Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: Allosteric inhibition of EGFR Tyrosine Kinase (TK) is currently among the most attractive approaches for designing and developing anti-cancer drugs to avoid chemoresistance exhibited by clinically approved ATP-competitive inhibitors. The current work aimed to synthesize new biphenyl-containing derivatives that were predicted to act as EGFR TK allosteric site inhibitors based on molecular docking studies.
Method: A new series of 4'-hydroxybiphenyl-4-carboxylic acid derivatives, including hydrazine-1-carbothioamide (S3-S6) and 1,2,4-triazole (S7-S10) derivatives, were synthesized and characterized using IR, 1HNMR, 13CNMR, and HR-mass spectroscopy. Compound S4 had a relatively high pharmacophore-fit score, indicating that it may have biological activity similar to the EGFR allosteric inhibitor reference, and it scored a relatively low ΔG against EGFR TK allosteric site, indicating a high likelihood of drug-receptor complex formation. Compound S4 was cytotoxic to the three cancer cell lines tested, particularly HCT-116 colorectal cancer cells, with an IC50 value comparable to Erlotinib.
Compound S4 induced the intrinsic apoptotic pathway in HCT-116 cells by arresting them in the G2/M phase.
Result: All of the new derivatives, including S4, met the in silico requirements for EGFR allosteric inhibitory activity.
Conclusion: Compound S4 is a promising EGFR tyrosine kinase allosteric inhibitor that warrants further research.
[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Lee, M.M.L.; Chan, B.D.; Wong, W.Y.; Leung, T.W.; Qu, Z.; Huang, J.; Zhu, L.; Lee, C.S.; Chen, S.; Tai, W.C.S. Synthesis and evaluation of novel anticancer compounds derived from the natural product. Brevilin A. ACS Omega, 2020, 5(24), 14586-14596.
[http://dx.doi.org/10.1021/acsomega.0c01276] [PMID: 32596596]
[http://dx.doi.org/10.1021/acsomega.0c01276] [PMID: 32596596]
[3]
Bourzikat, O.; El Abbouchi, A.; Ghammaz, H.; El Brahmi, N.; El Fahime, E.; Paris, A.; Daniellou, R.; Suzenet, F.; Guillaumet, G.; El Kazzouli, S. Synthesis, anticancer activities and molecular docking studies of a novel class of 2-phenyl-5, 6, 7, 8-tetrahydroimidazo [1, 2-b] pyridazine derivatives bearing sulfonamides. Molecules, 2022, 27(16), 5238.
[http://dx.doi.org/10.3390/molecules27165238] [PMID: 36014478]
[http://dx.doi.org/10.3390/molecules27165238] [PMID: 36014478]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide. for 36 cancers in 185 countries. CA. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther., 2016, 160, 65-83.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.003] [PMID: 26896565]
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.003] [PMID: 26896565]
[6]
Wang, Y.H.; Huang, K.; Qin, Z.J.; Xiong, H.J.; Liu, T.F.; Wang, T.Y.; Lai, X.D.; Liu, X.H.; Jiang, H.; Wang, X.M. Tumor microenvironment as a bioreactor for Au&Fe3O4-DNA complex synthesis and targeted cancer therapy. Chem. Eng. J., 2023, 467, 143455.
[http://dx.doi.org/10.1016/j.cej.2023.143455]
[http://dx.doi.org/10.1016/j.cej.2023.143455]
[7]
Min, H.Y.; Lee, H.Y. Cellular dormancy in cancer: Mechanisms and potential targeting strategies. Cancer Res. Treat., 2023, 55(3), 720-736.
[http://dx.doi.org/10.4143/crt.2023.468] [PMID: 36960624]
[http://dx.doi.org/10.4143/crt.2023.468] [PMID: 36960624]
[8]
Ruth, JR.; Pant, DK.; Pan, TC.; Seidel, HE.; Baksh, SC.; Keister, BA.; Singh, R.; Sterner, CJ.; Bakewell, SJ.; Moody, SE.; Belka, GK. Cellular dormancy in minimal residual disease following targeted therapy. Breast Ca. Res, 2021, 23(1), 63.
[http://dx.doi.org/10.1186/s13058-021-01416-9]
[http://dx.doi.org/10.1186/s13058-021-01416-9]
[9]
Zhong, L. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives Sig. Transduct. Target Ther, 2021, 6(1), 1-48.
[http://dx.doi.org/10.1038/s41392-021-00572-w]
[http://dx.doi.org/10.1038/s41392-021-00572-w]
[10]
Wang, M.D.; Shin, D.M.; Simons, J.W.; Nie, S. Nanotechnology for targeted cancer therapy. Expert Rev. Anticancer Ther., 2007, 7(6), 833-837.
[http://dx.doi.org/10.1586/14737140.7.6.833] [PMID: 17555393]
[http://dx.doi.org/10.1586/14737140.7.6.833] [PMID: 17555393]
[11]
Yamaoka, T.; Kusumoto, S.; Ando, K.; Ohba, M.; Ohmori, T. Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci., 2018, 19(11), 3491.
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[http://dx.doi.org/10.3390/ijms19113491] [PMID: 30404198]
[12]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[13]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[14]
Backes, A.C.; Zech, B.; Felber, B.; Klebl, B.; Müller, G. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Expert Opin. Drug Discov., 2008, 3(12), 1427-1449.
[http://dx.doi.org/10.1517/17460440802580106] [PMID: 23506107]
[http://dx.doi.org/10.1517/17460440802580106] [PMID: 23506107]
[15]
Bakr, R.B.; Mehany, A.B.M.; Abdellatif, K.R.A. Synthesis, EGFR inhibition and anti-cancer activity of new 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine derivatives. Anticancer. Agents Med. Chem., 2017, 17(10), 1389-1400.
[http://dx.doi.org/10.2174/1872211311666170213105004] [PMID: 28270084]
[http://dx.doi.org/10.2174/1872211311666170213105004] [PMID: 28270084]
[16]
Kurban, B.; Sağlık, B.N.; Osmaniye, D.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and anticancer activities of pyrazole-thiadiazole-based EGFR inhibitors. ACS Omega, 2023, 8(34), 31500-31509.
[http://dx.doi.org/10.1021/acsomega.3c04635] [PMID: 37663500]
[http://dx.doi.org/10.1021/acsomega.3c04635] [PMID: 37663500]
[17]
Elzahabi, H.S.A.; Nossier, E.S.; Alasfoury, R.A.; El-Manawaty, M.; Sayed, S.M.; Elkaeed, E.B.; Metwaly, A.M.; Hagras, M.; Eissa, I.H. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1053-1076.
[http://dx.doi.org/10.1080/14756366.2022.2062752] [PMID: 35821615]
[http://dx.doi.org/10.1080/14756366.2022.2062752] [PMID: 35821615]
[18]
Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Anwar, M.M.; Nossier, E.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg. Chem., 2021, 114, 105078.
[http://dx.doi.org/10.1016/j.bioorg.2021.105078] [PMID: 34161878]
[http://dx.doi.org/10.1016/j.bioorg.2021.105078] [PMID: 34161878]
[19]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[20]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99, 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[21]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[22]
Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol., 2020, 13(1), 143.
[http://dx.doi.org/10.1186/s13045-020-00977-0] [PMID: 33109256]
[http://dx.doi.org/10.1186/s13045-020-00977-0] [PMID: 33109256]
[23]
Beyett, T.S.; To, C.; Heppner, D.E.; Rana, J.K.; Schmoker, A.M.; Jang, J.; De Clercq, D.J.H.; Gomez, G.; Scott, D.A.; Gray, N.S.; Jänne, P.A.; Eck, M.J. Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors. Nat. Commun., 2022, 13(1), 2530.
[http://dx.doi.org/10.1038/s41467-022-30258-y] [PMID: 35534503]
[http://dx.doi.org/10.1038/s41467-022-30258-y] [PMID: 35534503]
[24]
Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[25]
Kenakin, T.; Miller, L.J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev., 2010, 62(2), 265-304.
[http://dx.doi.org/10.1124/pr.108.000992] [PMID: 20392808]
[http://dx.doi.org/10.1124/pr.108.000992] [PMID: 20392808]
[26]
Maity, S.; Pai, K.S.R.; Nayak, Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep., 2020, 72(4), 799-813.
[http://dx.doi.org/10.1007/s43440-020-00131-0] [PMID: 32666476]
[http://dx.doi.org/10.1007/s43440-020-00131-0] [PMID: 32666476]
[27]
To, C.; Jang, J.; Chen, T.; Park, E.; Mushajiang, M.; De Clercq, D.J.H.; Xu, M.; Wang, S.; Cameron, M.D.; Heppner, D.E.; Shin, B.H.; Gero, T.W.; Yang, A.; Dahlberg, S.E.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov., 2019, 9(7), 926-943.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0903] [PMID: 31092401]
[http://dx.doi.org/10.1158/2159-8290.CD-18-0903] [PMID: 31092401]
[28]
To, C.; Beyett, T.S.; Jang, J.; Feng, W.W.; Bahcall, M.; Haikala, H.M.; Shin, B.H.; Heppner, D.E.; Rana, J.K.; Leeper, B.A.; Soroko, K.M.; Poitras, M.J.; Gokhale, P.C.; Kobayashi, Y.; Wahid, K.; Kurppa, K.J.; Gero, T.W.; Cameron, M.D.; Ogino, A.; Mushajiang, M.; Xu, C.; Zhang, Y.; Scott, D.A.; Eck, M.J.; Gray, N.S.; Jänne, P.A. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Can., 2022, 3(4), 402-417.
[http://dx.doi.org/10.1038/s43018-022-00351-8] [PMID: 35422503]
[http://dx.doi.org/10.1038/s43018-022-00351-8] [PMID: 35422503]
[29]
Zubair, T.; Bandyopadhyay, D. Small molecule EGFR inhibitors as anti-cancer agents: discovery, mechanisms of action, and opportunities. Int. J. Mol. Sci., 2023, 24(3), 2651.
[http://dx.doi.org/10.3390/ijms24032651] [PMID: 36768973]
[http://dx.doi.org/10.3390/ijms24032651] [PMID: 36768973]
[30]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[31]
Singh, S.; Geetha, P.; Ramajayam, R. Isolation, synthesis and medicinal chemistry of biphenyl analogs – A review. Results in Chemistry, 2023, 6, 101135.
[http://dx.doi.org/10.1016/j.rechem.2023.101135]
[http://dx.doi.org/10.1016/j.rechem.2023.101135]
[32]
Ali, H.A.; Ismail, M.A.; Fouda, A.E.A.S.; Ghaith, E.A. A fruitful century for the scalable synthesis and reactions of biphenyl derivatives: Applications and biological aspects. RSC Advances, 2023, 13(27), 18262-18305.
[http://dx.doi.org/10.1039/D3RA03531J] [PMID: 37333795]
[http://dx.doi.org/10.1039/D3RA03531J] [PMID: 37333795]
[33]
Cheng, B.; Zhu, G.; Meng, L.; Wu, G.; Chen, Q.; Ma, S. Identification and optimization of biphenyl derivatives as novel tubulin inhibitors targeting colchicine-binding site overcoming multidrug resistance. Eur. J. Med. Chem., 2022, 228(228), 113930.
[http://dx.doi.org/10.1016/j.ejmech.2021.113930] [PMID: 34794817]
[http://dx.doi.org/10.1016/j.ejmech.2021.113930] [PMID: 34794817]
[34]
Murali, P.; Karuppasamy, R. Imidazole and biphenyl derivatives as anti-cancer agents for glioma therapeutics: Computational drug repurposing strategy. Anticancer. Agents Med. Chem., 2023, 23(9), 1085-1101.
[http://dx.doi.org/10.2174/1871520623666230125090815] [PMID: 36698225]
[http://dx.doi.org/10.2174/1871520623666230125090815] [PMID: 36698225]
[35]
Pisano, M.; Dettori, M.A.; Fabbri, D.; Delogu, G.; Palmieri, G.; Rozzo, C. Anticancer activity of two novel hydroxylated biphenyl compounds toward malignant melanoma cells. Int. J. Mol. Sci., 2021, 22(11), 5636.
[http://dx.doi.org/10.3390/ijms22115636] [PMID: 34073232]
[http://dx.doi.org/10.3390/ijms22115636] [PMID: 34073232]
[36]
Sang, Y.; Han, S.; Han, S.; Pannecouque, C.; De Clercq, E.; Zhuang, C.; Chen, F. Follow on-based optimization of the biphenyl-DAPYs as HIV-1 nonnucleoside reverse transcriptase inhibitors against the wild-type and mutant strains. Bioorg. Chem., 2019, 89(89), 102974.
[http://dx.doi.org/10.1016/j.bioorg.2019.102974] [PMID: 31102693]
[http://dx.doi.org/10.1016/j.bioorg.2019.102974] [PMID: 31102693]
[37]
Ismail, M.A.H.; Aboul-Enein, M.N.; El-Azzouny, A.A.E.; Abouzid, K.A.M.; Ismail, N.S.M. Design, synthesis, and antihypertensive evaluation of 2′-tetrazolyl and 2′-carboxy-biphenylylmethyl-pyrrolidine scaffolds substituted at their N1, C3, and C4 positions as potential angiotensin II AT1 receptor antagonists. Med. Chem. Res., 2015, 24(1), 442-458.
[http://dx.doi.org/10.1007/s00044-014-1095-9]
[http://dx.doi.org/10.1007/s00044-014-1095-9]
[38]
Zewail, M.B.; El-Gizawy, S.A.; Osman, M.A.; Haggag, Y.A. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed- dose combination of candesartan cilexetil and hydrochlorothiazide. J. Drug Deliv. Sci. Technol., 2021, 61, 102320.
[http://dx.doi.org/10.1016/j.jddst.2021.102320]
[http://dx.doi.org/10.1016/j.jddst.2021.102320]
[39]
Meka, G.; Chintakunta, R. Analgesic and anti-inflammatory activity of quinoxaline derivatives: Design synthesis and characterization. Results in Chemistry, 2023, 5, 100783.
[http://dx.doi.org/10.1016/j.rechem.2023.100783]
[http://dx.doi.org/10.1016/j.rechem.2023.100783]
[40]
Wang, Y.; Huang, Q.; Zhang, L.; Zheng, C.; Xu, H. Biphenyls in clusiaceae: Isolation, structure diversity, synthesis and bioactivity. Front Chem., 2022, 10, 987009.
[http://dx.doi.org/10.3389/fchem.2022.987009] [PMID: 36531325]
[http://dx.doi.org/10.3389/fchem.2022.987009] [PMID: 36531325]
[41]
Abbas, A.H.; Mahmood, A.A.R.; Tahtamouni, L.H.; Al- Mazaydeh, Z.A.; Rammaha, M.S.; Alsoubani, F.; Al-bayati, R.I. A novel derivative of picolinic acid induces endoplasmic reticulum stress-mediated apoptosis in human non-small cell lung cancer cells: Synthesis, docking study, and anticancer activity. Pharmacia, 2021, 68(3), 679-692.
[http://dx.doi.org/10.3897/pharmacia.68.e70654]
[http://dx.doi.org/10.3897/pharmacia.68.e70654]
[42]
Vale, J.A.; Rodrigues, M.P.; Lima, Â.M.A.; Santiago, S.S.; Lima, G.D.A.; Almeida, A.A.; Oliveira, L.L.; Bressan, G.C.; Teixeira, R.R.; Machado-Neves, M. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomed. Pharmacother., 2022, 148, 112689.
[http://dx.doi.org/10.1016/j.biopha.2022.112689] [PMID: 35149386]
[http://dx.doi.org/10.1016/j.biopha.2022.112689] [PMID: 35149386]
[43]
Deng, Y.; Yang, T.; Wang, H.; Yang, C.; Cheng, L.; Yin, S.F.; Kambe, N.; Qiu, R. Recent progress on photocatalytic synthesis of ester derivatives and reaction mechanisms. Top. Curr. Chem. (Cham), 2021, 379(6), 42.
[http://dx.doi.org/10.1007/s41061-021-00355-5] [PMID: 34668085]
[http://dx.doi.org/10.1007/s41061-021-00355-5] [PMID: 34668085]
[44]
Hassan, O.M.; Kubba, A.; Tahtamouni, L.H. Novel 5-bromoindole-2-carboxylic acid derivatives as EGFR inhibitors: Synthesis, docking study, and structure activity relationship. Anticancer. Agents Med. Chem., 2023, 23(11), 1336-1348.
[http://dx.doi.org/10.2174/1871520623666230227153449] [PMID: 36847231]
[http://dx.doi.org/10.2174/1871520623666230227153449] [PMID: 36847231]
[45]
Hussein, SA.; Kubba, AA.; Tahtamouni, LH.; Saleh, KM.; Rammaha, MS.; Ridha, DM. Synthesis, docking study, and cytotoxicity evaluation of new hydroxy benzoic acid derivatives. T.J.P.H.S., 2023, 17(1), 30-345.
[http://dx.doi.org/10.25130/tjphs.2023.17.1.4.30.45]
[http://dx.doi.org/10.25130/tjphs.2023.17.1.4.30.45]
[46]
Kubba, A.A.R.M.; Shihab, W.A.; Al-Shawi, N.N. In silico and in vitro approach for design, synthesis, and anti-proliferative activity of novel derivatives of 5-(4-Aminophenyl)-4-substituted phenyl-2, 4-dihydro-3H-1, 2, 4-triazole-3-thione. Res. J. Pharm. Technol., 2020, 13(7), 3329-3339.
[http://dx.doi.org/10.5958/0974-360X.2020.00591.0]
[http://dx.doi.org/10.5958/0974-360X.2020.00591.0]
[47]
Yaseen, Y.S.; Mahmood, A.A.R.; Abbas, A.H.; Shihab, W.A.; Tahtamouni, L.H. New niflumic acid derivatives as egfr inhibitors: Design, synthesis, in-silico studies, and anti-proliferative assessment. Med. Chem., 2023, 19(5), 445-459.
[http://dx.doi.org/10.2174/1573406419666221219144804] [PMID: 36537605]
[http://dx.doi.org/10.2174/1573406419666221219144804] [PMID: 36537605]
[48]
Berillo, DA.; Dyusebaeva, MA. Synthesis of hydrazides of heterocyclic amines and their antimicrobial and spasmolytic activity. S.P.J., , 2022, 30(7), 1036-1043.
[http://dx.doi.org/10.1016/j.jsps.2022.04.009]
[http://dx.doi.org/10.1016/j.jsps.2022.04.009]
[49]
Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-614.
[http://dx.doi.org/10.3897/pharmacia.69.e86504]
[http://dx.doi.org/10.3897/pharmacia.69.e86504]
[50]
Hosny, N.M.; Hassan, N.Y.; Mahmoud, H.M.; Abdel-Rhman, M.H. Synthesis, characterization and cytotoxicity of new 2-isonicotinoyl-N-phenylhydrazine-1-carbothioamide and its metal complexes. Appl. Organomet. Chem., 2019, 33(8), e4998.
[http://dx.doi.org/10.1002/aoc.4998]
[http://dx.doi.org/10.1002/aoc.4998]
[51]
El-Gammal, O.A.; Abdel-Latif, E.; Farag, M.G.; Abdel-Rhman, M.H. Synthesis, characterization, and anticancer activity of new binuclear complexes of 2,2′-malonylbis( N -phenylhydrazine-1-carbothioamide). Appl. Organomet. Chem., 2021, 35(5), e6194.
[http://dx.doi.org/10.1002/aoc.6194]
[http://dx.doi.org/10.1002/aoc.6194]
[52]
Acar, E.; Kansız, S.; Dege, N. Synthesis, crystal structure and hirshfeld surface analysis of (E)-2-(4-Methylbenzylidene)-N-Phenylhydrazine-1-Carbothioamide. J. Struct. Chem., 2023, 64(6), 974-983.
[http://dx.doi.org/10.1134/S0022476623060021]
[http://dx.doi.org/10.1134/S0022476623060021]
[53]
Allawi, M M.; Mahmood, AA.; Tahtamouni, LH.; AlSakhen, M F.; Kanaan, S I.; Saleh, K M.; Yasin, S R. New indole-6-carboxylic acid derivatives as multi-target antiproliferative agents: Synthesis, in silico studies, and cytotoxicity evaluation. Chem. Biodivers, 2023, e202301892.
[http://dx.doi.org/10.1002/cbdv.202301892]
[http://dx.doi.org/10.1002/cbdv.202301892]
[54]
Hassan, OM. Design, synthesis, and molecular docking studies of 5-bromoindole-2-carboxylic acid hydrazone derivatives: In vitro anticancer and vegfr-2 inhibitory effects. Chem. Select., 2022, 7(46), e202203726.
[55]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG : A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[56]
Sulimov, V.B.; Kutov, D.C.; Sulimov, A.V. Advances in docking. Curr. Med. Chem., 2020, 26(42), 7555-7580.
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[http://dx.doi.org/10.2174/0929867325666180904115000] [PMID: 30182836]
[57]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[58]
Meng, L.; Lin, Y.; Gu, H.; Su, T.C. Study on dynamic docking process and collision problems of captured-rod docking method. Ocean Eng., 2019, 193, 106624.
[http://dx.doi.org/10.1016/j.oceaneng.2019.106624]
[http://dx.doi.org/10.1016/j.oceaneng.2019.106624]
[59]
Kaur, T.; Madgulkar, A.; Bhalekar, M.; Asgaonkar, K. Molecular docking in formulation and development. Curr. Drug Discov. Technol., 2019, 16(1), 30-39.
[http://dx.doi.org/10.2174/1570163815666180219112421] [PMID: 29468973]
[http://dx.doi.org/10.2174/1570163815666180219112421] [PMID: 29468973]
[60]
Liu, K.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. J. Chem. Inf. Model., 2017, 57(10), 2514-2522.
[http://dx.doi.org/10.1021/acs.jcim.7b00412] [PMID: 28902511]
[http://dx.doi.org/10.1021/acs.jcim.7b00412] [PMID: 28902511]
[61]
Al-Shabib, N.A.; Khan, J.M.; Malik, A.; Alsenaidy, M.A.; Rehman, M.T.; Al Ajmi, M.F.; Alsenaidy, A.M.; Husain, F.M.; Khan, R.H. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies. J. Mol. Liq., 2018, 269, 511-520.
[http://dx.doi.org/10.1016/j.molliq.2018.07.122]
[http://dx.doi.org/10.1016/j.molliq.2018.07.122]
[62]
Vidal-Limon, A.; Aguilar-Toalá, JE.; Liceaga, AM. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem., 2022, 70(4), 934-943.
[http://dx.doi.org/10.1021/acs.jafc.1c06110]
[http://dx.doi.org/10.1021/acs.jafc.1c06110]
[63]
Hussen, N.H. Synthesis, characterization, molecular docking, ADMET prediction, and anti-inflammatory activity of some Schiff bases derived from salicylaldehyde as a potential cyclooxygenase inhibitor. Baghdad Sci. J, 2023, 20(5), 1662-1674.
[64]
van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20] [PMID: 21516412]
[http://dx.doi.org/10.1007/978-1-61779-080-5_20] [PMID: 21516412]
[65]
Tahtamouni, L.; Alzghoul, A.; Alderfer, S.; Sun, J.; Ahram, M.; Prasad, A.; Bamburg, J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One, 2022, 17(12), e0279746.
[http://dx.doi.org/10.1371/journal.pone.0279746] [PMID: 36584207]
[http://dx.doi.org/10.1371/journal.pone.0279746] [PMID: 36584207]
[66]
Mehihi, A.A.R.; Kubba, A.A.R.; Shihab, W.A.; Tahtamouni, L.H. New tolfenamic acid derivatives with hydrazine-1- carbothioamide and 1,3,4-oxadiazole moieties targeting VEGFR: Synthesis, in silico studies, and in vitro anticancer assessment. Med. Chem. Res., 2023, 32(11), 2334-2348.
[http://dx.doi.org/10.1007/s00044-023-03137-4]
[http://dx.doi.org/10.1007/s00044-023-03137-4]
[67]
Bhanja, K.K.; Sharma, M.; Patra, N. Uncovering the structural and binding insights of dual inhibitors simultaneously targeting two distinct sites on EGFR Kinase. J. Phys. Chem. B, 2023, 127(50), 10749-10765.
[http://dx.doi.org/10.1021/acs.jpcb.3c04337] [PMID: 38055900]
[http://dx.doi.org/10.1021/acs.jpcb.3c04337] [PMID: 38055900]
[68]
Dou, D.; Wang, J.; Qiao, Y.; Wumaier, G.; Sha, W.; Li, W.; Mei, W.; Yang, T.; Zhang, C.; He, H.; Wang, C.; Chu, L.; Sun, B.; Su, R.; Ma, X.; Gong, M.; Xie, L.; Jiang, W.; Diao, Y.; Zhu, L.; Zhao, Z.; Chen, Z.; Xu, Y.; Li, S.; Li, H. Discovery and optimization of 4-anilinoquinazoline derivatives spanning ATP binding site and allosteric site as effective EGFR-C797S inhibitors. Eur. J. Med. Chem., 2022, 244, 114856.
[http://dx.doi.org/10.1016/j.ejmech.2022.114856] [PMID: 36279692]
[http://dx.doi.org/10.1016/j.ejmech.2022.114856] [PMID: 36279692]
[69]
Kubba, RM.; Mohammed, MA.; Ahamed, LS. DFT calculations and experimental study to inhibit carbon steel corrosion in saline solution by quinoline-2-one derivative: Carbon steel corrosion. Baghdad Sci. J, 2021, 18(1), 113.
[http://dx.doi.org/10.21123/bsj.2021.18.1.0113]
[http://dx.doi.org/10.21123/bsj.2021.18.1.0113]
[70]
Calderón-Montaño, J.M.; Martínez-Sánchez, S.M.; Jiménez-González, V.; Burgos-Morón, E.; Guillén-Mancina, E.; Jiménez-Alonso, J.J.; Díaz-Ortega, P.; García, F.; Aparicio, A.; López-Lázaro, M. Screening for selective anticancer activity of 65 extracts of plants collected in Western Andalusia. Spain. Plants, 2021, 10(10), 2193.
[http://dx.doi.org/10.3390/plants10102193] [PMID: 34686002]
[http://dx.doi.org/10.3390/plants10102193] [PMID: 34686002]
[71]
Julien, O.; Wells, J.A. Caspases and their substrates. Cell Death Differ., 2017, 24(8), 1380-1389.
[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[http://dx.doi.org/10.1038/cdd.2017.44] [PMID: 28498362]
[72]
Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ., 2015, 22(4), 526-539.
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[http://dx.doi.org/10.1038/cdd.2014.216] [PMID: 25526085]
[73]
Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11), 2748.
[http://dx.doi.org/10.3390/cancers13112748] [PMID: 34206026]
[http://dx.doi.org/10.3390/cancers13112748] [PMID: 34206026]
[74]
Tinivella, A.; Rastelli, G. Investigating the selectivity of allosteric inhibitors for mutant T790M EGFR over wild type using molecular dynamics and binding free energy calculations. ACS Omega, 2018, 3(12), 16556-16562.
[http://dx.doi.org/10.1021/acsomega.8b03256]
[http://dx.doi.org/10.1021/acsomega.8b03256]
[75]
Fan, M.; Hu, L.; Shi, S.; Song, X.; He, H.; Qi, B. Design, synthesis and biological evaluation of EGFR kinase inhibitors that spans the orthosteric and allosteric sites. Bioorg. Med. Chem., 2023, 96, 117534.
[http://dx.doi.org/10.1016/j.bmc.2023.117534] [PMID: 37952262]
[http://dx.doi.org/10.1016/j.bmc.2023.117534] [PMID: 37952262]
[76]
Bhatia, P.; Sharma, V.; Alam, O.; Manaithiya, A.; Alam, P.; Kahksha; Alam, M.T.; Imran, M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur. J. Med. Chem., 2020, 204, 112640.
[http://dx.doi.org/10.1016/j.ejmech.2020.112640] [PMID: 32739648]
[http://dx.doi.org/10.1016/j.ejmech.2020.112640] [PMID: 32739648]
[77]
Tripathi, S.K.; Biswal, B.K. Allosteric mutant-selective fourth-generation EGFR inhibitors as an efficient combination therapeutic in the treatment of non-small cell lung carcinoma. Drug Discov. Today, 2021, 26(6), 1466-1472.
[http://dx.doi.org/10.1016/j.drudis.2021.02.005] [PMID: 33581322]
[http://dx.doi.org/10.1016/j.drudis.2021.02.005] [PMID: 33581322]
[78]
Caporuscio, F.; Tinivella, A.; Restelli, V.; Semrau, M.S.; Pinzi, L.; Storici, P.; Broggini, M.; Rastelli, G. Identification of small-molecule EGFR allosteric inhibitors by high-throughput docking. Future Med. Chem., 2018, 10(13), 1545-1553.
[http://dx.doi.org/10.4155/fmc-2018-0063] [PMID: 29766737]
[http://dx.doi.org/10.4155/fmc-2018-0063] [PMID: 29766737]
[79]
Foschi, F.; Tinivella, A.; Crippa, V.; Pinzi, L.; Mologni, L.; Passarella, D.; Rastelli, G. Structure-activity exploration of a small-molecule allosteric inhibitor of T790M/L858R double mutant EGFR. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 239-245.
[http://dx.doi.org/10.1080/14756366.2022.2145284] [PMID: 36373202]
[http://dx.doi.org/10.1080/14756366.2022.2145284] [PMID: 36373202]
[80]
Miljković, F.; Bajorath, J. Computational analysis of kinase inhibitors identifies promiscuity cliffs across the human kinome. ACS Omega, 2018, 3(12), 17295-17308.
[http://dx.doi.org/10.1021/acsomega.8b02998]
[http://dx.doi.org/10.1021/acsomega.8b02998]
[81]
Al-Rubaye, IM. In silico and in vitro evaluation of novel carbothioamide-based and heterocyclic derivatives of 4-(tert-butyl)-3-methoxybenzoic acid as EGFR tyrosine kinase allosteric site inhibitors. Results Chem., 2024, 7, 101329.
[http://dx.doi.org/10.1016/j.rechem.2024.101329]
[http://dx.doi.org/10.1016/j.rechem.2024.101329]