Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Cerium Oxide Nanoparticles Synthesis using Alhagi Maurorum Leaf Extract and Evaluation of Their Cytotoxic Effect on Breast Cancer Cell Lines and Antibacterial Effects

Author(s): Sayedeh Azimeh Hosseini, Mehrdad Khatami, Amirkian Asadollahi and Hajar Yaghoobi*

Volume 24, Issue 14, 2024

Published on: 29 April, 2024

Page: [1056 - 1062] Pages: 7

DOI: 10.2174/0118715206296523240424072939

Price: $65

Abstract

Introduction: Green synthesis offers a fast, simple, and economical method for producing metallic nanoparticles.The basis of this method is to obtain nanoparticles using natural materials, such as plants, fungi, and bacteria, instead of harmful and expensive chemical-reducing agents. In this study, CeO2NPs were produced using Alhagi maurorum extract, and their anticancer and antibacterial activities were evaluated.

Methods: Alhagi maurorum extract was prepared according to a previously described protocol, and CeO2NPs were synthesized from the salt of this extract. The resulting nanoparticles were characterized using Transmission electron microscopy (TEM), scanning electron microscope (SEM), and X-ray diffraction (XRD) techniques. The antibacterial and cytotoxic effects of the nanoparticles were measured by MIC, MBC, and MTT assays, respectively. The results were analyzed using one-way analysis of variance (ANOVA) using Prism software.

Results: The MTT assay on breast cancer cell lines showed that the cytotoxic effect of CeO2NPs on cell lines was concentration-dependent. In addition, this nanoparticle was more effective against Gram-positive bacteria.

Conclusion: These nanoparticles can be used as cancer drug delivery systems with specific targeting at low concentrations in addition to anticancer treatments. It can also have biological and medicinal applications, such as natural food preservation and wound dressing.

Graphical Abstract

[1]
Nazaripour, E.; Mousazadeh, F.; Moghadam, D.M.; Najafi, K.; Borhani, F.; Sarani, M.; Ghasemi, M.; Rahdar, A.; Iravani, S.; Khatami, M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. In: Inorg. Chem. Commun., 2021, 131, 108800.
[http://dx.doi.org/10.1016/j.inoche.2021.108800]
[2]
Pal, G.; Rai, P.; Pandey, A. Green synthesis of nanoparticles: A greener approach for a cleaner future.Green Synthesis, Characterization and Applications of Nanoparticles Micro and Nano Technologies; Elsevier, 2019, pp. 1-26.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00001-0]
[3]
Jadoun, S.; Chinnam, S.; Chauhan, NPS. Biosynthesis of nanoparticles using plant extract. In: Nanotechnology in Herbal Medicine; Woodhead Publishing, 2023, pp. 101-117.
[http://dx.doi.org/10.1016/B978-0-323-99527-6.00006-9]
[4]
Yuan, C.; Jiang, B.; Xu, X.; Wan, Y.; Wang, L.; Chen, J. Anti-human ovarian cancer and cytotoxicity effects of nickel nanoparticles green-synthesized by Alhagi maurorum leaf aqueous extract. J. Exp. Nanosci., 2022, 17(1), 113-125.
[http://dx.doi.org/10.1080/17458080.2021.2011860]
[5]
Bahamin, N.; Ahmadian, S.; Kopaei, R.M.; Mobini, G.; Shafiezadeh, M.; Soltani, A. A comparative study on anticancer effects of the Alhagi maurorum and Amygdalus haussknechtii extracts alone and in combination with docetaxel on 4T1 breast cancer cells. Evid. Based Complement. Alternat. Med., 2021, 2021, 5517944.
[http://dx.doi.org/10.1155/2021/5517944]
[6]
Said, A.; Elfotouh, A.M. Antitumor evaluation of alhagi maurorum extracts and flavonoids. Middle East J. Appl. Sci., 2014, 4(3), 471-476.
[7]
Miri, A.; Beiki, H.; Najafidoust, A.; Khatami, M.; Sarani, M. Cerium oxide nanoparticles: Green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess Biosyst. Eng., 2021, 44(9), 1891-1899.
[http://dx.doi.org/10.1007/s00449-021-02569-9] [PMID: 33891183]
[8]
Bakkiyaraj, R.; Balakrishnan, M.; Subramanian, R. Synthesis, structural characterization, optical studies of CeO2 nanoparticles and its cytotoxic 1061ctiveity. Mater. Res. Innov., 2017, 21(6), 351-357.
[http://dx.doi.org/10.1080/14328917.2016.1265256]
[9]
Dar, M.; Gul, R.; Karuppiah, P.; Al-Dhabi, N.; Alfadda, A. Antibacterial activity of cerium oxide nanoparticles against ESKAPE pathogens. Crystals , 2022, 12(2), 179.
[http://dx.doi.org/10.3390/cryst12020179]
[10]
Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater., 2019, 62(11), 1727-1739.
[http://dx.doi.org/10.1007/s40843-019-9471-7]
[11]
Lin, W.; Huang, Y.; Zhou, X.D.; Ma, Y. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol., 2006, 25(6), 451-457.
[http://dx.doi.org/10.1080/10915810600959543] [PMID: 17132603]
[12]
Eka, P.G.; Rilda, Y.; Syukri, S.; Labanni, A.; Arief, S. Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J. Mater. Res. Technol., 2021, 15, 2355-2364.
[http://dx.doi.org/10.1016/j.jmrt.2021.09.075]
[13]
Sabouri, Z.; Sabouri, M.; Amiri, M.S.; Khatami, M.; Darroudi, M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater. Technol., 2020, 37(8), 555-568.
[14]
Miri, A.; Sarani, M.; Barani, M.; Varma, R.S.; Miri, M.J. In-vitro cytotoxic performance of pure and co-doped CeO2 nanoparticles on breast cancer cell, colon cancer cell, and mouse embryo fibroblast cell lines; Res. Square, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1300456/v1]
[15]
Zamani, K.; Bakhshi, A.N.; Akhavan, F.; Yousefi, M.; Golmoradi, R.; Ramezani, M.; Bach, H.; Razavi, S.; Irajian, G.R.; Gerami, M.; Pakdin-Parizi, A.; Tafrihi, M.; Ramezani, F. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol., 2021, 21(1), 68.
[http://dx.doi.org/10.1186/s12896-021-00727-1] [PMID: 34876083]
[16]
Qi, M.; Li, W.; Zheng, X.; Li, X.; Sun, Y.; Wang, Y.; Li, C.; Wang, L. Cerium and its oxidant-based nanomaterials for antibacterial applications: A state-of-the-art review. Front. Mater., 2020, 7, 213.
[http://dx.doi.org/10.3389/fmats.2020.00213]
[17]
Ahmed, H.E.; Iqbal, Y.; Aziz, M.H.; Atif, M.; Batool, Z.; Hanif, A.; Yaqub, N.; Farooq, W.A.; Ahmad, S.; Fatehmulla, A.; Ahmad, H. Green synthesis of CeO2 nanoparticles from the abelmoschus esculentus extract: Evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules, 2021, 26(15), 4659.
[http://dx.doi.org/10.3390/molecules26154659] [PMID: 34361812]
[18]
Kannan, S.K.; Sundrarajan, M. A green approach for the synthesis of a cerium oxide nanoparticle: Characterization and antibacterial activity. Int. J. Nanosci., 2014, 13(3), 1450018.
[http://dx.doi.org/10.1142/S0219581X14500185]
[19]
Snafi, A.AE. Antibacterial effect of the phenolic extract of Alhagi maurorum. IOSR J. Pharm., 2019, 9(9), 47-55.
[20]
Pop, O.L.; Mesaros, A.; Vodnar, D.C.; Suharoschi, R. Tăbăran, F.; Magerușan, L.; Tódor, I.S.; Diaconeasa, Z.; Balint, A.; Ciontea, L.; Socaciu, C. Cerium oxide nanoparticles and their efficient antibacterial application in vitro against gram-positive and gram-negative pathogens. Nanomaterials , 2020, 10(8), 1614.
[http://dx.doi.org/10.3390/nano10081614] [PMID: 32824660]
[21]
Fifere, N.; Airinei, A.; Dobromir, M.; Sacarescu, L.; Dunca, S.I. Revealing the effect of synthesis conditions on the structural, optical, and antibacterial properties of cerium oxide nanoparticles. Nanomaterials , 2021, 11(10), 2596.
[http://dx.doi.org/10.3390/nano11102596] [PMID: 34685037]
[22]
Altaf, M.; Manoharadas, S.; Zeyad, M.T. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm 1062ctivety against bacterial pathogens. Microsc. Res. Tech., 2021, 84(8), 1638-1648.
[http://dx.doi.org/10.1002/jemt.23724] [PMID: 33559164]
[23]
Shahnazarian, D.; Hagemann, J.; Aburto, M.; Rose, S. Informed consent in human subjects research. Off. Prot. Res. Subj., 2013, 2013, 1-22.
[24]
Farias, IAP; Santos, DCCL; Sampaio, FC. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: A systematic review. Biomed Res. Int., 2018, 2018, 1923606.
[http://dx.doi.org/10.1155/2018/1923606]
[25]
Magdalane, C.M.; Kaviyarasu, K.; Vijaya, J.J.; Siddhardha, B.; Jeyaraj, B. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity. J. Photochem. Photobiol. B, 2016, 163, 77-86.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.08.013] [PMID: 27541568]
[26]
Farhangi, J.M.; Es-haghi, A.; Yazdi, T.M.E.; Rahdar, A.; Baino, F. MOF-mediated synthesis of CuO/CeO2 composite nanoparticles: Characterization and estimation of the cellular toxicity against breast cancer cell line (MCF-7). J. Funct. Biomater., 2021, 12(4), 53.
[http://dx.doi.org/10.3390/jfb12040053]
[27]
Rahdar, A.; Aliahmad, M.; Azizi, Y.; Keikha, N.; Moudi, M.; Keshavarzi, F. CuO-NiO nano composites: Synthesis, characterization, and cytotoxicity evaluation. Nanomedicine Res J., 2017, 2(2), 78-86.
[28]
Atif, M; Iqbal, S; Alam, F.M; Ismail, M; Mansoor, Q; Mughal, L Manganese-doped cerium oxide nanocomposite induced photodynamic therapy in MCF-7 cancer cells and antibacterial activity. Biomed Res. Int., 2019, 2019, 1-13.
[29]
Abuid, N.J.; Asfura, G.K.M.; LaShoto, D.J.; Poulos, A.M.; Stabler, C.L. Biomedical applications of cerium oxide nanoparticles: A potent redox modulator and drug delivery agent, 2019, 283-301.
[30]
Taherzadeh, D.; Amiri, H.; Darroudi, M. Green synthesis of cerium oxide nanoparticles using Falcaria vulgaris leaf extract and its anti-tumoral effects in prostate cancer; Res. Squa, 2023.
[http://dx.doi.org/10.21203/rs.3.rs-2568195/v1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy