin-dependent diabetes. Obes. Res., 1998, 6(1), 47-53.
[http://dx.doi.org/10.1002/j.1550-8528.1998.tb00314.x] [PMID: 9526970]
[45]
Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem., 2017, 524, 13-30.
[http://dx.doi.org/10.1016/j.ab.2016.10.021] [PMID: 27789233]
[46]
Owen, J.B.; Butterfield, D.A. Measurement of oxidized/reduced glutathione ratio. Methods Mol. Biol., 2010, 648, 269-277.
[http://dx.doi.org/10.1007/978-1-60761-756-3_18] [PMID: 20700719]
[47]
Kakkar, P.; Das, B.; Visvanathan, P. A modified spectrophotometric assay of SOD. Indian J. Biochem. Biophys., 1984, 21, 130-132.
[PMID: 6490072]
[48]
Maiorino, F.M.; Brigelius-Flohé, R.; Aumann, K.D.; Roveri, A.; Schomburg, D.; Flohé, L.; Flohé, L. Diversity of glutathione peroxidases. Methods Enzymol., 1995, 252, 38-53.
[http://dx.doi.org/10.1016/0076-6879(95)52007-4] [PMID: 7476373]
[49]
Dym, O.; Eisenberg, D. Sequence‐structure analysis of FAD‐containing proteins. Protein Sci., 2001, 10(9), 1712-1728.
[http://dx.doi.org/10.1110/ps.12801] [PMID: 11514662]
[50]
Bancroft, G.D.; Steven, A. Theory and Practice of Histological Technique, 4th ed; Churchill Livingstone: New York, 1983, pp. 99-112.
[51]
Roa, M.; Blane, K.; Zonneberg, M. One way analysis of variance. Version IA (C);; PC-STAT, Program coded by University of Georgia: USA,, 1985.
[52]
Aryaeian, N.; Khorshidi, S.S.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran, 2017, 31(1), 886-892.
[http://dx.doi.org/10.14196/mjiri.31.134] [PMID: 29951434]
[53]
Judy, E.; Lopus, M.; Kishore, N. Mechanistic insights into encapsulation and release of drugs in colloidal niosomal systems: Biophysical aspects. RSC Advances, 2021, 11(56), 35110-35126.
[http://dx.doi.org/10.1039/D1RA06057K] [PMID: 35493162]
[54]
Lalu, L.; Tambe, V.; Pradhan, D.; Nayak, K.; Bagchi, S.; Maheshwari, R.; Kalia, K.; Tekade, R.K. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. J. Control. Release, 2017, 268, 19-39.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.035] [PMID: 28756272]
[55]
Mazyed, E.A.; Helal, D.A.; Elkhoudary, M.M.; Abd Elhameed, A.G.; Yasser, M. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate. Pharmaceuticals, 2021, 14(1), 68-75.
[http://dx.doi.org/10.3390/ph14010068] [PMID: 33467631]
[56]
Jagwani, S.; Jalalpure, S.; Dhamecha, D.; Jadhav, K.; Bohara, R. Pharmacokinetic and pharmacodynamic evaluation of resveratrol-loaded cationic liposomes for targeting hepatocellular carcinoma. ACS Biomater. Sci. Eng., 2020, 6(9), 4969-4984.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00429] [PMID: 33455290]
[57]
Dhamecha, D.; Jalalpure, S.; Jadhav, K.; Jagwani, S.; Chavan, R. Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy. Pharmacol Res., 2016, 113(Pt A), 547-556.
[http://dx.doi.org/10.1016/j.phrs.2016.09.037]
[58]
Mohamad, E.A.; Mohamed, Z.N.; Hussein, M.A.; Elneklawi, M.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation. ACS Omega, 2022, 7(3), 3109-3120.
[http://dx.doi.org/10.1021/acsomega.1c06591] [PMID: 35097306]
[59]
Saeting, K.; Mitrevej, A.; Leuenberger, H.; Sinchaipanid, N. Development of alendronate niosomal delivery system for gastrointestinal permeability improvement. J. Drug Deliv. Sci. Technol., 2022, 67, 102885.
[http://dx.doi.org/10.1016/j.jddst.2021.102885]
[60]
Badria, F.; Mazyed, E. Formulation of nanospanlastics as a promising approach for ‎improving the topical delivery of a natural leukotriene inhibitor (3-‎Acetyl-11-Keto-β-Boswellic Acid): Statistical optimization, in vitro ‎characterization, and ex vivo permeation study. Drug Des. Devel. Ther., 2020, 14, 3697-3721.
[http://dx.doi.org/10.2147/DDDT.S265167] [PMID: 32982176]
[61]
Sezgin-Bayindir, Z.; Yuksel, N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech, 2012, 13(3), 826-835.
[http://dx.doi.org/10.1208/s12249-012-9805-4] [PMID: 22644706]
[62]
Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100.
[http://dx.doi.org/10.1089/jmf.2019.0286] [PMID: 32580673]
[63]
Hussein, M.A. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity. Med. Chem. Res., 2012, 21(8), 1876-1886.
[http://dx.doi.org/10.1007/s00044-011-9707-0]
[64]
Abdel, M.H.A.; Elharrif, M.G.; Mahfouz, M.K.; Omnia, M.A.; Abdullah, M.H.; Eltabey, M.E. Biochemical study on occupational inhalation of benzene vapours in petrol station. Respir. Med. Case Rep., 2019, 27, 100836.
[http://dx.doi.org/10.1016/j.rmcr.2019.100836]
[65]
El Gizawy, H.A.; Abo-Salem, H.M.; Ali, A.A.; Hussein, M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABA A α5, GSK-3β, and p38α MAP-kinase genes. ACS Omega, 2021, 6(31), 20492-20511.
[http://dx.doi.org/10.1021/acsomega.1c02340] [PMID: 34395996]
[66]
Borik, R.M.; Hussein, M.A. Synthesis, molecular docking, biological potentials and structure activity relationship of new quinazoline and quinazoline-4-one derivatives. Asian J. Chem., 2021, 33(2), 423-438.
[http://dx.doi.org/10.14233/ajchem.2021.23036]
[67]
El-Gizawy, H.A.; Hussein, M.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malvaparviflora growing in Egypt. Int. J. Phytomed., 2015, 7, 219-230.
[68]
Zhang, J.; Celli, G.B.; Brooks, M.S. Natural sources of anthocyanins. In: Anthocyanins from Natural Sources: Exploiting Targeted Delivery for Improved Health; 1st ed; Brooks, M.S.L.; Celli, G.B. The Royal Society of Chemistry: Cambridge, UK,, 2019; 7, pp. 154-196.
[69]
Istek, N.; Gurbuz, O. Investigation of the impact of blueberries on metabolic factors influencing health. J. Funct. Foods, 2017, 38, 298-307.
[http://dx.doi.org/10.1016/j.jff.2017.09.039]
[70]
Demori, I.; Voci, A.; Fugassa, E.; Burlando, B. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol, 2006, 40(3), 185-191.
[http://dx.doi.org/10.1016/j.alcohol.2006.12.006] [PMID: 17418698]
[71]
Thomàs-Moyà, E. Gómez-Pérez, Y.; Fiol, M.; Gianotti, M.; Lladó, I.; Proenza, A.M. Gender related differences in paraoxonase 1 response to high-fat diet-induced oxidative stress. Obesity, 2008, 16(10), 2232-2238.
[http://dx.doi.org/10.1038/oby.2008.340] [PMID: 18719679]
[72]
Rozenberg, O.; Aviram, M. S-Glutathionylation regulates HDL-associated paraoxonase 1 (PON1) activity. Biochem. Biophys. Res. Commun., 2006, 351(2), 492-498.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.059] [PMID: 17070779]
[73]
Uzun, H.; Konukoglu, D.; Gelisgen, R.; Zengin, K.; Taskin, M. Plasma protein carbonyl and thiol stress before and after laparoscopic gastric banding in morbidly obese patients. Obes. Surg., 2007, 17(10), 1367-1373.
[http://dx.doi.org/10.1007/s11695-007-9242-8] [PMID: 18000722]
[74]
Wu, T.; Gao, Y.; Guo, X.; Zhang, M.; Gong, L. Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure. Oxid. Med. Cell. Longev., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/4051232] [PMID: 30057677]
[75]
Fayed, A.; Ibrahem, M.A.; Hassan, S.A.; Hussein, M.A.; Roshdy, T. Cranberry extract as a promising functional food to regulate srebp1/ppar–α/cpt-1/aco signaling pathways in HFD-induced obesity in rats. Adv. Anim. Vet. Sci., 2022, 10(9), 1933-1944.
[http://dx.doi.org/10.17582/journal.aavs/2022/10.9.1933.1944]
[76]
Botham, K.M.; Wheeler-Jones, C.P.D. Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog. Lipid Res., 2013, 52(4), 446-464.
[http://dx.doi.org/10.1016/j.plipres.2013.06.001] [PMID: 23774609]
[77]
Cheng, W.L.; Zhang, Q.; Li, B.; Cao, J.L.; Jiao, L.; Chao, S.P.; Lu, Z.; Zhao, F. PAK1 silencing attenuated proinflammatory macrophage activation and foam cell formation by increasing PPARγ expression. Oxid. Med. Cell. Longev., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/6957900] [PMID: 34603600]
[78]
Nakajima, Y.; Miyahara, I.; Hirotsu, K.; Nishina, Y.; Shiga, K.; Setoyama, C.; Tamaoki, H.; Miura, R. Three-dimensional structure of the flavoenzyme acyl-CoA oxidase-II from rat liver, the peroxisomal counterpart of mitochondrial acyl-CoA dehydrogenase. J. Biochem., 2002, 131(3), 365-374.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003111] [PMID: 11872165]
[79]
Beites, T.; Jansen, R.S.; Wang, R.; Jinich, A.; Rhee, K.Y.; Schnappinger, D.; Ehrt, S. Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection. Nat. Commun., 2021, 12(1), 6593.
[http://dx.doi.org/10.1038/s41467-021-26941-1] [PMID: 34782606]
[80]
El Gizawy, H.A.E.H.; Hussein, M.A.; Abdel-Sattar, E. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum. Pharm. Biol., 2019, 57(1), 485-497.
[http://dx.doi.org/10.1080/13880209.2019.1643378] [PMID: 31401911]
[81]
Hussein, M.A.; El-gizawy, H.A.E.; Gobba, N.A.E.K.; Mosaad, Y.O. Synthesis of cinnamyl and caffeoyl derivatives of cucurbitacin-e-glycoside isolated from citrullus colocynthis Fruits and their Structures Antioxidant and Anti-inflammatory Activities Relationship. Curr. Pharm. Biotechnol., 2017, 18(8), 677-693.
[http://dx.doi.org/10.2174/1389201018666171004144615] [PMID: 28982326]
[82]
Abdel-Gawad, S.M.; Ghorab, M.M.; El-Sharief, A.M.S.; El-Telbany, F.A.; Abdel-Alla, M. Design, synthesis, and antimicrobial activity of some new pyrazolo[3,4‐ d]pyrimidines. Heteroatom Chem., 2003, 14(6), 530-534.
[http://dx.doi.org/10.1002/hc.10187]
[83]
El-gizawy, H.A.E.; Hussein, M.A. Isolation, structure elucidation of ferulic and coumaric acids from fortunella japonica swingle leaves and their structure antioxidant activity relationship. Free Radic. Antioxid., 2016, 7(1), 23-30.
[http://dx.doi.org/10.5530/fra.2017.1.4]
[84]
Aguirre, L.; Portillo, M.P.; Hijona, E.; Bujanda, L. Effects of resveratrol and other polyphenols in hepatic steatosis. World J. Gastroenterol., 2014, 20(23), 7366-7380.
[http://dx.doi.org/10.3748/wjg.v20.i23.7366] [PMID: 24966607]
[85]
Kammoun, H.L.; Chabanon, H.; Hainault, I.; Luquet, S.; Magnan, C.; Koike, T.; Ferré, P.; Foufelle, F. GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest., 2009, 119(5), 1201-1215.
[http://dx.doi.org/10.1172/JCI37007] [PMID: 19363290]
[86]
Aragonès, G.; Ardid-Ruiz, A.; Ibars, M. Suárez, M.; Bladé, C. Modulation of leptin resistance by food compounds. Mol. Nutr. Food Res., 2016, 60(8), 1789-1803.
[http://dx.doi.org/10.1002/mnfr.201500964] [PMID: 26842874]
[87]
Ardid-Ruiz, A.; Harazin, A.; Barna, L.; Walter, F.R.; Bladé, C. Suárez, M.; Deli, M.A.; Aragonès, G. The effects of Vitis vinifera L. phenolic compounds on a blood-brain barrier culture model: Expression of leptin receptors and protection against cytokine-induced damage. J. Ethnopharmacol., 2020, 247, 112253.
[http://dx.doi.org/10.1016/j.jep.2019.112253] [PMID: 31562952]
[88]
Polyzos, S.A.; Kountouras, J.; Mantzoros, C.S. Leptin in nonalcoholic fatty liver disease: A narrative review. Metabolism, 2015, 64(1), 60-78.
[http://dx.doi.org/10.1016/j.metabol.2014.10.012] [PMID: 25456097]
[89]
Mosaad, Y.O.; Hussein, M.A.; Ateyya, H.; Mohamed, A.H.; Ali, A.A.; Ramadan, Y.A.; Wink, M.; El-Kholy, A.A. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients. J. Inflamm. Res., 2022, 15, 6745-6759.
[http://dx.doi.org/10.2147/JIR.S386506]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy