Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Mini-Review Article

Exploring Iridium's Catalytic Role in Redox Reactions: A Concise Review

In Press, (this is not the final "Version of Record"). Available online 30 April, 2024
Author(s): Sumita Sahgal* and Subhadra Yadav
Published on: 30 April, 2024

DOI: 10.2174/0118779468297622240419105147

Price: $95

Abstract

Transition metals exhibit a remarkable capacity to catalyse redox processes, playing a crucial role in various natural, biological, and chemical transformations. Among all the elements in the periodic table, iridium stands out with the broadest range of oxidation states. With its electronic configuration of 5d76s2, iridium displays a range of oxidation states, fluctuating from —3 in [Ir (CO)3]3- to +9 in [IrO4]2+. The utilization of iridium as a catalyst stems from its capability to adopt these variable oxidation states. Notably, Iridium (III) complexes exhibit significant catalytic activity in both acidic and basic environments, facilitating a diverse array of organic and inorganic chemical transformations. The catalytic mechanism adapts according to the specific conditions under which the catalysts are employed. Iridium's catalytic efficiency is notably enhanced in an acidic environment, as highlighted in the review, compared to its performance in a basic medium. Iridium stands as the sole reported catalyst with the capability to harness sunlight and transform it into chemical energy, offering promising prospects for application in artificial energy systems. The high surface-to-volume ratio of IrNPs contributes to their excellent catalytic performance. As research in Nanocatalysis continues to evolve, iridium remains a key player in shaping the future of sustainable and efficient chemical processes.

[1]
Murahashi, S.-I. 2004, iridium in Organic Synthesis; WILEY-VCH VERLAG GmbH & KGaA: Weinhei, 2004.
[2]
Puttaswamy, S.J.P.; Jagadish, R.V. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium. Trans. Met. Chem., 2007, 32, 9912.
[3]
Shivananda, K.N.; Lakshmi, B.; Jagadeesh, R.V. Puttaswamy; Mahendra, K.N. Mechanistic studies on the Ru(III)-catalyzed oxidation of some aromatic primary diamines by chloramine-T in hydrochloric acid medium: A kinetic approach. Appl. Catal. A Gen., 2007, 326(2), 202-212.
[http://dx.doi.org/10.1016/j.apcata.2007.04.017]
[4]
Tandon, P.K. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium. Z. Phys. Chem., 1984, 265, 609.
[http://dx.doi.org/10.1515/zpch-1984-26584]
[5]
Goel, A. Shakunj; Shivani, Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium. J. Phys. Chem., 1980, 84, 256.
[6]
Tandon, P.K.; Mehrotra, A.; Singh, A.P.; Singh, M.P. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium. Proc. Indian Natl. Sci. Acad., 1983, 59A, 87.
[7]
Manibala, Tandon Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium. Z. Phys. Chem., 1985, 266, 1153.
[http://dx.doi.org/10.1515/zpch-1985-266139]
[8]
Singh, M.P.; Singh, R.M.; Tandon, P.K.; Mehrotra, A.; Thakur, P. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium. J. Indian Chem. Soc., 1988, LXV, 720.
[9]
Tandon, P.K.; Krishna, B. Kinetics and Catalysis; Consultants Bureau, 1985, 26, . (1-4)
[10]
Iridium: Electronic Configuration, Properties, and Applications. Mater. Sci. Eng., 2019, 123, 456-467.
[11]
Smith, J.R.Y. Title: Inorganic Chemistry: Principles and Applications, 3rd ed; Academic Press, 2023.
[12]
Singh, S.B. Iridium chemistry and its catalytic applications: A brief. Green Chem. Technol. Lett., 2016, 2(4), 206-210.
[http://dx.doi.org/10.18510/gctl.2016.247]
[13]
Bruneau, C.; Dixneuf, P.H. Eds.; Ruthenium Catalysts and Fine Chemistry; Springer-Verlag, 2004.
[http://dx.doi.org/10.1007/b10989]
[14]
Tandon, P.K.; Srivastava, M.; Singh, S.B.; Singh, S. Liquid phase and microwave assisted oxidation of some hydrocarbons, aromatic aldehydes, and phenols by cerium(IV) catalyzed by iridium(III) in acidic medium. Synth. Commun., 2008, 38(13), 2125-2137.
[http://dx.doi.org/10.1080/00397910802028796]
[15]
Kravtsov, V.I.; Petrova, G.M. Kinetics of aquation of chloroiridate (III) ions and the IrCl2-6/IrCl3-6 redox potential. Russ. J. Inorg. Chem., 1964, 9, 552.
[16]
Young, L.B.; Trahanovsky, W.S. Detection of radical intermediates in the photo-oxidation of alkanols by ceric ammonium nitrate-CAN. an EPR study. J. Am. Chem. Soc., 1969, 91, 5060.
[17]
Hintz, H.L.; Johnson, D.C. Mechanism of oxidation of cyclic alcohols by cerium (IV). J. Org. Chem., 1967, 32(3), 556-564.
[http://dx.doi.org/10.1021/jo01278a009]
[18]
Mondal, S.K.; Kar, D.; Das, M.; Das, A.K. A comparative kinetic study of iridium(III) catalysis in cerium(IV) oxidation of dioxane in aqueous sulfuric acid and perchloric acid media. Trans. Met. Chem., 1998, 23(5), 593-598.
[http://dx.doi.org/10.1023/A:1006992905510]
[19]
Jadhav, A.G.; Gaikwad, V.V.; Patel, N.T. Kinetics and mechanism of iridium (III) catalysed oxidation of alcohol and glycol by cerium (IV) in aqueous acidic media. Orient. J. Chem., 2010, 26(3), 1183-1185.
[20]
Shimoyama, Y.; Ohgomori, Y.; Kon, Y.; Hong, D. Hydrogen peroxide production from oxygen and formic acid by homogeneous Ir–Ni catalyst. Dalton Trans., 2021, 50(27), 9410-9416.
[http://dx.doi.org/10.1039/D1DT01431E] [PMID: 34096959]
[21]
Singh, A.K.; Chaurasia, N.; Rahmani, S.; Srivastava, J.; Singh, B. Mechanism of ruthenium (III) catalysis of periodate oxidation of aldoses in aqueous alkaline medium. Catal. Lett., 2004, 95(3/4), 135-141.
[http://dx.doi.org/10.1023/B:CATL.0000027286.07404.48]
[22]
Tandon, P.K.; Baboo, R.; Singh, A.K. Gayatri; Purwar, M. Simple one-pot conversion of organic compounds by hydrogen peroxide activated by ruthenium(III) chloride: organic conversions by hydrogen peroxide in the presence of ruthenium(III). Appl. Organomet. Chem., 2005, 19(10), 1079-1082.
[http://dx.doi.org/10.1002/aoc.949]
[23]
Wang, C.; Yang, F.; Feng, L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. Nanoscale Horiz., 2023, 8(9), 1174-1193.
[http://dx.doi.org/10.1039/D3NH00156C] [PMID: 37434582]
[24]
Wu, H.; Su, H.; Schulze, E.J.; Peters, B.B.C.; Nolan, M.D.; Yang, J.; Singh, T.; Ahlquist, M.S.G.; Andersson, P.G. Site- and enantioselective iridium-catalyzed desymmetric mono-hydrogenation of 1,4-dienes. Angew. Chem. Int. Ed., 2021, 60(35), 19428-19434.
[http://dx.doi.org/10.1002/anie.202107267] [PMID: 34137493]
[25]
Das, K.A.; Aparna, R. Studies on kinetics and mechanism of iridium(III) catalysed cerium (IV) oxidation of D-mannitol and D- glucose in aqueous acid media. India. J. Chem., 2002, 41, 2468-2474.
[26]
Tandon, P.K.; Sahgal, S.; Singh, A.K. Gayatri; Purwar, M. Oxidation of ketones by ceric perchlorate catalysed by iridium(III). J. Mol. Catal. Chem., 2005, 232(1-2), 83-88.
[http://dx.doi.org/10.1016/j.molcata.2005.01.031]
[27]
Tandon, P.K.; Sahgal, S. Gayatri; Purwar, M.; Dhusia, M. Oxidation of ketones by cerium(IV) in presence of iridium(III) chloride. J. Mol. Catal. Chem., 2006, 250(1-2), 203-209.
[http://dx.doi.org/10.1016/j.molcata.2005.12.045]
[28]
Praveen, K. Oxidation of cyclic ketones by ceric(IV) in presence of iridium (III). J. Mol. Catal. Chem., 2006, 258, 320-326.
[29]
Goel, A.; Sharma, R. A kinetic and mechanistic study on the oxidation of arginine and lysine by hexacyanoferrate (III) catalysed by iridium (III) in aqueous alkaline medium. J. Chem. Eng. Mater. Sci., 2012, 3(1), 1-6.
[30]
Goel, A. Kinetics and mechanism of iridium (III) catalyzed oxidation of some amino acids by hexacyanoferrate (III) ions in aqueous alkaline medium. Int. J. Chem. Sci., 2008, 6(4), 1891-1899.
[31]
Garg, S.; Rajput, S. A kinetic and mechanistic study of Ir (III) catalyzed oxidation of methionine by HCF (III) in aqueous alkaline medium. Research Square, 2023.
[http://dx.doi.org/10.21203/rs.3.rs-3751886/v1]
[32]
Kobayashi, Y.; Yamada, S.; Nagai, T. New dissolution process of iridium to hydrochloric acid. In: Rare Metal Technology 2019. The Minerals, Metals & Materials Series; Azimi, G.; Kim, H.; Alam, S.; Ouchi, T.; Neelameggham, N.; Baba, A., Eds.; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-05740-4_19]
[33]
Tandon, P. K.; Gayatri; Sahgal, S.; Srivastava, M.; Singh, S. B. Catalysis by Ir(III), Rh(III) and Pd(II) metal ions in the oxidation of organic compounds with H2O2. Appl. Organomet. Chem., 2007, 21(3), 135-138.
[http://dx.doi.org/10.1002/aoc.1169]
[34]
Tandon, P.K.; Singh, A.K.; Sahgal, S.; Kumar, S. Oxidation of cyclic alcohols by cerium(IV) in acidic medium in the presence of iridium(III) chloride. J. Mol. Catal. Chem., 2008, 282(1-2), 136-143.
[http://dx.doi.org/10.1016/j.molcata.2007.12.001]
[35]
Tandon, P.K.; Mehrotra, A.; Srivastava, M.; Singh, S.B.; Singh, S.B. Iridium(III) catalyzed oxidation of iodide ions in aqueous acidic medium. Trans. Met. Chem., 2007, 32(4), 541-547.
[http://dx.doi.org/10.1007/s11243-007-0216-4]
[36]
Devi, S.S.; Krishnamoorthy, P.; Muthukumaran, B. Ruthenium(III) catalysis in perborate oxidation of 5-oxoacids. In: Advances in Physical Chemistry; Hindawi Publishing Corporation, 2014; 2014, pp. 1-14.
[37]
Veerakumar, P.; Ramdass, A.; Rajagopal, S. Ruthenium nanocatalysis on redox reactions. J. Nanosci. Nanotechnol., 2013, 13(7), 4761-4786.
[http://dx.doi.org/10.1166/jnn.2013.7568] [PMID: 23901501]
[38]
Sarmah, P.P.; Dutta, D.K. Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay. Green Chem., 2012, 14(4), 1086-1091.
[http://dx.doi.org/10.1039/c2gc16441h]
[39]
Meti, M.D.; Byadagi, K.S.; Nandibewoor, S.T.; Chimatadar, S.A. Mechanistic studies of uncatalyzed and ruthenium(III)-catalyzed oxidation of the antibiotic drug chloramphenicol by hexacyanoferrate(III) in aqueous alkaline medium: A comparative kinetic study. Chem. Monthl., 2014, 145(10), 1561-1570.
[40]
Anjali, G.; Ranjana, B. Kinetic studies on nanocatalysis by iridium nanoclusters in some oxidation reactions. Int. J. Res. Chem. Environ., 2011, 2(1), 210-217.
[41]
Cui, M.; Zhao, Y.; Wang, C.; Song, Q. The oxidase-like activity of iridium nanoparticles, and their application to colorimetric determination of dissolved oxygen. Mikrochim. Acta, 2017, 184(9), 3113-3119.
[http://dx.doi.org/10.1007/s00604-017-2326-9]
[42]
Goel, A.; Lasyal, R. Iridium nanoparticles with high catalytic activity in degradation of acid red-26: An oxidative approach. Water Sci. Technol., 2016, 74(11), 2551-2559.
[http://dx.doi.org/10.2166/wst.2016.330] [PMID: 27973360]
[43]
Basavegowda, N.; Patra, J.K.; Baek, K.H. Essential oils and mono/bi/tri-metallic nanocomposites as alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms: An overview. Molecules, 2020, 25(5), 1058.
[http://dx.doi.org/10.3390/molecules25051058] [PMID: 32120930]
[44]
Lettenmeier, P.; Majchel, J.; Wang, L.; Saveleva, V.A.; Zafeiratos, S.; Savinova, E.R.; Gallet, J.J.; Bournel, F.; Gago, A.S.; Friedrich, K.A. Highly active nano-sized iridium catalysts: synthesis and operando spectroscopy in a proton exchange membrane electrolyzer. Chem. Sci., 2018, 9(14), 3570-3579.
[http://dx.doi.org/10.1039/C8SC00555A] [PMID: 29780489]
[45]
Pakdehi, S.; Shirvani, F.; Zolfaghar, R. A thermodynamic study on catalytic decomposition of hydrazine in a space thruster. Arch. Thermodyn., 2019, 40(4), 151-166.
[46]
Motta, D.; Barlocco, I.; Bellomi, S.; Villa, A.; Dimitratos, N. Hydrous hydrazine decomposition for hydrogen production using of Ir/CeO2: Effect of reaction parameters on the activity. Nanomaterials, 2021, 11(5), 1340.
[http://dx.doi.org/10.3390/nano11051340] [PMID: 34069534]
[47]
Chen, Y.; Qiao, Q.Y.; Cao, J.Z.; Li, H.X.; Bian, Z.F. Mechanism-enabled population balance modeling of particle formation en route to particle average size and size distribution understanding and control. Joule, 2021, 5(12), 3097-3115.
[http://dx.doi.org/10.1016/j.joule.2021.11.002]
[48]
Hayek, K.; Goller, H.; Penner, S.; Rupprechter, G.; Zimmermann, C. Regular alumina-supported nanoparticles of iridium, rhodium and platinum under hydrogen reduction: Structure, morphology and activity in the neopentane conversion. Catal. Lett., 2004, 92(1/2), 1-9.
[http://dx.doi.org/10.1023/B:CATL.0000011081.32980.e0]
[49]
Martínez-Prieto, L.M.; Cano, I.; van Leeuwen, P.W.N.M. Kinetics of iridium nanoparticles formation in ionic liquids and olefin hydrogenation. J. Nanopart. Res., 2015, 17(8), 1-10.
[50]
Park, I.S.; Kwon, M.S.; Kang, K.Y.; Lee, J.S.; Park, J. Rhodium and iridium nanoparticles entrapped in aluminum oxyhydroxide nanofibers: Catalysts for hydrogenations of arenes and ketones at room temperature with hydrogen balloon. Adv. Synth. Catal., 2007, 349(11-12), 2039-2047.
[http://dx.doi.org/10.1002/adsc.200600651]
[51]
Jiang, H.; Yang, C.; Li, C.; Fu, H.; Chen, H.; Li, R.; Li, X. Heterogeneous enantioselective hydrogenation of aromatic ketones catalyzed by cinchona- and phosphine-modified iridium catalysts. Angew. Chem. Int. Ed., 2008, 47(48), 9240-9244.
[http://dx.doi.org/10.1002/anie.200801809] [PMID: 18688898]
[52]
Jiang, H.; Sun, B.; Zheng, X.; Chen, H. Heterogeneous selective hydrogenation of trans-4-phenyl-3-butene-2-one to allylic alcohol over modified Ir/SiO2 catalyst. Appl. Catal. A Gen., 2012, 421-422, 86-90.
[http://dx.doi.org/10.1016/j.apcata.2012.02.002]
[53]
Yang, C.; Jiang, H.; Feng, J.; Fu, H.; Li, R.; Chen, H.; Li, X. Asymmetric hydrogenation of acetophenone catalyzed by cinchonidine stabilized Ir/SiO2. J. Mol. Catal. Chem., 2009, 300(1-2), 98-102.
[http://dx.doi.org/10.1016/j.molcata.2008.10.041]
[54]
López-De Jesús, Y.M.; Vicente, A.; Lafaye, G.; Marécot, P.; Williams, C.T. Synthesis and characterization of dendrimer-derived supported iridium catalysts. J. Phys. Chem. C, 2008, 112(36), 13837-13845.
[http://dx.doi.org/10.1021/jp800152f]
[55]
Fan, G.Y.; Zhang, L.; Fu, H.Y.; Yuan, M.L.; Li, R.X.; Chen, H.; Li, X.J. Hydrous zirconia supported iridium nanoparticles: An excellent catalyst for the hydrogenation of haloaromatic nitro compounds. Catal. Commun., 2010, 11(5), 451-455.
[http://dx.doi.org/10.1016/j.catcom.2009.11.021]
[56]
Rueping, M.; Koenigs, R.M.; Borrmann, R.; Zoller, J.; Weirich, T.E.; Mayer, J. Size-selective, stabilizer-free, hydrogenolytic synthesis of iridium nanoparticles supported on carbon nanotubes. Chem. Mater., 2011, 23(8), 2008-2010.
[http://dx.doi.org/10.1021/cm1032578]
[57]
Colindres, S.C.; García, J.R.V.; Antonio, J.A.T.; Chavez, C.A. Preparation of platinum-iridium nanoparticles on titania nanotubes by MOCVD and their catalytic evaluation. J. Alloys Compd., 2009, 483(1-2), 406-409.
[http://dx.doi.org/10.1016/j.jallcom.2008.08.097]
[58]
Prieto, M.L.M.; Cano, I.; van Leeuwen, P.W.N.M. Iridium nanoparticles for hydrogenation reactions. In: Iridium Catalysts for Organic Reactions. Topics in Organometallic Chemistry; Oro, L.A.; Claver, C., Eds.; Springer: Cham, 2020; Vol. 69, .
[59]
Locatelli, F.; Candy, J.P.; Didillon, B.; Niccolai, G.P.; Uzio, D.; Basset, J.M. Hydrogenolysis of cyclohexane over Ir/SiO(2) catalyst: a mechanistic study of carbon--carbon bond cleavage on metallic surfaces. J. Am. Chem. Soc., 2001, 123(8), 1658-1663.
[http://dx.doi.org/10.1021/ja000290j] [PMID: 11456765]
[60]
Gattorno, R.G.; Vázquez, A.L.O.; Franco, A.X.; Domínguez, C.J.L.; Ibarra, V.R. Cyclohexane ring opening on alumina-supported Rh and Ir nanoparticles. Energy Fuels, 2007, 21(2), 1122-1126.
[http://dx.doi.org/10.1021/ef060084i]
[61]
Cho, S.J.; Lee, J.; Lee, Y.S.; Kim, D.P. Characterization of iridium catalyst for decomposition of hydrazine hydrate for hydrogen generation. Catal. Lett., 2006, 109(3-4), 181-186.
[http://dx.doi.org/10.1007/s10562-006-0081-3]
[62]
Guidotti, M.; Santo, V.D.; Gallo, A.; Gianotti, E.; Peli, G.; Psaro, R.; Sordelli, L. Catalytic dehydrogenation of propane over cluster-derived Ir–Sn/SiO2 catalysts. Catal. Lett., 2006, 112(1-2), 89-95.
[http://dx.doi.org/10.1007/s10562-006-0169-9]
[63]
Nassreddine, S.; Massin, L.; Aouine, M.; Geantet, C.; Piccolo, L. Thiotolerant Ir/SiO2–Al2O3 bifunctional catalysts: Effect of metal–acid site balance on tetralin hydroconversion. J. Catal., 2011, 278(2), 253-265.
[http://dx.doi.org/10.1016/j.jcat.2010.12.008]
[64]
Nassreddine, S.; Casu, S.; Zotin, J.L.; Geantet, C.; Piccolo, L. Thiotolerant Ir/SiO2-Al2O3 bifunctional catalysts: Effect of support acidity on tetralin hydroconversion. Catal. Sci. Technol., 2012, 2011(1), 408-412.
[65]
Argo, A.M.; Goellner, J.F.; Phillips, B.L.; Panjabi, G.A.; Gates, B.C. Reactivity of site-isolated metal clusters: Propylidyne on gamma-Al2O3-supported Ir4. J. Am. Chem. Soc., 2001, 123(10), 2275-2283.
[http://dx.doi.org/10.1021/ja002818q] [PMID: 11456875]
[66]
Argo, A.M.; Odzak, J.F.; Lai, F.S.; Gates, B.C. Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature, 2002, 415(6872), 623-626.
[http://dx.doi.org/10.1038/415623a] [PMID: 11832941]
[67]
Argo, A.M.; Gates, B.C. Propene hydrogenation catalyzed by -Al2O3- supported Ir4 clusters: Inhibition by dehydrogenated propene derivatives on Ir4. Langmuir, 2002, 18(6), 2152-2157.
[http://dx.doi.org/10.1021/la011193m]
[68]
Schick, L.; Sanchis, R.; Alfaro, G.V. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone. Chem. Eng. J., 2019, 366, 100-111.
[http://dx.doi.org/10.1016/j.cej.2019.02.087]
[69]
Yang, B.; Geng, P.; Chen, G.H. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone. Separ. Purif. Tech., 2015, 156, 931-941.
[http://dx.doi.org/10.1016/j.seppur.2015.10.040]
[70]
Jacinto, M.J.; Silva, F.P.; Kiyohara, P.K.; Landers, R.; Rossi, L.M. Catalyst recovery and recycling facilitated by magnetic separation: Iridium and other metal nanoparticles. ChemCatChem, 2012, 4(5), 698-703.
[http://dx.doi.org/10.1002/cctc.201100415]
[71]
Nikolaraki, E.; Goula, G.; Panagiotopoulou, P.; Taylor, M.J.; Kousi, K.; Kyriakou, G.; Kondarides, D.I.; Lambert, R.M.; Yentekakis, I.V. Support induced effects on the ir nanoparticles activity, selectivity and stability performance under CO2 reforming of methane. Nanomaterials, 2021, 11(11), 2880.
[http://dx.doi.org/10.3390/nano11112880] [PMID: 34835645]
[72]
Drosou, C.; Nikolaraki, E.; Georgakopoulou, Th.; Fanourgiakis, S.; Zaspalis, V.T.; Yentekakis, I.V. Methane combustion at lean conditions over pristine and Ir-loaded La1-xSrxMnO3 perovskite catalysts: Activity, hysteresis, and time-on-stream and thermal aging stabilities. Nanomaterials, 2023, 13(15), 2271.
[http://dx.doi.org/10.3390/nano13152271] [PMID: 37570587]
[73]
Scarpelli, F.; Godbert, N.; Crispini, A.; Aiello, I. Nanostructured iridium oxide: State of the art. Inorganics, 2022, 10(8), 115.
[http://dx.doi.org/10.3390/inorganics10080115]
[74]
Yamamoto, H.; Maity, P.; Takahata, R.; Yamazoe, S.; Koyasu, K.; Kurashige, W.; Negishi, Y.; Tsukuda, T. Monodisperse iridium clusters protected by phenylacetylene: Implication for size-dependent evolution of binding sites. J. Phys. Chem. C, 2017, 121(20), 10936-10941.
[http://dx.doi.org/10.1021/acs.jpcc.6b12121]
[75]
Gao, X.; Wu, H.; Su, C.; Lu, C.; Dai, Y.; Zhao, S.; Hu, X.; Zhao, F.; Zhang, W.; Parkin, I.P.; Carmalt, C.J.; He, G. Recent advances in carbon-based nanomaterials for multivalent-ion hybrid capacitors: A review. Energy Environ. Sci., 2023, 16(4), 1364-1383.
[http://dx.doi.org/10.1039/D2EE03719J]
[76]
Schiavone, L.M.; Smith, D.W.C.; Beni, G.; Shay, J.L. Electrochromic iridium oxide films prepared by reactive sputtering. Appl. Phys. Lett., 1979, 35(10), 823-825.
[http://dx.doi.org/10.1063/1.90950]
[77]
Li, L.; Jiang, C.; Li, L. Hierarchical platinum–iridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity. Biodes. Manuf., 2022, 5(1), 163-173.
[http://dx.doi.org/10.1007/s42242-021-00160-5]
[78]
Zeng, Q.; Yu, S.; Fan, Z.; Huang, Y.; Song, B.; Zhou, T. Nanocone-array-based platinum-iridium oxide neural microelectrodes: Structure, electrochemistry, durability and biocompatibility study. Nanomaterials, 2022, 12(19), 3445.
[http://dx.doi.org/10.3390/nano12193445] [PMID: 36234573]
[79]
Wang, R.; Li, Y. Electrodes for all-vanadium redox flow batteries. In: Flow Cells for Electrochemical Energy Systems. Green Energy and Technology; An, L.; Chen, R.; Li, Y., Eds.; Springer: Cham, 2023.
[http://dx.doi.org/10.1007/978-3-031-37271-1_6]
[80]
Wu, G.; Li, X.; Zhang, Z.; Dong, P.; Xu, M.; Peng, H.; Zeng, X.; Zhang, Y.; Liao, S. Design of ultralong-life Li–CO2 batteries with IrO 2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(7), 3763-3770.
[http://dx.doi.org/10.1039/C9TA11028C]
[81]
Akshaya, K.B.; Varghese, A.; Sudhakar, Y.N.; George, L. Electrocatalytic oxidation of morin on electrodeposited Ir-PEDOT nanograins. Food Chem., 2019, 270, 78-85.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.074] [PMID: 30174094]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy