Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Review Article

Computer-Aided Drug Discovery Approaches in the Identification of Anticancer Drugs from Natural Products: A Review

In Press, (this is not the final "Version of Record"). Available online 02 May, 2024
Author(s): Muthiah Gnana Ruba Priya*, Jessica Manisha, Lal Prasanth Mercy Lazar, Seema Singh Rathore and Viswas Raja Solomon*
Published on: 02 May, 2024

DOI: 10.2174/0115734099283410240406064042

Price: $95

Abstract

Natural plant sources are essential in the development of several anticancer drugs, such as vincristine, vinblastine, vinorelbine, docetaxel, paclitaxel, camptothecin, etoposide, and teniposide. However, various chemotherapies fail due to adverse reactions, drug resistance, and target specificity. Researchers are now focusing on developing drugs that use natural compounds to overcome these issues. These drugs can affect multiple targets, have reduced adverse effects, and are effective against several cancer types. Developing a new drug is a highly complex, expensive, and time-consuming process. Traditional drug discovery methods take up to 15 years for a new medicine to enter the market and cost more than one billion USD. However, recent Computer Aided Drug Discovery (CADD) advancements have changed this situation. This paper aims to comprehensively describe the different CADD approaches in identifying anticancer drugs from natural products. Data from various sources, including Science Direct, Elsevier, NCBI, and Web of Science, are used in this review. In-silico techniques and optimization algorithms can provide versatile solutions in drug discovery ventures. The structure-based drug design technique is widely used to understand chemical constituents' molecular-level interactions and identify hit leads. This review will discuss the concept of CADD, in-silico tools, virtual screening in drug discovery, and the concept of natural products as anticancer therapies. Representative examples of molecules identified will also be provided.

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[2]
Rinehart, K.L.; Holt, T.G.; Fregeau, N.L.; Keifer, P.A.; Wilson, G.R.; Perun, T.J., Jr; Sakai, R.; Thompson, A.G.; Stroh, J.G.; Shield, L.S.; Seigler, D.S.; Li, L.H.; Martin, D.G.; Grimmelikhuijzen, C.J.P.; Gäde, G. Bioactive compounds from aquatic and terrestrial sources. J. Nat. Prod., 1990, 53(4), 771-792.
[http://dx.doi.org/10.1021/np50070a001] [PMID: 2095373]
[3]
Fujita, T.; Iwasa, J.; Hansch, C. A New Substituent Constant, π, Derived from Partition Coefficients. J. Am. Chem. Soc., 1964, 86(23), 5175-5180.
[http://dx.doi.org/10.1021/ja01077a028]
[4]
Foye, W.O. Principles of Medicinal Chemistry, 8th ed.; Wolters Kluwer, 1989.
[http://dx.doi.org/10.1021/ed066pA158.2]
[5]
Leo, A.; Hansch, C.; Elkins, D. Partition coefficients and their uses. Chem. Rev., 1971, 71(6), 525-616.
[http://dx.doi.org/10.1021/cr60274a001]
[6]
Wolff, M.E. Burger’s Medicinal Chemistry And Drug Discovery, 5th ed; Wiley: New York, 1995.
[7]
Smith, R.N.; Hansch, C.; Ames, M.M. Selection of a reference partitioning system for drug design work. J. Pharm. Sci., 1975, 64(4), 599-606.
[http://dx.doi.org/10.1002/jps.2600640405] [PMID: 1142068]
[8]
Hansch, C. Structure-Activity Relationship In Drug Design; Academic Press: New York, 1971, 1, pp. 271-342.
[9]
(a) Shah, A.; Parmar, G.; Kumar, Seth A. In silico discovery of novel flavonoids as poly ADP ribose polymerase (PARP) inhibitors. Curr. Comput. Aided Drug Des., 2021, 17(3), 344-350.
[http://dx.doi.org/10.2174/1573409916666200408082858] [PMID: 32268868];
(b) Cramer, R.D., III; Snader, K.M.; Willis, C.R.; Chakrin, L.W.; Thomas, J.; Sutton, B.M. Application of quantitative structure-activity relationships in the development of the antiallergic pyranenamines. J. Med. Chem., 1979, 22(6), 714-725.
[http://dx.doi.org/10.1021/jm00192a019] [PMID: 458823]
[10]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[11]
Rallabandi, H.R. Computational methods used in phytocompound-based drug discovery. In: Plant-derived Bioactives; Swamy, M., Ed.; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-2361-8_25]
[12]
Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-based virtual screening: From classical to artificial intelligence. Front Chem., 2020, 8, 343.
[http://dx.doi.org/10.3389/fchem.2020.00343] [PMID: 32411671]
[13]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[14]
Sarvagalla, S.; Syed, S.B.; Coumar, M.S. An overview of computational methods, tools, servers, and databases for drug repurposing. In: In Silico Drug Design; Academic Press, 2019; pp. 743-780.
[http://dx.doi.org/10.1016/B978-0-12-816125-8.00025-0]
[15]
Scotti, L. CADD studies applied to secondary metabolites in the anticancer drug research. In: Anticancer Plants: Mechanisms and Molecular Interactions; Akhtar, M.; Swamy, M., Eds.; Springer: Singapore, 2018.
[http://dx.doi.org/10.1007/978-981-10-8417-1_9]
[16]
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 2002, 47(4), 409-443.
[http://dx.doi.org/10.1002/prot.10115] [PMID: 12001221]
[17]
Dias, R.; de Azevedo, W., Jr Molecular docking algorithms. Curr. Drug Targets, 2008, 9(12), 1040-1047.
[http://dx.doi.org/10.2174/138945008786949432] [PMID: 19128213]
[18]
K, K.R.; Mathi, P.; Prasad, M.V.V.V.; Botlagunta, M.; M, R.; D, R. De novo design of selective Sortase-A inhibitors: Synthesis, structural and in vitro characterization. Chem. Data Collect., 2018, 15-16, 126-133.
[http://dx.doi.org/10.1016/j.cdc.2018.04.007]
[19]
Huang, S.Y.; Grinter, S.Z.; Zou, X. Scoring functions and their evaluation methods for protein–ligand docking: Recent advances and future directions. Phys. Chem. Chem. Phys., 2010, 12(40), 12899-12908.
[http://dx.doi.org/10.1039/c0cp00151a] [PMID: 20730182]
[20]
Kortagere, S.; Ekins, S. Troubleshooting computational methods in drug discovery. J. Pharmacol. Toxicol. Methods, 2010, 61(2), 67-75.
[http://dx.doi.org/10.1016/j.vascn.2010.02.005] [PMID: 20176118]
[21]
Yuriev, E.; Holien, J.; Ramsland, P.A. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. J. Mol. Recognit., 2015, 28(10), 581-604.
[http://dx.doi.org/10.1002/jmr.2471] [PMID: 25808539]
[22]
Yang, S.Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today, 2010, 15(11-12), 444-450.
[http://dx.doi.org/10.1016/j.drudis.2010.03.013] [PMID: 20362693]
[23]
Lu, X.; Yang, H.; Chen, Y.; Li, Q.; He, S.; Jiang, X.; Feng, F.; Qu, W.; Sun, H. The development of pharmacophore modeling: Generation and recent applications in drug discovery. Curr. Pharm. Des., 2018, 24(29), 3424-3439.
[http://dx.doi.org/10.2174/1381612824666180810162944] [PMID: 30101699]
[24]
Pirhadi, S.; Shiri, F.; Ghasemi, J.B. Methods and applications of structure based pharmacophores in drug discovery. Curr. Top. Med. Chem., 2013, 13(9), 1036-1047.
[http://dx.doi.org/10.2174/1568026611313090006] [PMID: 23651482]
[25]
Wolber, G.; Dornhofer, A.A.; Langer, T. Efficient overlay of small organic molecules using 3D pharmacophores. J. Comput. Aided Mol. Des., 2007, 20(12), 773-788.
[http://dx.doi.org/10.1007/s10822-006-9078-7] [PMID: 17051340]
[26]
Chen, J.; Lai, L. Pocket v.2: Further developments on receptor-based pharmacophore modeling. J. Chem. Inf. Model., 2006, 46(6), 2684-2691.
[http://dx.doi.org/10.1021/ci600246s] [PMID: 17125208]
[27]
Ortuso, F.; Langer, T.; Alcaro, S. GBPM: GRID-based pharmacophore model: Concept and application studies to protein–protein recognition. Bioinformatics, 2006, 22(12), 1449-1455.
[http://dx.doi.org/10.1093/bioinformatics/btl115] [PMID: 16567363]
[28]
Böhm, H.J. The computer program LUDI: A new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des., 1992, 6(1), 61-78.
[http://dx.doi.org/10.1007/BF00124387] [PMID: 1583540]
[29]
Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R.R.; Zhebrak, A.; Minaeva, L.I.; Zagribelnyy, B.A.; Lee, L.H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Guzik, A.A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol., 2019, 37(9), 1038-1040.
[http://dx.doi.org/10.1038/s41587-019-0224-x] [PMID: 31477924]
[30]
Ghofrani, H.A.; Osterloh, I.H.; Grimminger, F. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov., 2006, 5(8), 689-702.
[http://dx.doi.org/10.1038/nrd2030] [PMID: 16883306]
[31]
Rush, T.S., III; Grant, J.A.; Mosyak, L.; Nicholls, A. A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J. Med. Chem., 2005, 48(5), 1489-1495.
[http://dx.doi.org/10.1021/jm040163o] [PMID: 15743191]
[32]
Bologa, C.G.; Revankar, C.M.; Young, S.M.; Edwards, B.S.; Arterburn, J.B.; Kiselyov, A.S.; Parker, M.A.; Tkachenko, S.E.; Savchuck, N.P.; Sklar, L.A.; Oprea, T.I.; Prossnitz, E.R. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat. Chem. Biol., 2006, 2(4), 207-212.
[http://dx.doi.org/10.1038/nchembio775] [PMID: 16520733]
[33]
Buckle, D.R.; Erhardt, P.W.; Ganellin, C.R.; Kobayashi, T.; Perun, T.J.; Proudfoot, J.; Senn-Bilfinger, J. Glossary of terms used in medicinal chemistry. Part II (IUPAC Recommendations 2013). Pure Appl. Chem., 2013, 85(8), 1725-1758.
[http://dx.doi.org/10.1351/PAC-REC-12-11-23]
[34]
Chao, W.R.; Yean, D.; Amin, K.; Green, C.; Jong, L. Computer-aided rational drug design: A novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. J. Med. Chem., 2007, 50(15), 3412-3415.
[http://dx.doi.org/10.1021/jm070040e] [PMID: 17602463]
[35]
Chiang, Y.K.; Kuo, C.C.; Wu, Y.S.; Chen, C.T.; Coumar, M.S.; Wu, J.S.; Hsieh, H.P.; Chang, C.Y.; Jseng, H.Y.; Wu, M.H.; Leou, J.S.; Song, J.S.; Chang, J.Y.; Lyu, P.C.; Chao, Y.S.; Wu, S.Y. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity. J. Med. Chem., 2009, 52(14), 4221-4233.
[http://dx.doi.org/10.1021/jm801649y] [PMID: 19507860]
[36]
Pei, Q.; Luo, Y.; Chen, Y.; Li, J.; Xie, D.; Ye, T. Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis. Clin. Chem. Lab. Med., 2022, 60(12), 1974-1983.
[http://dx.doi.org/10.1515/cclm-2022-0291] [PMID: 35771735]
[37]
Nayarisseri, A.; Khandelwal, R.; Tanwar, P.; Madhavi, M.; Sharma, D.; Thakur, G.; Speck-Planche, A.; Singh, S.K. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr. Drug Targets, 2021, 22(6), 631-655.
[http://dx.doi.org/10.2174/18735592MTEzsMDMnz] [PMID: 33397265]
[38]
Choudhary, R.; Walhekar, V.; Muthal, A.; Kumar, D.; Bagul, C.; Kulkarni, R. Machine learning facilitated structural activity relationship approach for the discovery of novel inhibitors targeting EGFR. J. Biomol. Struct. Dyn., 2023, 41(22), 12445-12463.
[http://dx.doi.org/10.1080/07391102.2023.2175263] [PMID: 36762704]
[39]
Mendenhall, J.; Meiler, J. Improving quantitative structure–activity relationship models using artificial neural networks trained with dropout. J. Comput. Aided Mol. Des., 2016, 30(2), 177-189.
[http://dx.doi.org/10.1007/s10822-016-9895-2] [PMID: 26830599]
[40]
Hansch, C.; Fujita, T. Additions and corrections - ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc., 1964, 86(24), 5710-5710.
[http://dx.doi.org/10.1021/ja01078a623]
[41]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[42]
Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem., 1994, 37(24), 4130-4146.
[http://dx.doi.org/10.1021/jm00050a010] [PMID: 7990113]
[43]
Jan, Z. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization. J Chem Inf Model, 2023, 25, e44248.
[http://dx.doi.org/10.1021/ci500152b] [PMID: 37000507]
[44]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[45]
Perkins, R.; Fang, H.; Tong, W.; Welsh, W.J. Quantitative structure‐activity relationship methods: Perspectives on drug discovery and toxicology. Environ. Toxicol. Chem., 2003, 22(8), 1666-1679.
[http://dx.doi.org/10.1897/01-171] [PMID: 12924569]
[46]
Kleandrova, V.V.; Planche, S.A. The QSAR paradigm in fragment-based drug discovery: From the virtual generation of target inhibitors to multi-scale modeling. Mini Rev. Med. Chem., 2020, 20(14), 1357-1374.
[http://dx.doi.org/10.2174/1389557520666200204123156] [PMID: 32013845]
[47]
Mahapatra, M.K.; Karuppasamy, M. Fundamental considerations in drug design. In: Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches; Elsevier, 2022; pp. 17-55.
[http://dx.doi.org/10.1016/B978-0-323-90608-1.00005-8]
[48]
Jeffrey Conn, P.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov., 2009, 8(1), 41-54.
[http://dx.doi.org/10.1038/nrd2760] [PMID: 19116626]
[49]
Tautermann, C.S. GPCR structures in drug design, emerging opportunities with new structures. Bioorg. Med. Chem. Lett., 2014, 24(17), 4073-4079.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.009] [PMID: 25086683]
[50]
Sun, D.; Flock, T.; Deupi, X.; Maeda, S.; Matkovic, M.; Mendieta, S.; Mayer, D.; Dawson, R.J.P.; Schertler, G.F.X.; Babu, M.M.; Veprintsev, D.B. Probing Gαi1 protein activation at single–amino acid resolution. Nat. Struct. Mol. Biol., 2015, 22(9), 686-694.
[http://dx.doi.org/10.1038/nsmb.3070] [PMID: 26258638]
[51]
Sabbadin, D.; Moro, S. Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale. J. Chem. Inf. Model., 2014, 54(2), 372-376.
[http://dx.doi.org/10.1021/ci400766b] [PMID: 24456045]
[52]
Deganutti, G.; Cuzzolin, A.; Ciancetta, A.; Moro, S. Understanding allosteric interactions in G protein-coupled receptors using Supervised Molecular Dynamics: A prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorg. Med. Chem., 2015, 23(14), 4065-4071.
[http://dx.doi.org/10.1016/j.bmc.2015.03.039] [PMID: 25868747]
[53]
Cuzzolin, A.; Sturlese, M.; Deganutti, G.; Salmaso, V.; Sabbadin, D.; Ciancetta, A.; Moro, S. Deciphering the complexity of ligand–protein recognition pathways using supervised molecular dynamics (SuMD) simulations. J. Chem. Inf. Model., 2016, 56(4), 687-705.
[http://dx.doi.org/10.1021/acs.jcim.5b00702] [PMID: 27019343]
[54]
Chan, H.C.S.; Xu, Y.; Tan, L.; Vogel, H.; Cheng, J.; Wu, D.; Yuan, S. Enhancing the signaling of GPCRs via orthosteric ions. ACS Cent. Sci., 2020, 6(2), 274-282.
[http://dx.doi.org/10.1021/acscentsci.9b01247] [PMID: 32123746]
[55]
Chan, H.C.S.; Wang, J.; Palczewski, K.; Filipek, S.; Vogel, H.; Liu, Z.J.; Yuan, S. Exploring a new ligand binding site of G protein-coupled receptors. Chem. Sci., 2018, 9(31), 6480-6489.
[http://dx.doi.org/10.1039/C8SC01680A] [PMID: 30310578]
[56]
Tong, M.; Seeliger, M.A. Targeting conformational plasticity of protein kinases. ACS Chem. Biol., 2015, 10(1), 190-200.
[http://dx.doi.org/10.1021/cb500870a] [PMID: 25486330]
[57]
Hancock, J.F. Ras proteins: Different signals from different locations. Nat. Rev. Mol. Cell Biol., 2003, 4(5), 373-385.
[http://dx.doi.org/10.1038/nrm1105] [PMID: 12728271]
[58]
Mazmanian, S.K.; Liu, G.; Ton-That, H.; Schneewind, O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science, 1999, 285(5428), 760-763.
[http://dx.doi.org/10.1126/science.285.5428.760] [PMID: 10427003]
[59]
Jarman, M.; Barrie, S.E.; Llera, J.M. The 16,17-double bond is needed for irreversible inhibition of human cytochrome p45017alpha by abiraterone (17-(3-pyridyl)androsta-5, 16-dien-3beta-ol) and related steroidal inhibitors. J. Med. Chem., 1998, 41(27), 5375-5381.
[http://dx.doi.org/10.1021/jm981017j] [PMID: 9876107]
[60]
Muhsin, M.; Graham, J.; Kirkpatrick, P. Gefitinib. Nat. Rev. Drug Discov., 2003, 2(7), 515-516.
[http://dx.doi.org/10.1038/nrd1136] [PMID: 12841190]
[61]
Grünwald, V.; Hidalgo, M. Development of the epidermal growth factor receptor inhibitor Tarceva (OSI-774). Adv. Exp. Med. Biol., 2003, 532, 235-246.
[http://dx.doi.org/10.1007/978-1-4615-0081-0_19] [PMID: 12908562]
[62]
Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.; Alligood, K.J.; Rusnak, D.W.; Gilmer, T.M.; Shewchuk, L. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res., 2004, 64(18), 6652-6659.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1168] [PMID: 15374980]
[63]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[64]
Butrynski, J.E.; D’Adamo, D.R.; Hornick, J.L.; Dal Cin, P.; Antonescu, C.R.; Jhanwar, S.C.; Ladanyi, M.; Capelletti, M.; Rodig, S.J.; Ramaiya, N.; Kwak, E.L.; Clark, J.W.; Wilner, K.D.; Christensen, J.G.; Jänne, P.A.; Maki, R.G.; Demetri, G.D.; Shapiro, G.I. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med., 2010, 363(18), 1727-1733.
[http://dx.doi.org/10.1056/NEJMoa1007056] [PMID: 20979472]
[65]
Reker, D.; Rodrigues, T.; Schneider, P.; Schneider, G. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc. Natl. Acad. Sci., 2014, 111(11), 4067-4072.
[http://dx.doi.org/10.1073/pnas.1320001111] [PMID: 24591595]
[66]
Rodrigues, T.; Werner, M.; Roth, J.; da Cruz, E.H.G.; Marques, M.C.; Akkapeddi, P.; Lobo, S.A.; Koeberle, A.; Corzana, F.; da Silva Júnior, E.N.; Werz, O.; Bernardes, G.J.L. Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chem. Sci., 2018, 9(34), 6899-6903.
[http://dx.doi.org/10.1039/C8SC02634C] [PMID: 30310622]
[67]
Bombarelli, G.R.; Wei, J.N.; Duvenaud, D.; Lobato, H.J.M.; Lengeling, S.B.; Sheberla, D.; Iparraguirre, A.J.; Hirzel, T.D.; Adams, R.P.; Guzik, A.A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci., 2018, 4(2), 268-276.
[http://dx.doi.org/10.1021/acscentsci.7b00572] [PMID: 29532027]
[68]
Born, J.; Manica, M.; Oskooei, A.; Cadow, J.; Markert, G.; Martínez, R.M. PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning. iScience, 2021, 24(4), 102269.
[http://dx.doi.org/10.1016/j.isci.2021.102269] [PMID: 33851095]
[69]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[70]
Orioli, S.; Larsen, A.H.; Bottaro, S.; Larsen, L.K. How to learn from inconsistencies: Integrating molecular simulations with experimental data. Prog. Mol. Biol. Transl. Sci., 2020, 170, 123-176.
[http://dx.doi.org/10.1016/bs.pmbts.2019.12.006] [PMID: 32145944]
[71]
Liu, Z.; Zhao, J.; Li, W.; Wang, X.; Xu, J.; Xie, J.; Tao, K.; Shen, L.; Zhang, R. Molecular docking of potential inhibitors for influenza H7N9. Comput. Math. Methods Med., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/480764] [PMID: 25861376]
[72]
Cui, J.J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R.S.; Edwards, M.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem., 2011, 54(18), 6342-6363.
[http://dx.doi.org/10.1021/jm2007613] [PMID: 21812414]
[73]
Goyal, L.; Saha, S.K.; Liu, L.Y.; Siravegna, G.; Leshchiner, I.; Ahronian, L.G.; Lennerz, J.K.; Vu, P.; Deshpande, V.; Kambadakone, A.; Mussolin, B.; Reyes, S.; Henderson, L.; Sun, J.E.; Van Seventer, E.E.; Gurski, J.M., Jr; Baltschukat, S.; Engstler, S.B.; Barys, L.; Stamm, C.; Furet, P.; Ryan, D.P.; Stone, J.R.; Iafrate, A.J.; Getz, G.; Porta, D.G.; Tiedt, R.; Bardelli, A.; Juric, D.; Corcoran, R.B.; Bardeesy, N.; Zhu, A.X. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion–positive cholangiocarcinoma. Cancer Discov., 2017, 7(3), 252-263.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1000] [PMID: 28034880]
[74]
Łyskowski, A.; Gruber, C.; Steinkellner, G.; Schürmann, M.; Schwab, H.; Gruber, K.; Steiner, K. Crystal structure of an (R)-selective ω-transaminase from Aspergillus terreus. PLoS One, 2014, 9(1), e87350.
[http://dx.doi.org/10.1371/journal.pone.0087350] [PMID: 24498081]
[75]
Rahman, E.Y.; Utomo, D.H.; Ali, M.; Purnomo, B.B.; Kania, N. Evaluating the potency of active compounds from Eurycoma longifolia jack roots extract as prostate cancer therapy. Drug Invent. Today, 2018, 10(12), 2374.
[76]
Kurczynska, M.; Kania, E.; Konopka, B.M.; Kotulska, M. Applying PyRosetta molecular energies to separate properly oriented protein models from mirror models, obtained from contact maps. J. Mol. Model., 2016, 22(5), 111.
[http://dx.doi.org/10.1007/s00894-016-2975-3] [PMID: 27107578]
[77]
Kania, A.; Bratek, M.; Majta, J.; Sarapata, K.; Gałan, W.; Markiewicz, M.; Augustyn, W.A. The importance of atomic partial charges in the reproduction of intermolecular interactions for the triacetin - A model of glycerol backbone. Chem. Phys. Lipids, 2022, 245, 105203.
[http://dx.doi.org/10.1016/j.chemphyslip.2022.105203] [PMID: 35398336]
[78]
Sahni, N; Yi, S; Taipale, M; Bass, JI; Huntington, C.J; Yang, F; Peng, J; Weile, J; Karras, GI; Wang, Y; Kovács, IA Widespread macromolecular interaction perturbations in human genetic disorders. Cell., 2015, 161(3), 647-660.
[http://dx.doi.org/10.1016/j.cell.2015.04.013]
[79]
Pearl, L.H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem., 2006, 75(1), 271-294.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142738] [PMID: 16756493]
[80]
Brough, P.A.; Barril, X.; Borgognoni, J.; Chene, P.; Davies, N.G.M.; Davis, B.; Drysdale, M.J.; Dymock, B.; Eccles, S.A.; Echeverria, G.C.; Fromont, C.; Hayes, A.; Hubbard, R.E.; Jordan, A.M.; Jensen, M.R.; Massey, A.; Merrett, A.; Padfield, A.; Parsons, R.; Radimerski, T.; Raynaud, F.I.; Robertson, A.; Roughley, S.D.; Schoepfer, J.; Simmonite, H.; Sharp, S.Y.; Surgenor, A.; Valenti, M.; Walls, S.; Webb, P.; Wood, M.; Workman, P.; Wright, L. Combining hit identification strategies: Fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J. Med. Chem., 2009, 52(15), 4794-4809.
[http://dx.doi.org/10.1021/jm900357y] [PMID: 19610616]
[81]
Wissner, A.; Floyd, M.B.; Johnson, B.D.; Fraser, H.; Ingalls, C.; Nittoli, T.; Dushin, R.G.; Discafani, C.; Nilakantan, R.; Marini, J.; Ravi, M.; Cheung, K.; Tan, X.; Musto, S.; Annable, T.; Siegel, M.M.; Loganzo, F. 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2. J. Med. Chem., 2005, 48(24), 7560-7581.
[http://dx.doi.org/10.1021/jm050559f] [PMID: 16302797]
[82]
Beavers, M.P.; Myers, M.C.; Shah, P.P.; Purvis, J.E.; Diamond, S.L.; Cooperman, B.S.; Huryn, D.M.; Smith, A.B., III Molecular docking of cathepsin L inhibitors in the binding site of papain. J. Chem. Inf. Model., 2008, 48(7), 1464-1472.
[http://dx.doi.org/10.1021/ci800085c] [PMID: 18598021]
[83]
Fortela, D.L.B.; Ashley, P.M.; Carnes, M.R.; Sharp, W.; Revellame, E.; Hernandez, R.; Holmes, W.E.; Zappi, M.E. Predicting molecular docking of per-and polyfluoroalkyl substances to blood protein using generative artificial intelligence algorithm DiffDock. Biotechniques, 2023, 76(1), 14-26.
[http://dx.doi.org/10.2144/btn-2023-0070] [PMID: 37947020]
[84]
Planche, S.A.; Cordeiro, M.N.D.S. Chemoinformatics for medicinal chemistry: In silico model to enable the discovery of potent and safer anti-cocci agents. Future Med. Chem., 2014, 6(18), 2013-2028.
[http://dx.doi.org/10.4155/fmc.14.136] [PMID: 25531966]
[85]
Xiong, H.; Li, R.R.; Liu, S.Y.; Wu, F.X.; Yang, W.C.; Yang, G.F. Discovery of specific nonpeptide probe for chymotrypsin via molecular docking-based virtual screening and the application. ACS Appl. Bio Mater., 2018, 1(2), 310-317.
[http://dx.doi.org/10.1021/acsabm.8b00072] [PMID: 35016378]
[86]
Planche, S.A.; Cordeiro, M.N.D.S. Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins. Mol. Divers., 2017, 21(3), 511-523.
[http://dx.doi.org/10.1007/s11030-017-9731-1] [PMID: 28194627]
[87]
Wang, J.L.; Liu, D.; Zhang, Z.J.; Shan, S.; Han, X.; Srinivasula, S.M.; Croce, C.M.; Alnemri, E.S.; Huang, Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci., 2000, 97(13), 7124-7129.
[http://dx.doi.org/10.1073/pnas.97.13.7124] [PMID: 10860979]
[88]
Takarabe, M.; Kotera, M.; Nishimura, Y.; Goto, S.; Yamanishi, Y. Drug target prediction using adverse event report systems: A pharmacogenomic approach. Bioinformatics, 2012, 28(18), i611-i618.
[http://dx.doi.org/10.1093/bioinformatics/bts413] [PMID: 22962489]
[89]
Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; Hellmann, M.D.; Barron, D.A.; Schram, A.M.; Hameed, M.; Dogan, S.; Ross, D.S.; Hechtman, J.F.; DeLair, D.F.; Yao, J.; Mandelker, D.L.; Cheng, D.T.; Chandramohan, R.; Mohanty, A.S.; Ptashkin, R.N.; Jayakumaran, G.; Prasad, M.; Syed, M.H.; Rema, A.B.; Liu, Z.Y.; Nafa, K.; Borsu, L.; Sadowska, J.; Casanova, J.; Bacares, R.; Kiecka, I.J.; Razumova, A.; Son, J.B.; Stewart, L.; Baldi, T.; Mullaney, K.A.; Al-Ahmadie, H.; Vakiani, E.; Abeshouse, A.A.; Penson, A.V.; Jonsson, P.; Camacho, N.; Chang, M.T.; Won, H.H.; Gross, B.E.; Kundra, R.; Heins, Z.J.; Chen, H.W.; Phillips, S.; Zhang, H.; Wang, J.; Ochoa, A.; Wills, J.; Eubank, M.; Thomas, S.B.; Gardos, S.M.; Reales, D.N.; Galle, J.; Durany, R.; Cambria, R.; Abida, W.; Cercek, A.; Feldman, D.R.; Gounder, M.M.; Hakimi, A.A.; Harding, J.J.; Iyer, G.; Janjigian, Y.Y.; Jordan, E.J.; Kelly, C.M.; Lowery, M.A.; Morris, L.G.T.; Omuro, A.M.; Raj, N.; Razavi, P.; Shoushtari, A.N.; Shukla, N.; Soumerai, T.E.; Varghese, A.M.; Yaeger, R.; Coleman, J.; Bochner, B.; Riely, G.J.; Saltz, L.B.; Scher, H.I.; Sabbatini, P.J.; Robson, M.E.; Klimstra, D.S.; Taylor, B.S.; Baselga, J.; Schultz, N.; Hyman, D.M.; Arcila, M.E.; Solit, D.B.; Ladanyi, M.; Berger, M.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med., 2017, 23(6), 703-713.
[http://dx.doi.org/10.1038/nm.4333] [PMID: 28481359]
[90]
Mittica, G.; Ghisoni, E.; Giannone, G.; Genta, S.; Aglietta, M.; Sapino, A.; Valabrega, G. PARP inhibitors in ovarian cancer. Recent Pat Anticancer Drug Discov, 2018, 13(4), 392-410.
[http://dx.doi.org/10.2174/1574892813666180305165256] [PMID: 29512470]
[91]
Kotecki, N.; Gombos, A.; Awada, A. Adjuvant therapeutic approaches of HER2-positive breast cancer with a focus on neratinib maleate. Expert Rev. Anticancer Ther., 2019, 19(6), 447-454.
[http://dx.doi.org/10.1080/14737140.2019.1613892] [PMID: 31082272]
[92]
Gras, J. Enasidenib mesylate. Drugs Future, 2017, 42, 15-20.
[http://dx.doi.org/10.1358/dof.2017.042.01.2579894]
[93]
Markham, A. Brigatinib: First global approval. Drugs, 2017, 77(10), 1131-1135.
[http://dx.doi.org/10.1007/s40265-017-0776-3] [PMID: 28597393]
[94]
Vibala, B.V.; Praseetha, P.K.; Vijayakumar, S. Evaluating new strategies for anticancer molecules from ethnic medicinal plants through in silico and biological approach - A review. Gene Rep., 2020, 18, 100553.
[http://dx.doi.org/10.1016/j.genrep.2019.100553]
[95]
Eskiler, G.G. Talazoparib to treat BRCA-positive breast cancer. Drugs Today, 2019, 55(7), 459-467.
[http://dx.doi.org/10.1358/dot.2019.55.7.3015642] [PMID: 31347614]
[96]
Polgárová, K.; Otáhal, P.; Šálek, C.; Pytlík, R. Chimeric antigen receptor based cellular therapy for treatment of T-cell malignancies. Front. Oncol., 2022, 12, 876758.
[http://dx.doi.org/10.3389/fonc.2022.876758] [PMID: 35600381]
[97]
Bulgaru, A.M.; Mani, S.; Goel, S.; Soler, P.R. Erlotinib (Tarceva®): A promising drug targeting epidermal growth factor receptor tyrosine kinase. Expert Rev. Anticancer Ther., 2003, 3(3), 269-279.
[http://dx.doi.org/10.1586/14737140.3.3.269] [PMID: 12820772]
[98]
Herbst, R.S.; Fukuoka, M.; Baselga, J. Gefitinib — A novel targeted approach to treating cancer. Nat. Rev. Cancer, 2004, 4(12), 956-965.
[http://dx.doi.org/10.1038/nrc1506] [PMID: 15573117]
[99]
Yin, L.; Hu, Q. CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat. Rev. Urol., 2014, 11(1), 32-42.
[http://dx.doi.org/10.1038/nrurol.2013.274] [PMID: 24276076]
[100]
Dal Lago, L.; D’Hondt, V.; Awada, A. Selected combination therapy with sorafenib: A review of clinical data and perspectives in advanced solid tumors. Oncologist, 2008, 13(8), 845-858.
[http://dx.doi.org/10.1634/theoncologist.2007-0233] [PMID: 18695262]
[101]
Xia, W.; Gerard, C.M.; Liu, L.; Baudson, N.M.; Ory, T.L.; Spector, N.L. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene, 2005, 24(41), 6213-6221.
[http://dx.doi.org/10.1038/sj.onc.1208774] [PMID: 16091755]
[102]
Talpaz, M.; Silver, R.T.; Druker, B.J.; Goldman, J.M.; Passerini, G.C.; Guilhot, F.; Schiffer, C.A.; Fischer, T.; Deininger, M.W.; Lennard, A.L.; Hochhaus, A.; Ottmann, O.G.; Gratwohl, A.; Baccarani, M.; Stone, R.; Tura, S.; Mahon, F.X.; Reese, F.S.; Gathmann, I.; Capdeville, R.; Kantarjian, H.M.; Sawyers, C.L. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood, 2002, 99(6), 1928-1937.
[http://dx.doi.org/10.1182/blood.V99.6.1928] [PMID: 11877262]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy