Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Recent Advancement in the Development of Detection and Removal of Heavy Metal Ions by Deep Eutectic Solvents: A Review

In Press, (this is not the final "Version of Record"). Available online 02 May, 2024
Author(s): Hamed M. Al-Saidi and Sikandar Khan*
Published on: 02 May, 2024

DOI: 10.2174/0115734110294079240424103357

Price: $95

Abstract

Heavy metal pollution is one of the most serious environmental problems, because of the non-degradable nature of heavy metals and their accumulation in the food chain, which poses a severe threat to the environment and human health even at low concentrations. Most of these metal ions can coordinate with biological molecules and disturb their function. Exposure to heavy metals can cause different health threats such as endothelial dysfunction, allergy, infant mortality, cancer, neurological diseases, respiratory diseases, oxidative stress, cardiovascular disorders and kidney diseases. Therefore the detection and removal of these toxic species are very important. Deep eutectic solvents (DESs) are green solvents and have excellent applications in many fields. They contain nonsymmetrical ions that have low lattice energy, low vapor pressure, dipolar nature, nonflammability, low volatility, low melting points, excellent thermal and chemical stability and high solubility. DESs are also better in terms of the availability of raw materials, easy synthetic procedure, low cost of their starting materials and their easy storage. DESs have an excellent ability for the detection and removal of heavy metal ions. In this review, we discussed various DES-based spectrophotometric and fluorimetric chemosensors for the detection of heavy metal ions in different matrixes. Additionally, we have also explored the capabilities of different DESs in removing heavy metals.

[1]
Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 2020, 6(9), e04691.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04691] [PMID: 32964150]
[2]
Nayak, A.; Matta, G.; Uniyal, P.D.; Kumar, A.; Kumar, P.; Pant, G. Assessment of potentially toxic elements in groundwater through interpolation, pollution indices, and chemometric techniques in Dehradun in Uttarakhand State. Environ. Sci. Pollut. Res. Int., 2023, 1, 1-23.
[http://dx.doi.org/10.1007/s11356-023-27419-x] [PMID: 37184800]
[3]
Matta, G.; Kumar, A.; Nayak, A.; Kumar, P.; Kumar, A.; Naik, P.K.; Singh, S.K. Assessing heavy metal index referencing health risk in Ganga River System. Int. J. Riv. Bas. Manag., 2023, 21(4), 759-769.
[http://dx.doi.org/10.1080/15715124.2022.2098756]
[4]
Bai, B.; Xu, T.; Nie, Q.; Li, P. Temperature-driven migration of heavy metal Pb2+ along with moisture movement in unsaturated soils. Int. J. Heat Mass Transf., 2020, 153, 119573.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119573]
[5]
Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng., 2017, 5(3), 2782-2799.
[http://dx.doi.org/10.1016/j.jece.2017.05.029]
[6]
Sures, B. Accumulation of heavy metals by intestinal helminths in fish: An overview and perspective. Parasitology, 2003, 126(S7), S53-S60.
[http://dx.doi.org/10.1017/S003118200300372X] [PMID: 14667172]
[7]
Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem., 2018, 119(1), 157-184.
[http://dx.doi.org/10.1002/jcb.26234] [PMID: 28643849]
[8]
Wolf, M.B.; Baynes, J.W. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. BioMetals, 2006, 20(1), 73-81.
[http://dx.doi.org/10.1007/s10534-006-9016-0]
[9]
Kukongviriyapan, U.; Apaijit, K.; Kukongviriyapan, V. Oxidative stress and cardiovascular dysfunction associated with cadmium exposure: Beneficial effects of curcumin and tetrahydrocurcumin. Tohoku J. Exp. Med., 2016, 239(1), 25-38.
[http://dx.doi.org/10.1620/tjem.239.25] [PMID: 27151191]
[10]
Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. In: Toxicology Mechanisms and Methods; Taylor and Francis Ltd, 2020; pp. 167-176.
[http://dx.doi.org/10.1080/15376516.2019.1701594]
[11]
Linauskiene, K.; Isaksson, M.; Malinauskiene, L. Heavy metals and the skin: Sensitization patterns in Lithuanian metalworkers. Contact Dermat., 2020, 83(6), 450-457.
[http://dx.doi.org/10.1111/cod.13681] [PMID: 32729629]
[12]
Jalili, C.; Kazemi, M.; Cheng, H.; Mohammadi, H.; Babaei, A.; Taheri, E.; Moradi, S. Associations between exposure to heavy metals and the risk of chronic kidney disease: A systematic review and meta-analysis. Crit Rev Toxicol., 2021, 51(2), 165-182.
[http://dx.doi.org/10.1080/10408444.2021.1891196]
[13]
Raju, V.C.; Cho, H.C.; Rani, M.G.; Manju, V.; Umapathi, R.; Huh, S.Y.; Park, P.J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[14]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[15]
Xu, L.; Abd El-Aty, A.M.; Eun, J.B.; Shim, J.H.; Zhao, J.; Lei, X.; Gao, S.; She, Y.; Jin, F.; Wang, J.; Jin, M.; Hammock, B.D. Recent advances in rapid detection techniques for pesticide residue: A review. J. Agric. Food Chem., 2022, 70(41), 13093-13117.
[http://dx.doi.org/10.1021/acs.jafc.2c05284] [PMID: 36210513]
[16]
Alhammadi, M.; Aliya, S.; Umapathi, R.; Oh, M.H.; Huh, Y.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine. Microchem. J., 2023, 195, 109427.
[http://dx.doi.org/10.1016/j.microc.2023.109427]
[17]
Coelho, N.; Coelho, L.; Lima, E.; Pastor, A.; Guardia, M. Determination of arsenic compounds in beverages by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Talanta, 2005, 66(4), 818-822.
[http://dx.doi.org/10.1016/j.talanta.2004.11.037] [PMID: 18970058]
[18]
Dressler, V.L.; Pozebon, D.; Curtius, A.J. Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration. Spectrochim. Acta B At. Spectrosc., 1998, 53(11), 1527-1539.
[http://dx.doi.org/10.1016/S0584-8547(98)00180-3]
[19]
Su, S.; Chen, B.; He, M.; Hu, B. Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta, 2014, 123, 1-9.
[http://dx.doi.org/10.1016/j.talanta.2014.01.061] [PMID: 24725857]
[20]
Bi, J.; Li, T.; Ren, H.; Ling, R.; Wu, Z.; Qin, W. Capillary electrophoretic determination of heavy-metal ions using 11-mercaptoundecanoic acid and 6-mercapto-1-hexanol co-functionalized gold nanoparticle as colorimetric probe. J. Chromatogr. A, 2019, 1594, 208-215.
[http://dx.doi.org/10.1016/j.chroma.2019.02.010] [PMID: 30772060]
[21]
Selmi, A.; Khiari, R.; Snoussi, A.; Bouzouita, N. Analysis of minerals and heavy metals using ICP-OES and FTIR techniques in two red seaweeds (gymnogongrus griffithsiae and asparagopsis taxiformis) from Tunisia. Biol. Trace Elem. Res., 2020, 199(6), 2342-2350.
[http://dx.doi.org/10.1007/s12011-020-02335-0]
[22]
Borrill, A.J.; Reily, N.E.; Macpherson, J.V. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: A tutorial review. Analyst, 2019, 144(23), 6834-6849.
[http://dx.doi.org/10.1039/C9AN01437C] [PMID: 31657380]
[23]
Grant, W.A.; Ellis, P.C. Determination of heavy metals in shellfish by flame atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom., 1988, 3(6), 815-820.
[http://dx.doi.org/10.1039/ja9880300815]
[24]
Alhamami, M.A.M.; Algethami, J.S.; Khan, S. A review on thiazole based colorimetric and fluorimetric chemosensors for the detection of heavy metal ions. Crit. Rev. Anal. Chem., 2023, 2023, 1-25.
[http://dx.doi.org/10.1080/10408347.2023.2197073] [PMID: 37029905]
[25]
Saidi, A.H.M.; Khan, S. Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: A review. Crit Rev Anal Chem, 2022, 54(1), 93-109.
[http://dx.doi.org/10.1080/10408347.2022.2063017]
[26]
Mohammad Abu-Taweel, G.; Ibrahim, M.M.; Khan, S.; Al-Saidi, H.M.; Alshamrani, M.; Alhumaydhi, F.A.; Alharthi, S.S. Medicinal importance and chemosensing applications of pyridine derivatives: A review. Crit. Rev. Anal. Chem., 2022, 2022, 1-18.
[http://dx.doi.org/10.1080/10408347.2022.2089839] [PMID: 35724248]
[27]
Khan, S.; Muhammad, M.; Algethami, J.S.; Al-Saidi, H.M.; Almahri, A.; Hassanian, A.A. Synthesis, characterization and applications of schiff base chemosensor for determination of Cr(III) ions. J. Fluoresc., 2022, 32(5), 1889-1898.
[http://dx.doi.org/10.1007/s10895-022-02990-7] [PMID: 35749029]
[28]
Khan, S.; Muhammad, M.; Al-Saidi, H.M.; Hassanian, A.A.; Alharbi, W.; Alharbi, K.H. Synthesis, characterization and applications of schiff base chemosensor for determination of Cu2+ ions. J. Saudi Chem. Soc., 2022, 26(4), 101503.
[http://dx.doi.org/10.1016/j.jscs.2022.101503]
[29]
Khan, S.; Chen, X.; Almahri, A.; Allehyani, E.S.; Alhumaydhi, F.A.; Ibrahim, M.M.; Ali, S. Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review. J. Environ. Chem. Eng., 2021, 9(6), 106381.
[http://dx.doi.org/10.1016/j.jece.2021.106381]
[30]
Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett., 2019, 17(4), 1495-1521.
[http://dx.doi.org/10.1007/s10311-019-00891-z]
[31]
Mavrov, V.; Erwe, T.; Blöcher, C.; Chmiel, H. Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater. Desalination, 2003, 157(1-3), 97-104.
[http://dx.doi.org/10.1016/S0011-9164(03)00388-6]
[32]
Blöcher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N.K.; Matis, K.A. Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Res., 2003, 37(16), 4018-4026.
[http://dx.doi.org/10.1016/S0043-1354(03)00314-2] [PMID: 12909122]
[33]
Feng, D.; Aldrich, C.; Tan, H. Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner. Eng., 2000, 13(6), 623-642.
[http://dx.doi.org/10.1016/S0892-6875(00)00045-5]
[34]
Jakob, A.; Stucki, S.; Kuhn, P. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ. Sci. Technol., 1995, 29(9), 2429-2436.
[http://dx.doi.org/10.1021/es00009a040] [PMID: 22280288]
[35]
Charerntanyarak, L. Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol., 1999, 39(10-11), 135-138.
[http://dx.doi.org/10.2166/wst.1999.0642]
[36]
Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 2011, 92(3), 407-418.
[http://dx.doi.org/10.1016/j.jenvman.2010.11.011] [PMID: 21138785]
[37]
Visser, A.E.; Swatloski, R.P.; Griffin, S.T.; Hartman, D.H.; Rogers, R.D. Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep. Sci. Technol., 2007, 36(5-6), 785-804.
[http://dx.doi.org/10.1081/SS-100103620]
[38]
Stojanovic, A.; Keppler, B. K. Ionic liquids as extracting agents for heavy metals. Sep. Sci. Technol., 2012, 47(2), 189-203.
[http://dx.doi.org/10.1080/01496395.2011.620587]
[39]
Singh, M.B.; Kumar, V.S.; Chaudhary, M.; Singh, P. A mini review on synthesis, properties and applications of deep eutectic solvents. J. Indian Chem. Soc., 2021, 98(11), 100210.
[http://dx.doi.org/10.1016/j.jics.2021.100210]
[40]
Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; Gurkan, B.; Maginn, E.J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T.A.; Baker, G.A.; Tuckerman, M.E.; Savinell, R.F.; Sangoro, J.R. Deep eutectic solvents: A review of fundamentals and applications. Chem. Rev., 2021, 121(3), 1232-1285.
[http://dx.doi.org/10.1021/acs.chemrev.0c00385] [PMID: 33315380]
[41]
Yang, X.; Zang, Y.Y.; Yang, S.; Chen, Z.G. Green and efficient removal of heavy metals from Porphyra haitanensis using natural deep eutectic solvents. J. Sci. Food Agric., 2021, 101(7), 2930-2939.
[http://dx.doi.org/10.1002/jsfa.10925] [PMID: 33155677]
[42]
Ramos, R.R.; Mayor, S.Á.; Rodríguez, S.B.; Delgado, R.M.Á. Recent applications of deep eutectic solvents in environmental analysis. Appl. Sci., 2021, 11(11), 4779.
[http://dx.doi.org/10.3390/app11114779]
[43]
Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol. Adv., 2017, 35(2), 105-134.
[http://dx.doi.org/10.1016/j.biotechadv.2016.11.006] [PMID: 27923764]
[44]
Cai, T.; Qiu, H. Application of deep eutectic solvents in chromatography: A review. Trends Analyt. Chem., 2019, 120, 115623.
[http://dx.doi.org/10.1016/j.trac.2019.115623]
[45]
Chen, J.; Li, Y.; Wang, X.; Liu, W. Application of deep eutectic solvents in food analysis: A review. Molecules, 2019, 24(24), 4594.
[http://dx.doi.org/10.3390/molecules24244594] [PMID: 31888138]
[46]
Nie, L.; Toufouki, S.; Yao, S.; Guo, D. Rethinking the applications of ionic liquids and deep eutectic solvents in innovative nano-sorbents. Front Chem., 2021, 9, 653238.
[http://dx.doi.org/10.3389/fchem.2021.653238] [PMID: 33898393]
[47]
Troter, D.Z.; Todorović, Z.B.; Stojanović, D.D.R.; Stamenković, O.S.; Veljković, V.B. Application of ionic liquids and deep eutectic solvents in biodiesel production: A review. Renew. Sustain. Energy Rev., 2016, 61, 473-500.
[http://dx.doi.org/10.1016/j.rser.2016.04.011]
[48]
Wu, J.; Liang, Q.; Yu, X.; Lü, Q-F.; Ma, L.; Qin, X.; Chen, G.; Li, B. Deep eutectic solvents for boosting electrochemical energy storage and conversion: A review and perspective. Adv. Funct. Mater., 2021, 31(22), 2011102.
[http://dx.doi.org/10.1002/adfm.202011102]
[49]
Ünlü, A.E.; Arıkaya, A.; Takaç, S. Use of deep eutectic solvents as catalyst: A mini-review. Green Process. Synth., 2019, 8(1), 355-372.
[http://dx.doi.org/10.1515/gps-2019-0003]
[50]
Atilhan, M.; Aparicio, S. Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents. J. Petrol. Sci. Eng., 2021, 205, 108746.
[http://dx.doi.org/10.1016/j.petrol.2021.108746]
[51]
Jablonský, M.; Škulcová, A.; Šima, J. Use of deep eutectic solvents in polymer chemistry–A review. Mol., 2019, 24(21), 3978.
[http://dx.doi.org/10.3390/molecules24213978]
[52]
Zhang, Y.; Ji, X.; Lu, X. Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis. Renew. Sustain. Energy Rev., 2018, 97, 436-455.
[http://dx.doi.org/10.1016/j.rser.2018.08.007]
[53]
Svigelj, R.; Dossi, N.; Grazioli, C.; Toniolo, R. Deep Eutectic Solvents (DESs) and their application in biosensor development. Sensors, 2021, 21(13), 4263.
[http://dx.doi.org/10.3390/s21134263]
[54]
Chen, Y.; Mu, T. Application of deep eutectic solvents in biomass pretreatment and conversion. Green Energ. Environ., 2019, 4(2), 95-115.
[http://dx.doi.org/10.1016/j.gee.2019.01.012]
[55]
Sadeghi, S.; Davami, A. CdSe quantum dots capped with a deep eutectic solvent as a fluorescent probe for copper(II) determination in various drinks. Microchim. Acta, 2020, 187(2), 1-9.
[http://dx.doi.org/10.1007/s00604-019-4085-2]
[56]
Ren, H.; Wang, X.; Gong, R.; Li, M.; Zhu, H.; Zhang, J.; Duan, E. Atomically dispersed Eu(III) sites in natural deep eutectic solvents based fluorescent probe efficient identification of Fe3+ and Cu2+ in wastewater. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 229, 117874.
[http://dx.doi.org/10.1016/j.saa.2019.117874] [PMID: 31813718]
[57]
Effective removal of copper ion from aqueous solution using beads of chitosan-choline chloride/glycerol deep eutectic solvent. Sci. Res. J., 2022, 19(2), 23-37.
[http://dx.doi.org/10.24191/srj.v19i2.15643]
[58]
Saleem, M.; Rafiq, M.; Hanif, M. Organic material based fluorescent sensor for Hg2+: A brief review on recent development. J. Fluoresc., 2016, 27(1), 31-58.
[http://dx.doi.org/10.1007/s10895-016-1933-x]
[59]
Gao, Z.; Li, X.; Shi, L.; Yang, Y. Deep eutectic solvents-derived carbon dots for detection of mercury (II), photocatalytic antifungal activity and fluorescent labeling for C. albicans. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 220, 117080.
[http://dx.doi.org/10.1016/j.saa.2019.04.072] [PMID: 31150924]
[60]
AlOmar, M.K.; Alsaadi, M.A.; Jassam, T.M.; Akib, S.; Hashim, A.M. Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water. J. Colloid Interface Sci., 2017, 497, 413-421.
[http://dx.doi.org/10.1016/j.jcis.2017.03.014] [PMID: 28314146]
[61]
Fiyadh, S.S.; Alomar, M.K.; Jaafar, W.Z.B.; Alsaadi, M.A.; Fayaed, S.S.; Koting, S.B.; Lai, S.H.; Chow, M.F.; Ahmed, A.N.; Shafie, E.A. Artificial neural network approach for modelling of mercury ions removal from water using functionalized CNTs with deep eutectic solvent. Int. J. Mol. Sci., 2019, 20(17), 4206.
[http://dx.doi.org/10.3390/ijms20174206]
[62]
Altunay, N.; Elik, A.; Gürkan, R. Natural deep eutectic solvent-based ultrasound-assisted-microextraction for extraction, pre-concentration and analysis of methylmercury and total mercury in fish and environmental waters by spectrophotometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2019, 36(7), 1079-1097.
[http://dx.doi.org/10.1080/19440049.2019.1619939] [PMID: 31140933]
[63]
Warrag, S.E.E.; Fetisov, E.O.; van Osch, D.J.G.P.; Harwood, D.B.; Kroon, M.C.; Siepmann, J.I.; Peters, C.J. Mercury capture from petroleum using deep eutectic solvents. Ind. Eng. Chem. Res., 2018, 57(28), 9222-9230.
[http://dx.doi.org/10.1021/acs.iecr.8b00967]
[64]
Zheng, K.; Wang, X.; Kang, K.; baoyou, L.; Jia, X.; Peng, Z. Pb2+ fluorescence probe constructed with acetamide-ethanolic acid deep eutectic solvent wrapped on the surface of biomass carbon quantum dots. SSRN, 2018.
[65]
AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Ibrahim, R.K.; Hashim, M.A. Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes. J. Mol. Liq., 2016, 222, 883-894.
[http://dx.doi.org/10.1016/j.molliq.2016.07.074]
[66]
Laosuwan, M.; Poonsawat, C.; Burakham, R.; Srijaranai, S.; Mukdasai, S. A novel liquid colorimetric probe for highly selective and sensitive detection of lead (II). Food Chem., 2021, 363, 130254.
[http://dx.doi.org/10.1016/j.foodchem.2021.130254] [PMID: 34120039]
[67]
Abdolhosseini, M.; Shemirani, F.; Yousefi, S.M. Poly (deep eutectic solvents) as a new class of sustainable sorbents for solid phase extraction: Application for preconcentration of Pb (II) from food and water samples. Mikrochim. Acta, 2020, 187(11), 602.
[http://dx.doi.org/10.1007/s00604-020-04564-5] [PMID: 33034749]
[68]
Pam, A.A.; Hir, Z.A.M.; Abdullah, A.H.; Tan, Y.P. Pb(II) removal in water via adsorption onto deep eutectic solvent fabricated activated carbon. Appl. Water Sci., 2021, 11(6), 90.
[http://dx.doi.org/10.1007/s13201-021-01420-6]
[69]
Pechova, A.; Pavlata, L. Chromium as an essential nutrient: A review. Vet. Med., 2007, 52(1), 1-18.
[http://dx.doi.org/10.17221/2010-VETMED]
[70]
den Sewradj, B.S.P.; van Benthem, J.; Staal, Y.C.M.; Ezendam, J.; Piersma, A.H.; Hessel, E.V.S. Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regul. Toxicol. Pharmacol., 2021, 126, 105045.
[http://dx.doi.org/10.1016/j.yrtph.2021.105045] [PMID: 34506880]
[71]
Pourmohammad, M.; Faraji, M.; Jafarinejad, S. Extraction of chromium (VI) in water samples by dispersive liquid–liquid microextraction based on deep eutectic solvent and determination by UV–vis spectrophotometry. J. Environ. Ana, 100(10), 1146-1159.
[http://dx.doi.org/10.1080/03067319.2019.1650920]
[72]
Zhang, Y.; Meng, Y.; Ma, L.; Ji, H.; Lu, X.; Pang, Z.; Dong, C. Production of biochar from lignocellulosic biomass with acidic deep eutectic solvent and its application as efficient adsorbent for Cr (VI). J. Clean. Prod., 2021, 324, 129270.
[http://dx.doi.org/10.1016/j.jclepro.2021.129270]
[73]
Jiang, X.; Huang, J.; Chen, T.; Zhao, Q.; Xu, F.; Zhang, X. Synthesis of hemicellulose/deep eutectic solvent based carbon quantum dots for ultrasensitive detection of Ag+ and L-cysteine with “off-on” pattern. Int. J. Biol. Macromol., 2020, 153, 412-420.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.026] [PMID: 32156539]
[74]
Jiang, X.; Shi, Y.; Liu, X.; Wang, M.; Song, P.; Xu, F.; Zhang, X. Synthesis of nitrogen-doped lignin/DES carbon quantum dots as a fluorescent probe for the detection of Fe3+ ions. Polym., 2018, 10(11), 1282.
[http://dx.doi.org/10.3390/polym10111282]
[75]
Sadeghi, S.; Davami, A. Ternary deep eutectic solvent modified cadmium selenide quantum dots as a selective fluorescent probe for sensing of uranyl ions in water samples. J. Mol. Liq., 2020, 316, 113753.
[http://dx.doi.org/10.1016/j.molliq.2020.113753]
[76]
Rajput, M.K.; Konwar, M.; Sarma, D. Hydrophobic natural deep eutectic solvent THY-DA as sole extracting agent for arsenic (III) removal from aqueous solutions. Environ. Technol. Innov., 2021, 24, 102017.
[http://dx.doi.org/10.1016/j.eti.2021.102017]
[77]
Zinov’eva, I.V.; Kozhevnikova, A.V.; Milevskii, N.A.; Zakhodyaeva, Y.A.; Voshkin, A.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol. Theor. Found. Chem. Eng., 2022, 56(2), 221-229.
[http://dx.doi.org/10.1134/S0040579522020178]
[78]
Rahmati, N.; Rahimnejad, M.; Pourali, M.; Muallah, S.K. Effective removal of nickel ions from aqueous solution using multi-wall carbon nanotube functionalized by glycerol-based deep eutectic solvent. Colloid Interface Sci. Commun., 2021, 40, 100347.
[http://dx.doi.org/10.1016/j.colcom.2020.100347]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy