Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing

Author(s): Seyedeh Mohaddeseh Mousavi, Leila Etemad, Davood Yari, Maryam Hashemi* and Zahra Salmasi*

Volume 24, Issue 20, 2024

Published on: 29 April, 2024

Page: [1856 - 1881] Pages: 26

DOI: 10.2174/0113895575299255240422055203

Price: $65

Abstract

Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties.

However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin’s effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.

« Previous
[1]
Rusanova, I. Martínez-Ruiz, L.; Florido, J.; Rodríguez-Santana, C.; Guerra-Librero, A.; Acuña-Castroviejo, D.; Escames, G. Protective effects of melatonin on the skin: Future perspectives. Int. J. Mol. Sci., 2019, 20(19), 4948.
[http://dx.doi.org/10.3390/ijms20194948] [PMID: 31597233]
[2]
Okur, M.E.; Karantas, I.D.; Şenyiğit, Z.; Üstündağ Okur, N.; Siafaka, P.I. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J. Pharm. Sci., 2020, 15(6), 661-684.
[http://dx.doi.org/10.1016/j.ajps.2019.11.008] [PMID: 33363624]
[3]
Guo, S.; DiPietro, L.A. Factors affecting wound healing. J. Dent. Res., 2010, 89(3), 219-229.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[4]
Slominski, A.T.; Slominski, R.M.; Raman, C.; Chen, J.Y.; Athar, M.; Elmets, C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. Cell Physiol., 2022, 323(6), C1757-C1776.
[http://dx.doi.org/10.1152/ajpcell.00147.2022] [PMID: 36317800]
[5]
Ramot, Y. Böhm, M.; Paus, R. Translational neuroendocrinology of human skin: Concepts and perspectives. Trends Mol. Med., 2021, 27(1), 60-74.
[http://dx.doi.org/10.1016/j.molmed.2020.09.002] [PMID: 32981840]
[6]
Fischer, T. Hänggi, G.; Innocenti, M.; Elsner, P.; Trüeb, R.M. Topical melatonin for treatment of androgenetic alopecia. Int. J. Trichology, 2012, 4(4), 236-245.
[http://dx.doi.org/10.4103/0974-7753.111199] [PMID: 23766606]
[7]
Marseglia, L.; D’Angelo, G.; Manti, S.; Salpietro, C.; Arrigo, T.; Barberi, I.; Reiter, R.; Gitto, E. Melatonin and atopy: Role in atopic dermatitis and asthma. Int. J. Mol. Sci., 2014, 15(8), 13482-13493.
[http://dx.doi.org/10.3390/ijms150813482] [PMID: 25093714]
[8]
Tsiskarishvili, N.I.; Katsitadze, A.; Tsiskarishvili, N.V.; Tsiskarishvil, Ts.; Chitanava, L. Melatonin concentration in the blood of vitiligo patients with stress in anamnesis. Georgian Med. News, 2016, (254), 47-53.
[PMID: 27348167]
[9]
Andersen, L.P.H.; Werner, M.U.; Rosenkilde, M.M. Harpsøe, N.G.; Fuglsang, H.; Rosenberg, J.; Gögenur, I. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol. Toxicol., 2016, 17(1), 8.
[http://dx.doi.org/10.1186/s40360-016-0052-2] [PMID: 26893170]
[10]
Gooneratne, N.S.; Edwards, A.Y.Z.; Zhou, C.; Cuellar, N.; Grandner, M.A.; Barrett, J.S. Melatonin pharmacokinetics following two different oral surge‐sustained release doses in older adults. J. Pineal Res., 2012, 52(4), 437-445.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00958.x] [PMID: 22348451]
[11]
Hashemi, M.; Haghgoo, Z.; Yazdian-Robati, R.; Shahgordi, S.; Salmasi, Z.; Abnous, K. Improved anticancer efficiency of Mitoxantrone by Curcumin loaded PLGA nanoparticles targeted with AS1411 aptamer. Nanomed. J., 2021, 8(1)
[12]
Hashemi, M.; Abnous, K.; Balarastaghi, S.; Hedayati, N.; Salmasi, Z.; Yazdian-Robati, R. Mitoxantrone-loaded PLGA nanoparticles for increased sensitivity of glioblastoma cancer cell to TRAIL-induced apoptosis. J. Pharm. Innov., 2022, 17(1), 207-214.
[http://dx.doi.org/10.1007/s12247-021-09551-8]
[13]
Chuffa, L.G.A.; Seiva, F.R.F.; Novais, A.A. Simão, V.A.; Martín Giménez, V.M.; Manucha, W.; Zuccari, D.A.P.C.; Reiter, R.J. Melatonin-loaded nanocarriers: New horizons for therapeutic applications. Molecules, 2021, 26(12), 3562.
[http://dx.doi.org/10.3390/molecules26123562] [PMID: 34200947]
[14]
Iranshahy, M.; Etemad, L.; Shakeri, A.; Badibostan, H.; Karimi, G. Protective activity of melatonin against mycotoxins-induced toxicity: A review. Toxicol. Environ. Chem., 2019, 101(9-10), 435-450.
[http://dx.doi.org/10.1080/02772248.2020.1731751]
[15]
Kopustinskiene, D.M.; Bernatoniene, J. Molecular mechanisms of melatonin-mediated cell protection and signaling in health and disease. Pharmaceutics, 2021, 13(2), 129.
[http://dx.doi.org/10.3390/pharmaceutics13020129] [PMID: 33498316]
[16]
Ahmad, S.B.; Ali, A.; Bilal, M.; Rashid, S.M.; Wani, A.B.; Bhat, R.R.; Rehman, M.U. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders. Cell. Mol. Neurobiol., 2023, 43(6), 2437-2458.
[http://dx.doi.org/10.1007/s10571-023-01324-w] [PMID: 36752886]
[17]
Soriano, J.L.; Calpena, A.C. Rincón, M.; Pérez, N.; Halbaut, L.; Rodríguez-Lagunas, M.J.; Clares, B. Melatonin nanogel promotes skin healing response in burn wounds of rats. Nanomedicine (Lond.), 2020, 15(22), 2133-2147.
[PMID: 32885718]
[18]
Cho, J.H.; Bhutani, S.; Kim, C.H.; Irwin, M.R. Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials. Brain Behav. Immun., 2021, 93, 245-253.
[http://dx.doi.org/10.1016/j.bbi.2021.01.034] [PMID: 33581247]
[19]
Mannino, G.; Pernici, C.; Serio, G.; Gentile, C.; Bertea, C.M. Melatonin and phytomelatonin: Chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals—An overview. Int. J. Mol. Sci., 2021, 22(18), 9996.
[http://dx.doi.org/10.3390/ijms22189996] [PMID: 34576159]
[20]
Favero, G.; Franceschetti, L.; Bonomini, F.; Rodella, L.F.; Rezzani, R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int. J. Endocrinol., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/1835195] [PMID: 29104591]
[21]
Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab., 2008, 19(1), 17-24.
[http://dx.doi.org/10.1016/j.tem.2007.10.007] [PMID: 18155917]
[22]
Kim, T.K.; Lin, Z.; Tidwell, W.J.; Li, W.; Slominski, A.T. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro. Mol. Cell. Endocrinol., 2015, 404, 1-8.
[http://dx.doi.org/10.1016/j.mce.2014.07.024] [PMID: 25168391]
[23]
Arendt, J.; Aulinas, A. Physiology of the Pineal Gland and Melatonin. Endotext; Feingold , K.R.; Anawalt, B.; Blackman, M.R.; Boyce, A.; Chrousos, G.; Corpas, E., Eds.; MDText.com, Inc.: South Dartmouth (MA),, 2000.
[24]
Reiter, R.J.; Tan, D.X.; Galano, A. Melatonin: Exceeding expectations. Physiology (Bethesda), 2014, 29(5), 325-333.
[http://dx.doi.org/10.1152/physiol.00011.2014] [PMID: 25180262]
[25]
Pandiperumal, S.; Trakht, I.; Srinivasan, V.; Spence, D.; Maestroni, G.; Zisapel, N.; Cardinali, D. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog. Neurobiol., 2008, 85(3), 335-353.
[http://dx.doi.org/10.1016/j.pneurobio.2008.04.001] [PMID: 18571301]
[26]
Slominski, A.T.; Hardeland, R.; Zmijewski, M.A.; Slominski, R.M.; Reiter, R.J.; Paus, R. Melatonin: A cutaneous perspective on its production, metabolism, and functions. J. Invest. Dermatol., 2018, 138(3), 490-499.
[http://dx.doi.org/10.1016/j.jid.2017.10.025] [PMID: 29428440]
[27]
Bekyarova, G.; Atanasova, M.; Tzaneva, M.; Dimitrova, A. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury. Journal of Mind and Medical Sciences, 2017, 4(1), 59-66.
[http://dx.doi.org/10.22543/7674.41.P5966]
[28]
Zhang, H.M.; Zhang, Y. Melatonin: A well‐documented antioxidant with conditional pro‐oxidant actions. J. Pineal Res., 2014, 57(2), 131-146.
[http://dx.doi.org/10.1111/jpi.12162] [PMID: 25060102]
[29]
Tan, D.X.; Manchester, L.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules, 2015, 20(10), 18886-18906.
[http://dx.doi.org/10.3390/molecules201018886] [PMID: 26501252]
[30]
Back, K. Melatonin metabolism, signaling and possible roles in plants. Plant J., 2021, 105(2), 376-391.
[http://dx.doi.org/10.1111/tpj.14915] [PMID: 32645752]
[31]
Ragothaman, M.; Kannan Villalan, A.; Dhanasekaran, A.; Palanisamy, T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater. Sci. Eng. C, 2021.128112328
[http://dx.doi.org/10.1016/j.msec.2021.112328] [PMID: 34474879]
[32]
Ozler, M.; Simsek, K.; Ozkan, C.; Akgul, E.O.; Topal, T.; Oter, S.; Korkmaz, A. Comparison of the effect of topical and systemic melatonin administration on delayed wound healing in rats that underwent pinealectomy. Scand. J. Clin. Lab. Invest., 2010, 70(6), 447-452.
[http://dx.doi.org/10.3109/00365513.2010.506926] [PMID: 20704520]
[33]
Janjetovic, Z.; Jarrett, S.G.; Lee, E.F.; Duprey, C.; Reiter, R.J.; Slominski, A.T. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep., 2017, 7(1), 1274.
[http://dx.doi.org/10.1038/s41598-017-01305-2] [PMID: 28455491]
[34]
de Almeida Chuffa, L.G.; Fioruci, B.A.; Seiva, F.R.F. Melatonin and their protective role on oxidative cell damage: Interplay between oxidative stress and tumorigenesis. In: New Developments in Melatonin Research; Nova Publishers: Spain, 2013; pp. 121-138.
[35]
Laothong, U.; Pinlaor, P.; Hiraku, Y.; Boonsiri, P.; Prakobwong, S.; Khoontawad, J.; Pinlaor, S. Protective effect of melatonin against Opisthorchis viverrini-induced oxidative and nitrosative DNA damage and liver injury in hamsters. J. Pineal Res., 2010, 49(3), 271-282.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00792.x] [PMID: 20626588]
[36]
Majidinia, M.; Reiter, R.J.; Shakouri, S.K.; Mohebbi, I.; Rastegar, M.; Kaviani, M.; Darband, S.G.; Jahanban-Esfahlan, R.; Nabavi, S.M.; Yousefi, B. The multiple functions of melatonin in regenerative medicine. Ageing Res. Rev., 2018, 45, 33-52.
[http://dx.doi.org/10.1016/j.arr.2018.04.003] [PMID: 29630951]
[37]
Maldonado, M.D.; Murillo-Cabezas, F.; Calvo, J.R.; Lardone, P.J.; Tan, D.X.; Guerrero, J.M.; Reiter, R.J. Melatonin as pharmacologic support in burn patients: A proposed solution to thermal injury–related lymphocytopenia and oxidative damage. Crit. Care Med., 2007, 35(4), 1177-1185.
[http://dx.doi.org/10.1097/01.CCM.0000259380.52437.E9] [PMID: 17312564]
[38]
Bekyarova, G.; Tzaneva, M. Melatonin ameliorates burn-induced liver injury by modulation of Nrf2 and Nf-kB signaling pathways. SOJ Immunology, 2015, 3(2), 1-8.
[http://dx.doi.org/10.15226/soji/3/2/00128]
[39]
Bekyarova, G.; Tancheva, S.; Hristova, M. The effects of melatonin on burn-induced inflammatory responses and coagulation disorders in rats. Methods Find. Exp. Clin. Pharmacol., 2010, 32(5), 299-303.
[http://dx.doi.org/10.1358/mf.2010.32.5.1437717] [PMID: 20664819]
[40]
Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis., 2019, 10(4), 317.
[http://dx.doi.org/10.1038/s41419-019-1556-7] [PMID: 30962427]
[41]
Hristova, M.; Bekyarova, G.; Atanasova, M.; Tzaneva, M. Melatonin attenuates oxidative stress and modulates inflammatory response after experimental burn trauma. Journal of Mind and Medical Sciences, 2018, 5(1), 93-100.
[http://dx.doi.org/10.22543/7674.51.P93100]
[42]
Annesley, S.J.; Fisher, P.R. Mitochondria in health and disease; MDPI, 2019, p. 680.
[43]
Venegas, C. García, J.A.; Escames, G.; Ortiz, F.; López, A.; Doerrier, C.; García-Corzo, L.; López, L.C.; Reiter, R.J.; Acuña-Castroviejo, D. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J. Pineal Res., 2012, 52(2), 217-227.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00931.x] [PMID: 21884551]
[44]
Yoon, Y.M.; Kim, H.J.; Lee, J.H.; Lee, S.H. Melatonin enhances mitophagy by upregulating expression of heat shock 70 kDa Protein 1L in human mesenchymal stem cells under oxidative stress. Int. J. Mol. Sci., 2019, 20(18), 4545.
[http://dx.doi.org/10.3390/ijms20184545] [PMID: 31540288]
[45]
Reiter, R.; Sharma, R.; Rosales-Corral, S.; Manucha, W.; Chuffa, L.G.A.; Zuccari, D.A.P.C. Melatonin and pathological cell interactions: Mitochondrial glucose processing in cancer cells. Int. J. Mol. Sci., 2021, 22(22), 12494.
[http://dx.doi.org/10.3390/ijms222212494] [PMID: 34830375]
[46]
Bai, X.Z.; He, T.; Gao, J.X.; Liu, Y.; Liu, J.Q.; Han, S.C.; Li, Y.; Shi, J.H.; Han, J.T.; Tao, K.; Xie, S.T.; Wang, H.T.; Hu, D.H. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1. Sci. Rep., 2016, 6(1), 32199.
[http://dx.doi.org/10.1038/srep32199] [PMID: 27599451]
[47]
Abbaszadeh, A.; Haddadi, G.H.; Haddadi, Z. Melatonin role in ameliorating radiation-induced skin damage: From theory to practice (a review of literature). J. Biomed. Phys. Eng., 2017, 7(2), 127-136.
[PMID: 28580334]
[48]
Semak, I.; Naumova, M.; Korik, E.; Terekhovich, V.; Wortsman, J.; Slominski, A. A novel metabolic pathway of melatonin: Oxidation by cytochrome C. Biochemistry, 2005, 44(26), 9300-9307.
[http://dx.doi.org/10.1021/bi050202d] [PMID: 15981996]
[49]
Jiang, Y.; Shen, M.; Chen, Y.; Wei, Y.; Tao, J.; Liu, H. Melatonin represses mitophagy to protect mouse granulosa cells from oxidative damage. Biomolecules, 2021, 11(7), 968.
[http://dx.doi.org/10.3390/biom11070968] [PMID: 34209255]
[50]
Lee, J.H.; Yoon, Y.M.; Song, K.H.; Noh, H.; Lee, S.H. Melatonin suppresses senescence‐derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L–mitophagy pathway. Aging Cell, 2020, 19(3)e13111
[http://dx.doi.org/10.1111/acel.13111] [PMID: 31965731]
[51]
Waseem, M.; Tabassum, H.; Parvez, S. Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced KATP channel inhibition in isolated brain mitochondria. Mitochondrion, 2016, 31, 1-8.
[http://dx.doi.org/10.1016/j.mito.2016.08.005] [PMID: 27535111]
[52]
Fang, Y.; Zhao, C.; Xiang, H.; Zhao, X.; Zhong, R. Melatonin inhibits formation of mitochondrial permeability transition pores and improves oxidative phosphorylation of frozen-thawed ram sperm. Front. Endocrinol. (Lausanne), 2020, 10, 896.
[http://dx.doi.org/10.3389/fendo.2019.00896] [PMID: 31969863]
[53]
Fischer, T.W.; Slominski, A.; Zmijewski, M.A.; Reiter, R.J.; Paus, R. Melatonin as a major skin protectant: From free radical scavenging to DNA damage repair. Exp. Dermatol., 2008, 17(9), 713-730.
[http://dx.doi.org/10.1111/j.1600-0625.2008.00767.x] [PMID: 18643846]
[54]
Delavary, B.M.; van der Veer, W.M.; van Egmond, M.; Niessen, F.B.; Beelen, R.H.J. Macrophages in skin injury and repair. Immunobiology, 2011, 216(7), 753-762.
[http://dx.doi.org/10.1016/j.imbio.2011.01.001] [PMID: 21281986]
[55]
Mofazzal Jahromi, M.A.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Sahandi Zangabad, K.; Ghamarypour, A.; Aref, A.R.; Karimi, M.; Hamblin, M.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev., 2018, 123, 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[56]
Drobnik, J. Wound healing and the effect of pineal gland and melatonin. J. Exp. Integr. Med., 2012, 2(1), 3.
[http://dx.doi.org/10.5455/jeim.040112.ir.009]
[57]
Mirrezaei, N.; Yazdian-Robati, R.; Oroojalian, F.; Sahebkar, A.; Hashemi, M. Recent developments in nano-drug delivery systems loaded by phytochemicals for wound healing. Mini Rev. Med. Chem., 2020, 20(18), 1867-1878.
[http://dx.doi.org/10.2174/1389557520666200807133022] [PMID: 32767938]
[58]
Romić, M.D.; Sušac, A.; Lovrić, J.; Cetina-Čižmek, B.; Filipović-Grčić, J.; Hafner, A. Evaluation of stability and in vitro wound healing potential of melatonin loaded (lipid enriched) chitosan based microspheres. Acta Pharm., 2019, 69(4), 635-648.
[http://dx.doi.org/10.2478/acph-2019-0049] [PMID: 31639097]
[59]
De Luca, I.; Pedram, P.; Moeini, A.; Cerruti, P.; Peluso, G.; Di Salle, A.; Germann, N. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl. Sci. (Basel), 2021, 11(4), 1713.
[http://dx.doi.org/10.3390/app11041713]
[60]
Vorotelyak, E.A.; Malchenko, L.A.; Rogovaya, O.S.; Lazarev, D.S.; Butorina, N.N.; Brodsky, V.Y. Melatonin stimulates epithelium migration in wound models in vitro and in vivo. Bull. Exp. Biol. Med., 2019, 168(2), 242-246.
[http://dx.doi.org/10.1007/s10517-019-04683-x] [PMID: 31776954]
[61]
Soybir, G.; Topuzlu, C.; Odabaş, O.; Dolay, K.; Bilir, A.; Köksoy, F. The effects of melatonin on angiogenesis and wound healing. Surg. Today, 2003, 33(12), 896-901.
[http://dx.doi.org/10.1007/s00595-003-2621-3] [PMID: 14669079]
[62]
Şener, A. ÇEVİK, Ö; DOĞAN, Ö.; ALTINDİŞ, N.G.; Aksoy, H.; Okuyan, B. The effects of topical melatonin on oxidative stress, apoptosis signals, and p53 protein expression during cutaneous wound healing. Turk. J. Biol., 2015, 39(6), 888-895.
[63]
Pugazhenthi, K.; Kapoor, M.; Clarkson, A.N.; Hall, I.; Appleton, I. Melatonin accelerates the process of wound repair in full‐thickness incisional wounds. J. Pineal Res., 2008, 44(4), 387-396.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00541.x] [PMID: 18205728]
[64]
Uslu, S.; Oktem, G.; Uysal, A.; Soner, B.C.; Arbak, S.; Ince, U. Stem cell and extracellular matrix‐related molecules increase following melatonin treatment in the skin of postmenopausal rats. Cell Biol. Int., 2014, 38(8), 924-932.
[http://dx.doi.org/10.1002/cbin.10286] [PMID: 24740758]
[65]
Futagami, A.; Ishizaki, M.; Fukuda, Y.; Kawana, S.; Yamanaka, N. Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Lab. Invest., 2002, 82(11), 1503-1513.
[http://dx.doi.org/10.1097/01.LAB.0000035024.75914.39] [PMID: 12429810]
[66]
Sumsuzzman, D.M.; Choi, J.; Khan, Z.A.; Hong, Y. Protective effects of melatonin against severe burn-induced distant organ injury: A systematic review and meta-analysis of experimental studies. Antioxidants, 2020, 9(12), 1196.
[http://dx.doi.org/10.3390/antiox9121196] [PMID: 33261180]
[67]
Bekyarova, G.; Tzaneva, M.; Hristova, M. Melatonin protects against burn-induced hepatic oxidative injury by inducing HO-1 via the Nrf2 pathway. Vet. Med. (Praha), 2015, 60(11), 621-628.
[http://dx.doi.org/10.17221/8530-VETMED]
[68]
Başak, P.Y.; Ağalar, F.; Gültekin, F.; Eroğlu, E.; Altuntaş, I.; Ağalar, C. The effect of thermal injury and melatonin on incisional wound healing. Ulus. Travma Acil Cerrahi Derg., 2003, 9(2), 96-101.
[PMID: 12836102]
[69]
Borhani, M.; Dadpour, S.; Haghighizadeh, A.; Etemad, L.; Soheili, V.; Memar, B.; Vafaee, F.; Rajabi, O. Crosslinked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles as burn wound dressing. Pharmaceutical Development and Technology, 2023. (just-accepted), 1-21.
[http://dx.doi.org/10.1080/10837450.2023.2278613]
[70]
Romić, M.D.; Klarić, M.Š.; Lovrić, J.; Pepić, I.; Cetina-Čižmek, B.; Filipović-Grčić, J.; Hafner, A. Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: An innovative antimicrobial wound dressing. Eur. J. Pharm. Biopharm., 2016, 107, 67-79.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.013] [PMID: 27329001]
[71]
Şener, G.; Şehirli, A.Ö.; Satiroğlu, H.; Keyer-Uysal, M.; Yeğen, B.Ç. Melatonin improves oxidative organ damage in a rat model of thermal injury. Burns, 2002, 28(5), 419-425.
[http://dx.doi.org/10.1016/S0305-4179(02)00053-0] [PMID: 12163279]
[72]
Sahib, A.S.; Al-Jawad, F.H.; Alkaisy, A.A. Effect of antioxidants on the incidence of wound infection in burn patients. Ann. Burns Fire Disasters, 2010, 23(4), 199-205.
[PMID: 21991225]
[73]
Bekyarova, G.; Hristova, M.; Tzaneva, M.; Kotzev, A. Hepatoprotective effect of melatonin via activation of Nrf2 and anti-apoptotic proteins in burn rats. Oxid. Antioxid. Med. Sci., 2018, 8(1), 11-20.
[http://dx.doi.org/10.5455/oams.20180925083907]
[74]
G, B.; B, G.; D, I.; T, Y. Effect of melatonin on burn-induced gastric mucosal injury in rats. Burns, 2009, 35(6), 863-868.
[http://dx.doi.org/10.1016/j.burns.2008.09.009] [PMID: 19477599]
[75]
Wu, Z.S.; Wu, S.H.; Lee, S.S.; Lin, C.H.; Chang, C.H.; Lo, J.J.; Chai, C.Y.; Wu, C.S.; Huang, S.H. Dose-dependent effect of hyperbaric oxygen treatment on burn-induced neuropathic pain in rats. Int. J. Mol. Sci., 2019, 20(8), 1951.
[http://dx.doi.org/10.3390/ijms20081951] [PMID: 31010055]
[76]
Bekyarova, G.; Tzaneva, M.; Hristova, M.; Hristov, K. Melatonin protection against burn-induced liver injury. A review. Cent. Eur. J. Med., 2014, 9, 148-158.
[77]
Fischer, T.W.; Zbytek, B.; Sayre, R.M.; Apostolov, E.O.; Basnakian, A.G.; Sweatman, T.W.; Wortsman, J.; Elsner, P.; Slominski, A. Melatonin increases survival of HaCaT keratinocytes by suppressing UV‐induced apoptosis. J. Pineal Res., 2006, 40(1), 18-26.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00273.x] [PMID: 16313494]
[78]
Kim, J.S.; Jung, Y.H.; Lee, H.J.; Chae, C.W.; Choi, G.E.; Lim, J.R.; Kim, S.Y.; Lee, J.E.; Han, H.J. Melatonin activates ABCA1 via the BiP/NRF1 pathway to suppress high-cholesterol-induced apoptosis of mesenchymal stem cells. Stem Cell Res. Ther., 2021, 12(1), 114.
[http://dx.doi.org/10.1186/s13287-021-02181-4] [PMID: 33546749]
[79]
Sharma, S.; Haldar, C.; Chaube, S.K. Effect of exogenous melatonin on X-ray induced cellular toxicity in lymphatic tissue of Indian tropical male squirrel, Funambulus pennanti. Int. J. Radiat. Biol., 2008, 84(5), 363-374.
[http://dx.doi.org/10.1080/09553000802029894] [PMID: 18464066]
[80]
Thomsen, S. F. Atopic dermatitis: natural history, diagnosis, and treatment. Int Sch Res Notices, 2014, 2014
[http://dx.doi.org/10.1155/2014/354250]
[81]
Chang, Y.S.; Chou, Y.T.; Lee, J.H.; Lee, P.L.; Dai, Y.S.; Sun, C.; Lin, Y.T.; Wang, L.C.; Yu, H.H.; Yang, Y.H.; Chen, C.A.; Wan, K.S.; Chiang, B.L. Atopic dermatitis, melatonin, and sleep disturbance. Pediatrics, 2014, 134(2), e397-e405.
[http://dx.doi.org/10.1542/peds.2014-0376] [PMID: 25022734]
[82]
Cano Barquilla, P.; Pagano, E.S.; Jiménez-Ortega, V. Fernández-Mateos, P.; Esquifino, A.I.; Cardinali, D.P. Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet‐induced metabolic syndrome in rats. J. Pineal Res., 2014, 57(3), 280-290.
[http://dx.doi.org/10.1111/jpi.12168] [PMID: 25113124]
[83]
Kim, T.H.; Jung, J.A.; Kim, G.D.; Jang, A.H.; Ahn, H.J.; Park, Y.S.; Park, C.S. Melatonin inhibits the development of 2,4‐dinitrofluorobenzene‐induced atopic dermatitis‐like skin lesions in NC/Nga mice. J. Pineal Res., 2009, 47(4), 324-329.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00718.x] [PMID: 19817972]
[84]
Taghavi Ardakani, A.; Farrehi, M.; Sharif, M.R.; Ostadmohammadi, V.; Mirhosseini, N.; Kheirkhah, D.; Moosavi, S.G.A.; Behnejad, M.; Reiter, R.J.; Asemi, Z. The effects of melatonin administration on disease severity and sleep quality in children with atopic dermatitis: A randomized, double‐blinded, placebo‐controlled trial. Pediatr. Allergy Immunol., 2018, 29(8), 834-840.
[http://dx.doi.org/10.1111/pai.12978] [PMID: 30160043]
[85]
Chang, Y.S.; Tsai, C.C.; Yang, P.Y.; Tang, C.Y.; Chiang, B.L. Topical melatonin exerts immunomodulatory effect and improves dermatitis severity in a mouse model of atopic dermatitis. Int. J. Mol. Sci., 2022, 23(3), 1373.
[http://dx.doi.org/10.3390/ijms23031373] [PMID: 35163297]
[86]
Kim, Y.S.; Go, G.; Yun, C.W.; Yea, J.H.; Yoon, S.; Han, S.Y.; Lee, G.; Lee, M.Y.; Lee, S.H. Topical administration of melatonin-loaded extracellular vesicle-mimetic nanovesicles improves 2, 4-dinitrofluorobenzene-induced atopic dermatitis. Biomolecules, 2021, 11(10), 1450.
[http://dx.doi.org/10.3390/biom11101450] [PMID: 34680082]
[87]
Dell’Anna, M.L.; Picardo, M. A review and a new hypothesis for non‐immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res., 2006, 19(5), 406-411.
[http://dx.doi.org/10.1111/j.1600-0749.2006.00333.x] [PMID: 16965269]
[88]
Lissoni, R.; Brivio, O.; Brivio, F.; Barni, S.; Tancini, G.; Crippa, D.; Meregalli, S. Adjuvant therapy with the pineal hormone melatonin in patients with lymph node relapse due to malignant melanoma. J. Pineal Res., 1996, 21(4), 239-242.
[http://dx.doi.org/10.1111/j.1600-079X.1996.tb00292.x] [PMID: 8989723]
[89]
Hao, J.; Fan, W.; Li, Y.; Tang, R.; Tian, C.; Yang, Q.; Zhu, T.; Diao, C.; Hu, S.; Chen, M.; Guo, P.; Long, Q.; Zhang, C.; Qin, G.; Yu, W.; Chen, M.; Li, L.; Qin, L.; Wang, J.; Zhang, X.; Ren, Y.; Zhou, P.; Zou, L.; Jiang, K.; Guo, W.; Deng, W. Melatonin synergizes BRAF-targeting agent vemurafenib in melanoma treatment by inhibiting iNOS/hTERT signaling and cancer-stem cell traits. J. Exp. Clin. Cancer Res., 2019, 38(1), 48.
[http://dx.doi.org/10.1186/s13046-019-1036-z] [PMID: 30717768]
[90]
Kocyigit, A.; Guler, E.M.; Karatas, E.; Caglar, H.; Bulut, H. Dose-dependent proliferative and cytotoxic effects of melatonin on human epidermoid carcinoma and normal skin fibroblast cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 829-830, 50-60.
[http://dx.doi.org/10.1016/j.mrgentox.2018.04.002] [PMID: 29704993]
[91]
van den Heuvel, C.J.; Kennaway, D.J.; Dawson, D. Thermoregulatory and soporific effects of very low dose melatonin injection. Am. J. Physiol., 1999, 276(2), E249-E254.
[PMID: 9950783]
[92]
Lok, R.; van Koningsveld, M.J.; Gordijn, M.C.M.; Beersma, D.G.M.; Hut, R.A. Daytime melatonin and light independently affect human alertness and body temperature. J. Pineal Res., 2019, 67(1)e12583
[http://dx.doi.org/10.1111/jpi.12583] [PMID: 31033013]
[93]
Masana, M.I.; Doolen, S.; Ersahin, C.; Al-Ghoul, W.M.; Duckles, S.P.; Dubocovich, M.L.; Krause, D.N. MT(2) melatonin receptors are present and functional in rat caudal artery. J. Pharmacol. Exp. Ther., 2002, 302(3), 1295-1302.
[http://dx.doi.org/10.1124/jpet.302.3.1295] [PMID: 12183692]
[94]
Seron-Ferre, M.; Reynolds, H.; Mendez, N.A.; Mondaca, M.; Valenzuela, F.; Ebensperger, R.; Valenzuela, G.J.; Herrera, E.A.; Llanos, A.J.; Torres-Farfan, C. Impact of maternal melatonin suppression on amount and functionality of Brown Adipose Tissue (BAT) in the newborn sheep. Front. Endocrinol. (Lausanne), 2015, 5, 232.
[http://dx.doi.org/10.3389/fendo.2014.00232] [PMID: 25610428]
[95]
Najafpour, F.; Arabzadeh, S.; Kalalinia, F.; Mostajeran, N.; Mohsen, S.; Mousavi, L.; Yazdian-Robati, R.; Hashemi, E.; Hashemi, M. Evaluation of wound healing effect of Solanum nigrum L. leaf extract-loaded sodium alginate nanoparticles embedded in chitosan hydrogel, In vivo study. Nanomed. J., 2022, 9, 34-42.
[96]
Safavinia, A.; Dehestani, S.; Salmasi, Z.; Kalalinia, F.; Etemad, L.; Hashemi, M. Recent advances in nanocarriers containing Bromelain: In vitro and in vivo studies. Nanomed. J., 2022.
[97]
Hamed, M.Y.; Mostafa, E.M.; Tous, S.S. Antifertility effect of orally formulated melatonin tablets in mice. Int. J. Pharm., 1991, 69(2), 93-102.
[http://dx.doi.org/10.1016/0378-5173(91)90214-9]
[98]
Proietti, S.; Carlomagno, G.; Dinicola, S.; Bizzarri, M. Soft gel capsules improve melatonin’s bioavailability in humans. Expert Opin. Drug Metab. Toxicol., 2014, 10(9), 1193-1198.
[http://dx.doi.org/10.1517/17425255.2014.943183] [PMID: 25046730]
[99]
Mohammadi, M.; Alibolandi, M.; Abnous, K.; Salmasi, Z.; Jaafari, M.R.; Ramezani, M. Comparison of liposomal formulations incorporating BMP-2 peptide to induce bone tissue engineering. Nanomed. J., 2020, 7(3)
[100]
Ogiso, T.; Yamaguchi, T.; Iwaki, M.; Tanino, T.; Miyake, Y. Effect of positively and negatively charged liposomes on skin permeation of drugs. J. Drug Target., 2001, 9(1), 49-59.
[http://dx.doi.org/10.3109/10611860108995632] [PMID: 11378523]
[101]
Hou, X.; Qiu, X.; Wang, Y.; Song, S.; Cong, Y.; Hao, J. Application and efficacy of melatonin elastic liposomes in photoaging mice. Oxid. Med. Cell. Longev., 2022, 20227135125
[http://dx.doi.org/10.1155/2022/7135125]
[102]
Souto, E.B. Doktorovová, S. Chapter 6 - Solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzymol., 2009, 464, 105-129.
[http://dx.doi.org/10.1016/S0076-6879(09)64006-4] [PMID: 19903552]
[103]
Hatem, S.; Nasr, M.; Moftah, N.H.; Ragai, M.H.; Geneidi, A.S.; Elkheshen, S.A. Clinical cosmeceutical repurposing of melatonin in androgenic alopecia using nanostructured lipid carriers prepared with antioxidant oils. Expert Opin. Drug Deliv., 2018, 15(10), 927-935.
[http://dx.doi.org/10.1080/17425247.2018.1517740] [PMID: 30169980]
[104]
Rossi, A.; Cantisani, C.; Melis, L.; Iorio, A.; Scali, E.; Calvieri, S. Minoxidil use in dermatology, side effects and recent patents. Recent Pat. Inflamm. Allergy Drug Discov., 2012, 6(2), 130-136.
[http://dx.doi.org/10.2174/187221312800166859] [PMID: 22409453]
[105]
Mistraletti, G.; Paroni, R.; Umbrello, M.; Moro Salihovic, B.; Coppola, S.; Froio, S.; Finati, E.; Gasco, P.; Savoca, A.; Manca, D.; Chiumello, D.; Reiter, R.J.; Iapichino, G. Different routes and formulations of melatonin in critically ill patients. A pharmacokinetic randomized study. Clin. Endocrinol. (Oxf.), 2019, 91(1), 209-218.
[http://dx.doi.org/10.1111/cen.13993] [PMID: 31004517]
[106]
Duvnjak Romić, M.; Špoljarić, D.; Šegvić Klarić, M.; Cetina-Čižmek, B.; Filipović-Grčić, J.; Hafner, A. Melatonin loaded lipid enriched chitosan microspheres – Hybrid dressing for moderate exuding wounds. J. Drug Deliv. Sci. Technol., 2019, 52, 431-439.
[http://dx.doi.org/10.1016/j.jddst.2019.05.004]
[107]
Bartelds, R.; Nematollahi, M.H.; Pols, T.; Stuart, M.C.A.; Pardakhty, A.; Asadikaram, G.; Poolman, B. Niosomes, an alternative for liposomal delivery. PLoS One, 2018, 13(4)e0194179
[http://dx.doi.org/10.1371/journal.pone.0194179] [PMID: 29649223]
[108]
Arslan Azizoglu, G.; Tuncay Tanriverdi, S.; Aydin Kose, F.; Ballar Kirmizibayrak, P.; Ozer, O. Dual-prevention for uv-induced skin damage: Incorporation of melatonin-loaded elastic niosomes into octyl methoxycinnamate pickering emulsions. AAPS PharmSciTech, 2017, 18(8), 2987-2998.
[http://dx.doi.org/10.1208/s12249-017-0786-1] [PMID: 28493002]
[109]
Mirmajidi, T.; Chogan, F.; Rezayan, A.H.; Sharifi, A.M. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm., 2021.596120213
[http://dx.doi.org/10.1016/j.ijpharm.2021.120213] [PMID: 33493599]
[110]
Tuncay Tanrıverdi, S.; Cheaburu-Yilmaz, C.N.; Carbone, S.; Özer, Ö. Preparation and in vitro evaluation of melatonin-loaded HA/PVA gel formulations. Pharm. Dev. Technol., 2018, 23(8), 815-825.
[http://dx.doi.org/10.1080/10837450.2016.1268158] [PMID: 27915492]
[111]
Osikov, M.; Simonyan, E. V.; Ageeva, A. A.; Ageev, Y.; Fedosov, A. A.; Sinitskii, A. Local antioxidant effect of original dermal film with melatonin in thermal injury. Bulletin of Russian State Medical University, 2020.
[112]
Kaczmarek-Szczepańska, B.; Ostrowska, J.; Kozłowska, J.; Szota, Z.; Brożyna, A.A.; Dreier, R.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Kleszczyński, K. Evaluation of polymeric matrix loaded with melatonin for wound dressing. Int. J. Mol. Sci., 2021, 22(11), 5658.
[http://dx.doi.org/10.3390/ijms22115658] [PMID: 34073402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy