Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Cellular and Molecular Mechanisms of Neuronal Degeneration in Early-Stage Diabetic Retinopathy

Author(s): Andrew Callan, Sonal Jha, Laura Valdez and Andrew Tsin*

Volume 22, Issue 5, 2024

Published on: 30 April, 2024

Page: [301 - 315] Pages: 15

DOI: 10.2174/0115701611272737240426050930

Price: $65

Abstract

Background: Studies on the early retinal changes in Diabetic Retinopathy (DR) have demonstrated that neurodegeneration precedes vascular abnormalities like microaneurysms or intraretinal hemorrhages. Therefore, there is a growing field of study to analyze the cellular and molecular pathways involved to allow for the development of novel therapeutics to prevent the onset or delay the progression of DR.

Molecular Mechanisms: Oxidative stress and mitochondrial dysfunction contribute to neurodegeneration through pathways involving polyol, hexosamine, advanced glycation end products, and protein kinase C. Potential interventions targeting these pathways include aldose reductase inhibitors and protein kinase C inhibitors. Neurotrophic factor imbalances, notably brain-derived neurotrophic factor and nerve growth factor, also play a role in early neurodegeneration, and supplementation of these neurotrophic factors show promise in mitigating neurodegeneration.

Cellular Mechanisms: Major cellular mechanisms of neurodegeneration include caspase-mediated apoptosis, glial cell reactivity, and glutamate excitotoxicity. Therefore, inhibitors of these pathways are potential therapeutic avenues.

Vascular Component: The nitric oxide pathway, critical for neurovascular coupling, is disrupted in DR due to increased reactive oxygen species. Vascular Endothelial Growth Factor (VEGF), a long-known angiogenic factor, has demonstrated both damaging and neuroprotective effects, prompting a careful consideration of long-term anti-VEGF therapy.

Conclusion: Current DR treatments primarily address vascular symptoms but fall short of preventing or halting the disease. Insights into the mechanisms of retinal neurodegeneration in the setting of diabetes mellitus not only enhance our understanding of DR but also pave the way for future therapeutic interventions aimed at preventing disease progression and preserving vision.

Next »
[1]
Jonas JB, Sabanayagam C. Epidemiology and Risk Factors for Diabetic Retinopathy. Berlin, Germany: Karger Publishers 2019.
[http://dx.doi.org/10.1159/000486262]
[2]
Wong TY, Sabanayagam C. Strategies to Tackle the Global Burden of Diabetic Retinopathy: From Epidemiology to Artificial Intelligence. Ophthalmologica 2020; 243(1): 9-20.
[http://dx.doi.org/10.1159/000502387] [PMID: 31408872]
[5]
Hammes HP. Diabetic retinopathy: Hyperglycaemia, oxidative stress and beyond. Diabetologia 2018; 61(1): 29-38.
[http://dx.doi.org/10.1007/s00125-017-4435-8] [PMID: 28942458]
[6]
Kim K, Kim ES, Kim DG, Yu SY. Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: Longitudinal study using OCT angiography. Acta Diabetol 2019; 56(12): 1275-82.
[http://dx.doi.org/10.1007/s00592-019-01395-6] [PMID: 31401734]
[7]
Sohn EH, van Dijk HW, Jiao C, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA 2016; 113(19): E2655-64.
[http://dx.doi.org/10.1073/pnas.1522014113] [PMID: 27114552]
[8]
Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 2007; 30(11): 2902-8.
[http://dx.doi.org/10.2337/dc07-0332] [PMID: 17704349]
[9]
Araszkiewicz A, Zozulińska-Ziółkiewicz D, Meller M, et al. Neurodegeneration of the retina in type 1 diabetic patients. Polish Arch Int Med 2012; 122(10): 464-70.
[http://dx.doi.org/10.20452/pamw.1411] [PMID: 22910230]
[10]
Satue M, Cipres M, Melchor I, Gil-Arribas L, Vilades E, Garcia- Martin E. Ability of Swept source OCT technology to detect neurodegeneration in patients with type 2 diabetes mellitus without diabetic retinopathy. Jpn J Ophthalmol 2020; 64(4): 367-77.
[http://dx.doi.org/10.1007/s10384-020-00729-0] [PMID: 32157484]
[11]
Lechner J, O’Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res 2017; 139: 7-14.
[http://dx.doi.org/10.1016/j.visres.2017.04.003] [PMID: 28412095]
[12]
Jonsson KB, Frydkjaer-Olsen U, Grauslund J. Vascular Changes and neurodegeneration in the early stages of diabetic retinopathy: Which comes first? Ophthalmic Res 2016; 56(1): 1-9.
[http://dx.doi.org/10.1159/000444498] [PMID: 27035578]
[13]
Tavares Ferreira J, Alves M, Dias-Santos A, et al. Retinal neurodegeneration in diabetic patients without diabetic retinopathy. Invest Ophthalmol Vis Sci 2016; 57(14): 6455-60.
[http://dx.doi.org/10.1167/iovs.16-20215] [PMID: 27893887]
[14]
Asefzadeh B, Fisch BM, Parenteau CE, Cavallerano AA. Macular thickness and systemic markers for diabetes in individuals with no or mild diabetic retinopathy. Clin Exp Ophthalmol 2008; 36(5): 455-63.
[http://dx.doi.org/10.1111/j.1442-9071.2008.01769.x] [PMID: 18925914]
[15]
Frydkjaer-Olsen U, Hansen RS, Peto T, Grauslund J. Structural neurodegeneration correlates with early diabetic retinopathy. Int Ophthalmol 2018; 38(4): 1621-6.
[http://dx.doi.org/10.1007/s10792-017-0632-1] [PMID: 28733928]
[16]
Garcia-Martin E, Cipres M, Melchor I, et al. Neurodegeneration in patients with type 2 diabetes mellitus without diabetic retinopathy. J Ophthalmol 2019; 2019: 1-8.
[http://dx.doi.org/10.1155/2019/1825819] [PMID: 31485340]
[17]
Ebrahimi M, Sivaprasad S, Thompson P, Perry G. Retinal neurodegeneration in euglycemic hyperinsulinemia, prediabetes, and diabetes. Ophthalmic Res 2023; 66(1): 385-97.
[http://dx.doi.org/10.1159/000528503] [PMID: 36463857]
[18]
Santos AR, Ribeiro L, Bandello F, et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: Cross-sectional analyses of baseline data of the eurocondor project. Diabetes 2017; 66(9): 2503-10.
[http://dx.doi.org/10.2337/db16-1453] [PMID: 28663190]
[19]
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021; 17(4): 195-206.
[http://dx.doi.org/10.1038/s41574-020-00451-4] [PMID: 33469209]
[20]
Jiao C, Abramoff MD, Lee K. Diabetes induced neurodegeneration in the retina and the brain of mice are associated and independent of microvasculopathy. Invest Ophthalmol Vis Sci 2017; 58(8): 5195.
[21]
Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res 2017; 139: 101-7.
[http://dx.doi.org/10.1016/j.visres.2017.03.003] [PMID: 28408138]
[22]
Sachdeva MM. Retinal neurodegeneration in diabetes: An emerging concept in diabetic retinopathy. Curr Diab Rep 2021; 21(12): 65-5.
[http://dx.doi.org/10.1007/s11892-021-01428-x] [PMID: 34902066]
[23]
Rossino MG, Dal Monte M, Casini G. Relationships between neurodegeneration and vascular damage in diabetic retinopathy. Front Neurosci 2019; 13: 1172-2.
[http://dx.doi.org/10.3389/fnins.2019.01172] [PMID: 31787868]
[24]
Muc R, Saracen A, Grabska-Liberek I. Associations of diabetic retinopathy with retinal neurodegeneration on the background of diabetes mellitus. Overview of recent medical studies with an assessment of the impact on healthcare systems. Open Med (Wars) 2018; 13(1): 130-6.
[http://dx.doi.org/10.1515/med-2018-0008] [PMID: 29675479]
[25]
Araszkiewicz A, Zozulinska-Ziolkiewicz D. Retinal neurodegeneration in the course of diabetes-pathogenesis and clinical perspective. Curr Neuropharmacol 2016; 14(8): 805-9.
[http://dx.doi.org/10.2174/1570159X14666160225154536] [PMID: 26915422]
[26]
Stem M, Gardner T. Neurodegeneration in the pathogenesis of diabetic retinopathy: Molecular mechanisms and therapeutic implications. Curr Med Chem 2013; 20(26): 3241-50.
[http://dx.doi.org/10.2174/09298673113209990027] [PMID: 23745549]
[27]
Toprak I, Fenkci SM, Fidan Yaylali G, Martin C, Yaylali V. Early retinal neurodegeneration in preclinical diabetic retinopathy: A multifactorial investigation. Eye (Lond) 2020; 34(6): 1100-7.
[http://dx.doi.org/10.1038/s41433-019-0646-1] [PMID: 31654034]
[28]
Altmann C, Schmidt M. The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci 2018; 19(1): 110.
[http://dx.doi.org/10.3390/ijms19010110] [PMID: 29301251]
[29]
Eisma JH, Dulle JE, Fort PE. Current knowledge on diabetic retinopathy from human donor tissues. World J Diabetes 2015; 6(2): 312-20.
[http://dx.doi.org/10.4239/wjd.v6.i2.312] [PMID: 25789112]
[30]
Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial defects drive degenerative retinal diseases. Trends Mol Med 2020; 26(1): 105-18.
[http://dx.doi.org/10.1016/j.molmed.2019.10.008] [PMID: 31771932]
[31]
Rohowetz L, Kraus J, Koulen P. Reactive oxygen species-mediated damage of retinal neurons: Drug development targets for therapies of chronic neurodegeneration of the retina. Int J Mol Sci 2018; 19(11): 3362.
[http://dx.doi.org/10.3390/ijms19113362] [PMID: 30373222]
[32]
Ola MS, Nawaz MI, Siddiquei MM, Al-Amro S, Abu El-Asrar AM. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. J Diabetes Complications 2012; 26(1): 56-64.
[http://dx.doi.org/10.1016/j.jdiacomp.2011.11.004] [PMID: 22226482]
[33]
Payne A, Kaja S, Naumchuk Y, Kunjukunju N, Koulen P. Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina. Int J Mol Sci 2014; 15(2): 1865-86.
[http://dx.doi.org/10.3390/ijms15021865] [PMID: 24473138]
[34]
Sasaki M, Ozawa Y, Kurihara T, et al. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 2010; 53(5): 971-9.
[http://dx.doi.org/10.1007/s00125-009-1655-6] [PMID: 20162412]
[35]
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37: 101799-9.
[http://dx.doi.org/10.1016/j.redox.2020.101799] [PMID: 33248932]
[36]
Miller DJ, Cascio MA, Rosca MG. Diabetic retinopathy: The role of mitochondria in the neural retina and microvascular disease. Antioxidants 2020; 9(10): 905.
[http://dx.doi.org/10.3390/antiox9100905] [PMID: 32977483]
[37]
Kadłubowska J, Malaguarnera L, Wąż P, Zorena K. Neurodegeneration and neuroinflammation in diabetic retinopathy: Potential approaches to delay neuronal loss. Curr Neuropharmacol 2016; 14(8): 831-9.
[http://dx.doi.org/10.2174/1570159X14666160614095559] [PMID: 27306035]
[38]
Wu MY, Yiang GT, Lai TT, Li CJ. The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy. Oxid Med Cell Longev 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/3420187] [PMID: 30254714]
[39]
Thakur S, Gupta SK, Ali V, Singh P, Verma M. Aldose Reductase: A cause and a potential target for the treatment of diabetic complications. Arch Pharm Res 2021; 44(7): 655-67.
[http://dx.doi.org/10.1007/s12272-021-01343-5] [PMID: 34279787]
[40]
Julius A, Renuka RR, Hopper W, et al. Inhibition of aldose reductase by novel phytocompounds: A Heuristic approach to treating diabetic retinopathy. Evid Based Complement Alternat Med 2022; 2022: 1-10.
[http://dx.doi.org/10.1155/2022/9624118] [PMID: 35356240]
[41]
da Costa Calaza K, Blanco Martinez AM, Mendonca HR, Carpi-Santos R. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: Galectin-3 participation. Neural Regen Res 2020; 15(4): 625-35.
[http://dx.doi.org/10.4103/1673-5374.266910] [PMID: 31638084]
[42]
Aiello LP, Clermont A, Arora V, Davis MD, Sheetz MJ, Bursell SE. Inhibition of PKC beta by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest Ophthalmol Vis Sci 2006; 47(1): 86-92.
[http://dx.doi.org/10.1167/iovs.05-0757] [PMID: 16384948]
[43]
Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep 2011; 11(4): 244-52.
[http://dx.doi.org/10.1007/s11892-011-0198-7] [PMID: 21590515]
[44]
Kim J, Kim CS, Sohn E, et al. Aminoguanidine protects against apoptosis of retinal ganglion cells in Zucker diabetic fatty rats. Eur Rev Med Pharmacol Sci 2014; 18(11): 1573-8.
[PMID: 24943965]
[45]
Ren X, Wang N, Qi H, et al. Up-regulation thioredoxin inhibits advanced glycation end products-induced neurodegeneration. Cell Physiol Biochem 2018; 50(5): 1673-86.
[http://dx.doi.org/10.1159/000494787] [PMID: 30384364]
[46]
Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet 2009; 43(1): 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[47]
Chu Q, Gu X, Zheng Q, Wang J, Zhu H. Mitochondrial mechanisms of apoptosis and necroptosis in liver diseases. Anal Cell Pathol (Amst) 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/8900122] [PMID: 34804779]
[48]
Du J, Rountree A, Cleghorn WM, et al. Phototransduction influences metabolic flux and nucleotide metabolism in mouse retina. J Biol Chem 2016; 291(9): 4698-710.
[http://dx.doi.org/10.1074/jbc.M115.698985] [PMID: 26677218]
[49]
Periasamy A, Mitchell N, Zaytseva O, et al. An increase in mitochondrial TOM activates apoptosis to drive retinal neurodegeneration. Sci Rep 2022; 12(1): 21634.
[http://dx.doi.org/10.1038/s41598-022-23280-z] [PMID: 36517509]
[50]
Archer SL. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 2013; 369(23): 2236-51.
[http://dx.doi.org/10.1056/NEJMra1215233] [PMID: 24304053]
[51]
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 2020; 15(1): 235-59.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032711] [PMID: 31585519]
[52]
Bertholet AM, Delerue T, Millet AM, et al. Mitochondrial fusion/ fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 2016; 90: 3-19.
[http://dx.doi.org/10.1016/j.nbd.2015.10.011] [PMID: 26494254]
[53]
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95: 101136.
[http://dx.doi.org/10.1016/j.preteyeres.2022.101136] [PMID: 36400670]
[54]
Bordt EA, Clerc P, Roelofs BA, et al. The putative drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell 2017; 40(6): 583-594.e6.
[http://dx.doi.org/10.1016/j.devcel.2017.02.020] [PMID: 28350990]
[55]
Grel H, Woznica D, Ratajczak K, et al. Mitochondrial dynamics in neurodegenerative diseases: Unraveling the role of fusion and fission processes. Int J Mol Sci 2023; 24(17): 13033.
[http://dx.doi.org/10.3390/ijms241713033] [PMID: 37685840]
[56]
Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci USA 2013; 110(41): 16586-91.
[http://dx.doi.org/10.1073/pnas.1314575110] [PMID: 24067647]
[57]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[58]
Arden GB. The absence of diabetic retinopathy in patients with retinitis pigmentosa: Implications for pathophysiology and possible treatment. Br J Ophthalmol 2001; 85(3): 366-70.
[http://dx.doi.org/10.1136/bjo.85.3.366] [PMID: 11222350]
[59]
Mecchia A, Palumbo C, De Luca A, et al. High glucose induces an early and transient cytoprotective autophagy in retinal Müller cells. Endocrine 2022; 77(2): 221-30.
[http://dx.doi.org/10.1007/s12020-022-03079-8] [PMID: 35612691]
[60]
Kowluru RA, Kowluru A, Mishra M, Kumar B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2015; 48: 40-61.
[http://dx.doi.org/10.1016/j.preteyeres.2015.05.001] [PMID: 25975734]
[61]
Silberman DM, Ross K, Sande PH, et al. SIRT6 is required for normal retinal function. PLoS One 2014; 9(6): e98831-1.
[http://dx.doi.org/10.1371/journal.pone.0098831] [PMID: 24896097]
[62]
Skaper SD. Neurotrophic Factors: Methods and Protocols. Berlin, Heidelberg: SpringerLink 2012; pp. 1-12.
[http://dx.doi.org/10.1007/978-1-61779-536-7]
[63]
Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 2006; 361(1473): 1545-64.
[http://dx.doi.org/10.1098/rstb.2006.1894] [PMID: 16939974]
[64]
Mohamed R, El-Remessy AB. Imbalance of the nerve growth factor and its precursor: Implication in diabetic retinopathy. J Clin Exp Ophthalmol 2015; 6(5): 483.
[http://dx.doi.org/10.4172/2155-9570.1000483] [PMID: 26807305]
[65]
Kumar A, Pandey RK, Miller LJ, Singh PK, Kanwar M. Muller glia in retinal innate immunity: A perspective on their roles in endophthalmitis. Crit Rev Immunol 2013; 33(2): 119-35.
[http://dx.doi.org/10.1615/CritRevImmunol.2013006618] [PMID: 23582059]
[66]
Fico E, Rosso P, Triaca V, Segatto M, Lambiase A, Tirassa P. NGF prevents loss of TrkA/VEGFR2 cells, and VEGF isoform dysregulation in the retina of adult diabetic rats. Cells 2022; 11(20): 3246.
[http://dx.doi.org/10.3390/cells11203246] [PMID: 36291113]
[67]
Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2015; 51(3): 878-84.
[http://dx.doi.org/10.1007/s12035-014-8732-7] [PMID: 24826918]
[68]
Bikbova G, Oshitari T, Baba T, Yamamoto S. Neurotrophic factors for retinal ganglion cell neuropathy - with a special reference to diabetic neuropathy in the retina. Curr Diabetes Rev 2014; 10(3): 166-76.
[http://dx.doi.org/10.2174/1573399810666140508121927] [PMID: 24809393]
[69]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[70]
Afarid M, Namvar E, Sanie-Jahromi F. Diabetic retinopathy and BDNF: A review on its molecular basis and clinical applications. J Ophthalmol 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/1602739] [PMID: 32509339]
[71]
Abu El-Asrar AM, Mohammad G, De Hertogh G, et al. Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy. PLoS One 2013; 8(6): e65472-2.
[http://dx.doi.org/10.1371/journal.pone.0065472] [PMID: 23762379]
[72]
Okoye G, Zimmer J, Sung J, et al. Increased expression of brain-derived neurotrophic factor preserves retinal function and slows cell death from rhodopsin mutation or oxidative damage. J Neurosci 2003; 23(10): 4164-72.
[http://dx.doi.org/10.1523/JNEUROSCI.23-10-04164.2003] [PMID: 12764104]
[73]
LaVail MM, Yasumura D, Matthes MT, et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest Ophthalmol Vis Sci 1998; 39(3): 592-602.
[PMID: 9501871]
[74]
Boss JD, Singh PK, Pandya HK, et al. Assessment of Neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 2017; 58(12): 5594-603.
[http://dx.doi.org/10.1167/iovs.17-21973] [PMID: 29084332]
[75]
Elahy M, Baindur-Hudson S, Cruzat VF, Newsholme P, Dass CR. Mechanisms of PEDF-mediated protection against reactive oxygen species damage in diabetic retinopathy and neuropathy. J Endocrinol 2014; 222(3): R129-39.
[http://dx.doi.org/10.1530/JOE-14-0065] [PMID: 24928938]
[76]
Ola M, Nawaz M, Khan H, Alhomida A. Neurodegeneration and neuroprotection in diabetic retinopathy. Int J Mol Sci 2013; 14(2): 2559-72.
[http://dx.doi.org/10.3390/ijms14022559] [PMID: 23358247]
[77]
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147: 104299-9.
[http://dx.doi.org/10.1016/j.phrs.2019.104299] [PMID: 31207342]
[78]
Villarroel M, Ciudin A, Hernández C, Simó R. Neurodegeneration: An early event of diabetic retinopathy. World J Diabetes 2010; 1(2): 57-64.
[http://dx.doi.org/10.4239/wjd.v1.i2.57] [PMID: 21537428]
[79]
Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol 2015; 7(12): a006080.
[http://dx.doi.org/10.1101/cshperspect.a006080] [PMID: 26626938]
[80]
Adamiec-Mroczek J, Zając-Pytrus H, Misiuk-Hojło M. Caspase-dependent apoptosis of retinal ganglion cells during the development of diabetic retinopathy. Adv Clin Exp Med 2015; 24(3): 531-5.
[http://dx.doi.org/10.17219/acem/31805] [PMID: 26467145]
[81]
Barber AJ. Diabetic retinopathy: Recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci 2015; 58(6): 541-9.
[http://dx.doi.org/10.1007/s11427-015-4856-x] [PMID: 25951929]
[82]
Santiago AR, Cristóvão AJ, Santos PF, Carvalho CM, Ambrósio AF. High glucose induces caspase-independent cell death in retinal neural cells. Neurobiol Dis 2007; 25(3): 464-72.
[http://dx.doi.org/10.1016/j.nbd.2006.10.023] [PMID: 17239603]
[83]
Wang W, Lo A. Diabetic retinopathy: Pathophysiology and treatments. Int J Mol Sci 2018; 19(6): 1816.
[http://dx.doi.org/10.3390/ijms19061816] [PMID: 29925789]
[84]
El-Asrar AMA, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci 2004; 45(8): 2760-6.
[http://dx.doi.org/10.1167/iovs.03-1392] [PMID: 15277502]
[85]
Abu El-Asrar AM, Dralands L, Missotten L, Geboes K. Expression of antiapoptotic and proapoptotic molecules in diabetic retinas. Eye (Lond) 2007; 21(2): 238-45.
[http://dx.doi.org/10.1038/sj.eye.6702225] [PMID: 16424911]
[86]
Kowluru RA, Koppolu P. Diabetes-induced activation of caspase-3 in retina: Effect of antioxidant therapy. Free Radic Res 2002; 36(9): 993-9.
[http://dx.doi.org/10.1080/1071576021000006572] [PMID: 12448825]
[87]
Chakravarthy H, Devanathan V. Molecular mechanisms mediating diabetic retinal neurodegeneration: Potential research avenues and therapeutic targets. J Mol Neurosci 2018; 66(3): 445-61.
[http://dx.doi.org/10.1007/s12031-018-1188-x] [PMID: 30293228]
[88]
Feenstra DJ, Yego EC, Mohr S. Modes of retinal cell death in diabetic retinopathy. J Clin Exp Ophthalmol 2013; 4(5): 298-8.
[PMID: 24672740]
[89]
Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19(1): 107-20.
[http://dx.doi.org/10.1038/cdd.2011.96] [PMID: 21760595]
[90]
Valverde AM, Miranda S, García-Ramírez M, González-Rodriguez Á, Hernández C, Simó R. Proapoptotic and survival signaling in the neuroretina at early stages of diabetic retinopathy. Mol Vis 2013; 19: 47-53.
[PMID: 23335850]
[91]
Joussen AM, Poulaki V, Mitsiades N, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-α suppression. FASEB J 2002; 16(3): 438-40.
[http://dx.doi.org/10.1096/fj.01-0707fje] [PMID: 11821258]
[92]
Barber AJ, Nakamura M, Wolpert EB, et al. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 2001; 276(35): 32814-21.
[http://dx.doi.org/10.1074/jbc.M104738200] [PMID: 11443130]
[93]
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia–neuron interactions in the mammalian retina. Prog Retin Eye Res 2016; 51: 1-40.
[http://dx.doi.org/10.1016/j.preteyeres.2015.06.003] [PMID: 26113209]
[94]
Newman EA. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters. Philos Trans R Soc Lond B Biol Sci 2015; 370(1672): 20140195.
[95]
Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy. Vision Res 2017; 139: 93-100.
[http://dx.doi.org/10.1016/j.visres.2017.03.013] [PMID: 28866025]
[96]
Mandal LK, Choudhuri S, Dutta D, et al. Oxidative stress-associated neuroretinal dysfunction and nitrosative stress in diabetic retinopathy. Can J Diabetes 2013; 37(6): 401-7.
[http://dx.doi.org/10.1016/j.jcjd.2013.05.004] [PMID: 24321721]
[97]
Yun J-H, Park SW, Kim JH, Park Y-J, Cho C-H, Kim JH. Angiopoietin 2 induces astrocyte apoptosis via αvβ5-integrin signaling in diabetic retinopathy. Cell Death Dis 2016; 7(2): e2101-1.
[http://dx.doi.org/10.1038/cddis.2015.347] [PMID: 26890140]
[98]
Sorrentino FS, Allkabes M, Salsini G, Bonifazzi C, Perri P. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy. Life Sci 2016; 162: 54-9.
[http://dx.doi.org/10.1016/j.lfs.2016.08.001] [PMID: 27497914]
[99]
Avila J, Lucas JJ, Pérez M, Hernández F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004; 84(2): 361-84.
[http://dx.doi.org/10.1152/physrev.00024.2003] [PMID: 15044677]
[100]
Rolev KD, Shu X, Ying Y. Targeted pharmacotherapy against neurodegeneration and neuroinflammation in early diabetic retinopathy. Neuropharmacology 2021; 187: 108498.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108498] [PMID: 33582150]
[101]
Costa GN, Vindeirinho J, Cavadas C, Ambrósio AF, Santos PF. Contribution of TNF receptor 1 to retinal neural cell death induced by elevated glucose. Mol Cell Neurosci 2012; 50(1): 113-23.
[http://dx.doi.org/10.1016/j.mcn.2012.04.003] [PMID: 22522145]
[102]
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol 2020; 11: 564077-7.
[http://dx.doi.org/10.3389/fimmu.2020.564077] [PMID: 33240260]
[103]
Li Y, Liu L, Barger SW, Griffin WST. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003; 23(5): 1605-11.
[http://dx.doi.org/10.1523/JNEUROSCI.23-05-01605.2003] [PMID: 12629164]
[104]
Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 2006; 55(3): 633-9.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-1349] [PMID: 16505225]
[105]
Abcouwer SF, Gardner TW. Diabetic retinopathy: Loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 2014; 1311(1): 174-90.
[http://dx.doi.org/10.1111/nyas.12412] [PMID: 24673341]
[106]
Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy. J Neuroinflammation 2015; 12(1): 141.
[http://dx.doi.org/10.1186/s12974-015-0368-7] [PMID: 26245868]
[107]
Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight 2017; 2(14): e93751.
[http://dx.doi.org/10.1172/jci.insight.93751] [PMID: 28724805]
[108]
Moran EP, Wang Z, Chen J, Sapieha P, Smith LEH, Ma J. Neurovascular cross talk in diabetic retinopathy: Pathophysiological roles and therapeutic implications. Am J Physiol Heart Circ Physiol 2016; 311(3): H738-49.
[http://dx.doi.org/10.1152/ajpheart.00005.2016] [PMID: 27473938]
[109]
Feng Y, Wang Y, Li L, et al. Gene expression profiling of vasoregression in the retina-involvement of microglial cells. PLoS One 2011; 6(2): e16865-5.
[http://dx.doi.org/10.1371/journal.pone.0016865] [PMID: 21379381]
[110]
Kern TS. Interrelationships between the Retinal Neuroglia and Vasculature in Diabetes. Diabetes Metab J 2014; 38(3): 163-70.
[http://dx.doi.org/10.4093/dmj.2014.38.3.163] [PMID: 25003068]
[111]
Cantó A, Olivar T, Romero FJ, Miranda M. Nitrosative stress in retinal pathologies: Review. Antioxidants 2019; 8(11): 543.
[http://dx.doi.org/10.3390/antiox8110543] [PMID: 31717957]
[112]
Opatrilova R, Kubatka P, Caprnda M, et al. Nitric oxide in the pathophysiology of retinopathy: Evidences from preclinical and clinical researches. Acta Ophthalmol 2018; 96(3): 222-31.
[http://dx.doi.org/10.1111/aos.13384] [PMID: 28391624]
[113]
Le YZ. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vision Res 2017; 139: 108-14.
[http://dx.doi.org/10.1016/j.visres.2017.05.005] [PMID: 28601428]
[114]
Behl T, Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacol Res 2015; 99: 137-48.
[http://dx.doi.org/10.1016/j.phrs.2015.05.013] [PMID: 26054568]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy