Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Plant-Derived Proteins/Peptides for the Management of Alzheimer's Disease

In Press, (this is not the final "Version of Record"). Available online 29 April, 2024
Author(s): Rishabha Malviya* and Prerna Uniyal
Published on: 29 April, 2024

DOI: 10.2174/0115734013314858240419052907

Price: $95

Abstract

Alzheimer's Disease (AD) is a neurological condition that worsens over time and has a gradual start. It has a significant impact on the well-being of human beings. Peptides are substances produced from plants that have been revealed to inhibit the progression of Alzheimer's disease disorders, making them a promising strategy for the prevention of Alzheimer's disease. Nevertheless, because of the enormously convoluted pathophysiology of Alzheimer's Disease (AD) and the recognition that the majority of research on the action of plant-derived peptides is solitary instead of sufficiently comprehensive, the development and implementation of Plant-derived Alzheimer-prevention Peptides (PADPs) have been constrained. The molecular pathways of PADPs, AD-prevention activity, and some perspectives on current advanced technologies have been discussed in this review. Additionally, the review provides a summary of the current techniques available for obtaining PADPs, as well as in vitro and in vivo protocols for evaluating the activity of PADPs in preventing Alzheimer's disease. Additionally, the fundamental concepts for the manufacturing and utilization of PADPs have been developed in this study.

[1]
Bayer, T.A.; Wirths, O. Intracellular accumulation of amyloid-beta – A predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front. Aging Neurosci., 2010, 2(2), 8.
[http://dx.doi.org/10.3389/fnagi.2010.00008] [PMID: 20552046]
[2]
Stavsky, A.; Stoler, O.; Kostic, M.; Katoshevsky, T.; Assali, E.A.; Savic, I.; Amitai, Y.; Prokisch, H.; Leiz, S.; Daumer-Haas, C.; Fleidervish, I.; Perocchi, F.; Gitler, D.; Sekler, I. Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation. Commun. Biol., 2021, 4(1), 666.
[http://dx.doi.org/10.1038/s42003-021-02114-0] [PMID: 34079053]
[3]
Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; Kim, M.; Nishito, Y.; Iemura, S.; Natsume, T.; Ueno, T.; Kominami, E.; Motohashi, H.; Tanaka, K.; Yamamoto, M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 2010, 12(3), 213-223.
[http://dx.doi.org/10.1038/ncb2021] [PMID: 20173742]
[4]
Debnath, J.; Gammoh, N.; Ryan, K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol., 2023, 24(8), 560-575.
[http://dx.doi.org/10.1038/s41580-023-00585-z] [PMID: 36864290]
[5]
Boxer, A.L.; Qureshi, I.; Ahlijanian, M.; Grundman, M.; Golbe, L.I.; Litvan, I.; Honig, L.S.; Tuite, P.; McFarland, N.R.; O’Suilleabhain, P.; Xie, T.; Tirucherai, G.S.; Bechtold, C.; Bordelon, Y.; Geldmacher, D.S.; Grossman, M.; Isaacson, S.; Zesiewicz, T.; Olsson, T.; Muralidharan, K.K.; Graham, D.L.; O’Gorman, J.; Haeberlein, S.B.; Dam, T. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: A randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol., 2019, 18(6), 549-558.
[http://dx.doi.org/10.1016/S1474-4422(19)30139-5] [PMID: 31122495]
[6]
Logarušić, M.; Slivac, I.; Radošević, K.; Bagović, M.; Redovniković, I.R.; Srček, V.G. Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines. Mol. Biol. Rep., 2019, 46(6), 6079-6085.
[http://dx.doi.org/10.1007/s11033-019-05043-8] [PMID: 31493283]
[7]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[8]
Wang, S.; Waterhouse, S.D.; Waterhouse, N.G.I.; Zheng, L.; Su, G.; Zhao, M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci. Technol., 2021, 116, 712-732.
[http://dx.doi.org/10.1016/j.tifs.2021.04.056]
[9]
Chai, T.T.; Law, Y.C.; Wong, F.C.; Kim, S.K. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: A review. Mar. Drugs, 2017, 15(2), 42.
[http://dx.doi.org/10.3390/md15020042] [PMID: 28212329]
[10]
Chai, T.T.; Ang, S.Y.; Goh, K.; Lee, Y.H.; Ngoo, J.M.; Teh, L.K.; Wong, F.C. Trypsin-hydrolyzed corn silk proteins: Antioxidant activities, in vitro gastrointestinal and thermal stability, and hepatoprotective effects. eFood, 2020, 1(2), 156-164.
[http://dx.doi.org/10.2991/efood.k.200323.001]
[11]
Sicairos, S.E.S.; Noris, M.A.K.; Vital, L.D.A.; Carrillo, M.J.; Rodríguez, M.A. Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion. Food Chem., 2021, 343, 128394.
[http://dx.doi.org/10.1016/j.foodchem.2020.128394] [PMID: 33097329]
[12]
Dabbour, M.; Xiang, J.; Mintah, B.; He, R.; Jiang, H.; Ma, H. Localized enzymolysis and sonochemically modified sunflower protein: Physical, functional and structure attributes. Ultrason. Sonochem., 2020, 63, 104957.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104957] [PMID: 31945572]
[13]
Lv, S.; Taha, A.; Hu, H.; Lu, Q.; Pan, S. Effects of ultrasonic-assisted extraction on the physicochemical properties of different walnut proteins. Molecules, 2019, 24(23), 4260.
[http://dx.doi.org/10.3390/molecules24234260] [PMID: 31766733]
[14]
Golly, M.K.; Ma, H.; Yuqing, D.; Wu, P.; Dabbour, M.; Sarpong, F.; Farooq, M. Enzymolysis of walnut (Juglans regia L.) meal protein: Ultrasonication-assisted alkaline pretreatment impact on kinetics and thermodynamics. J. Food Biochem., 2019, 43(8), e12948.
[http://dx.doi.org/10.1111/jfbc.12948] [PMID: 31368548]
[15]
Zhuang, M.; Zhao, M.; Lin, L.; Dong, Y.; Chen, H.; Feng, M.; Waterhouse, S.D.; Su, G. Macroporous resin purification of peptides with umami taste from soy sauce. Food Chem., 2016, 190, 338-344.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.105] [PMID: 26212979]
[16]
Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive peptides from walnut residue protein. Molecules, 2020, 25(6), 1285.
[http://dx.doi.org/10.3390/molecules25061285] [PMID: 32178315]
[17]
Wang, M.; Amakye, W.K.; Guo, L.; Gong, C.; Zhao, Y.; Yao, M.; Ren, J. Walnut-derived peptide PW5 ameliorates cognitive impairments and alters gut microbiota in APP/PS1 transgenic mice. Mol. Nutr. Food Res., 2019, 63(18), 1900326.
[http://dx.doi.org/10.1002/mnfr.201900326] [PMID: 31237989]
[18]
Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Liu, Y.; Sun, B.; Su, G.; Zhao, M. Inhibitory effects of walnut (Juglans regia) peptides on neuroinflammation and oxidative stress in lipopolysaccharide-induced cognitive impairment mice. J. Agric. Food Chem., 2020, 68(8), 2381-2392.
[http://dx.doi.org/10.1021/acs.jafc.9b07670] [PMID: 32037817]
[19]
Samaei, S.P.; Ghorbani, M.; Tagliazucchi, D.; Martini, S.; Gotti, R.; Themelis, T.; Tesini, F.; Gianotti, A.; Toschi, G.T.; Babini, E. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice. Food Chem., 2020, 330, 127120.
[http://dx.doi.org/10.1016/j.foodchem.2020.127120] [PMID: 32526646]
[20]
Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate. J. Agric. Food Chem., 2019, 67(12), 3305-3312.
[http://dx.doi.org/10.1021/acs.jafc.8b05722] [PMID: 30817142]
[21]
Żakowski, W. Animal use in neurobiological research. Neuroscience, 2020, 433, 1-10.
[http://dx.doi.org/10.1016/j.neuroscience.2020.02.049] [PMID: 32156550]
[22]
Stout, RF, Jr; Verkhratsky, A; Parpura, V Caenorhabditis elegans glia modulate neuronal activity and behavior. Front. Cell. Neurosci., 2014, 14(8), 67.
[http://dx.doi.org/10.3389/fncel.2014.00067]
[23]
Götz, J.; Bodea, L.G.; Goedert, M. Rodent models for Alzheimer disease. Nat. Rev. Neurosci., 2018, 19(10), 583-598.
[http://dx.doi.org/10.1038/s41583-018-0054-8] [PMID: 30194347]
[24]
Sanchez-Varo, R.; Mejias-Ortega, M.; Valenzuela, F.J.J.; Diaz, N.C.; Palomo, C.L.; Gomez, V.L.; Mejias, S.E.; Estrada, T.L.; Leon, G.J.A.; Gonzalez, M.I.; Vizuete, M.; Vitorica, J.; Vargas, B.D.; Gutierrez, A. Transgenic mouse models of Alzheimer’s disease: An integrative analysis. Int. J. Mol. Sci., 2022, 23(10), 5404.
[http://dx.doi.org/10.3390/ijms23105404] [PMID: 35628216]
[25]
Dawson, T.M.; Golde, T.E.; Tourenne, L.C. Animal models of neurodegenerative diseases. Nat. Neurosci., 2018, 21(10), 1370-1379.
[http://dx.doi.org/10.1038/s41593-018-0236-8] [PMID: 30250265]
[26]
Imtiaz, B.; Tuppurainen, M.; Tiihonen, M.; Kivipelto, M.; Soininen, H.; Hartikainen, S.; Tolppanen, A.M. Oophorectomy, hysterectomy, and risk of Alzheimer’s disease: A nationwide case-control study. J. Alzheimers Dis., 2014, 42(2), 575-581.
[http://dx.doi.org/10.3233/JAD-140336] [PMID: 24898656]
[27]
Yang, L.; Ding, W.; Dong, Y.; Chen, C.; Zeng, Y.; Jiang, Z.; Gan, S.; You, Z.; Zhao, Y.; Zhang, Y.; Ren, X.; Wang, S.; Dai, J.; Chen, Z.; Zhu, S.; Chen, L.; Shen, S.; Mao, J.; Xie, Z. Electroacupuncture attenuates surgical pain-induced delirium-like behavior in mice via remodeling gut microbiota and dendritic spine. Front. Immunol., 2022, 13, 955581.
[http://dx.doi.org/10.3389/fimmu.2022.955581] [PMID: 36003380]
[28]
Harrison, F.E.; Hosseini, A.H.; McDonald, M.P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav. Brain Res., 2009, 198(1), 247-251.
[http://dx.doi.org/10.1016/j.bbr.2008.10.015] [PMID: 18996418]
[29]
Chen, H.; Zhao, M.; Lin, L.; Wang, J.; Sun-Waterhouse, D.; Dong, Y.; Zhuang, M.; Su, G. Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res. Int., 2015, 78, 216-223.
[http://dx.doi.org/10.1016/j.foodres.2015.10.008] [PMID: 28433285]
[30]
Li, W.; Zhao, T.; Zhang, J.; Xu, J.; Waterhouse, S.D.; Zhao, M.; Su, G. Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice. J. Food Sci. Technol., 2017, 54(10), 3102-3110.
[http://dx.doi.org/10.1007/s13197-017-2746-x] [PMID: 28974795]
[31]
Wang, S.; Su, G.; Zhang, Q.; Zhao, T.; Liu, Y.; Zheng, L.; Zhao, M. Walnut (Juglans regia) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress. J. Agric. Food Chem., 2018, 66(40), 10617-10627.
[http://dx.doi.org/10.1021/acs.jafc.8b03884] [PMID: 30226056]
[32]
Ren, D.; Zhao, F.; Liu, C.; Wang, J.; Guo, Y.; Liu, J.; Min, W. Antioxidant hydrolyzed peptides from Manchurian walnut (Juglans mandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice. J. Sci. Food Agric., 2018, 98(13), 5142-5152.
[http://dx.doi.org/10.1002/jsfa.9060] [PMID: 29652442]
[33]
Katayama, S.; Imai, R.; Sugiyama, H.; Nakamura, S. Oral administration of soy peptides suppresses cognitive decline by induction of neurotrophic factors in SAMP8 mice. J. Agric. Food Chem., 2014, 62(16), 3563-3569.
[http://dx.doi.org/10.1021/jf405416s] [PMID: 24678753]
[34]
Ju, D.T.; K, A.K.; Kuo, W.W.; Ho, T.J.; Chang, R.L.; Lin, W.T.; Day, C.H.; Viswanadha, V.V.P.; Liao, P.H.; Huang, C.Y. Bioactive peptide VHVV upregulates the long-term memory-related biomarkers in adult spontaneously hypertensive rats. Int. J. Mol. Sci., 2019, 20(12), 3069.
[http://dx.doi.org/10.3390/ijms20123069] [PMID: 31234585]
[35]
Yang, S.; Kawamura, Y.; Yoshikawa, M. Effect of rubiscolin, a δ opioid peptide derived from Rubisco, on memory consolidation. Peptides, 2003, 24(2), 325-328.
[http://dx.doi.org/10.1016/S0196-9781(03)00044-5] [PMID: 12668220]
[36]
Takahashi, M.; Fukunaga, H.; Kaneto, H.; Fukudome, S.; Yoshikawa, M. Behavioral and pharmacological studies on gluten exorphin A5, a newly isolated bioactive food protein fragment, in mice. Jpn. J. Pharmacol., 2000, 84(3), 259-265.
[http://dx.doi.org/10.1254/jjp.84.259] [PMID: 11138726]
[37]
Corpuz, H.M.; Fujii, H.; Nakamura, S.; Katayama, S. Fermented rice peptides attenuate scopolamine-induced memory impairment in mice by regulating neurotrophic signaling pathways in the hippocampus. Brain Res., 2019, 1720, 146322.
[http://dx.doi.org/10.1016/j.brainres.2019.146322] [PMID: 31278934]
[38]
Ding, Q.; Wu, R.A.; Yin, L.; Zhang, W.; He, R.; Zhang, T.; Jiang, H.; Luo, L.; Ma, H.; Dai, C. Antioxidation and memory protection effects of solid-state-fermented rapeseed meal peptides on D-galactose-induced memory impairment in aging-mice. J. Food Process Eng., 2019, 42(5), e13145.
[http://dx.doi.org/10.1111/jfpe.13145]
[39]
Dileep, K.V.; Ihara, K.; Tsumagari, M.C.; Niino, K.M.; Yonemochi, M.; Hanada, K.; Shirouzu, M.; Zhang, K.Y.J. Crystal structure of human acetylcholinesterase in complex with tacrine: Implications for drug discovery. Int. J. Biol. Macromol., 2022, 210, 172-181.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.009] [PMID: 35526766]
[40]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[41]
Wali, A.; Mijiti, Y.; Yanhua, G.; Yili, A.; Aisa, H.A.; Kawuli, A. Isolation and identification of a novel antioxidant peptide from chickpea (Cicer arietinum L.) sprout protein hydrolysates. Int. J. Pept. Res. Ther., 2021, 27(1), 219-227.
[http://dx.doi.org/10.1007/s10989-020-10070-2]
[42]
Şenol, F.S.; Orhan, I.; Celep, F.; Kahraman, A.; Doğan, M.; Yilmaz, G.; Şener, B. Survey of 55 turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem., 2010, 120(1), 34-43.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.066]
[43]
Malomo, S.A.; Aluko, R.E. Kinetics of acetylcholinesterase inhibition by hemp seed protein-derived peptides. J. Food Biochem., 2019, 43(7), e12897.
[http://dx.doi.org/10.1111/jfbc.12897] [PMID: 31353736]
[44]
Zent, İ.; Göksu, A.G.; Çakır, B.; Gülseren, İ. Linking collective in vitro to individual in silico peptide bioactivity through mass spectrometry (LC-Q-TOF/MS) based sequence identification: The case of black cumin protein hydrolysates. J. Food Meas. Charact., 2021, 15(1), 664-674.
[http://dx.doi.org/10.1007/s11694-020-00666-z]
[45]
Lupu, A.; Gradinaru, L.M.; Gradinaru, V.R.; Bercea, M. Diversity of bioinspired hydrogels: From structure to applications. Gels, 2023, 9(5), 376.
[http://dx.doi.org/10.3390/gels9050376] [PMID: 37232968]
[46]
Drozdowska, D.; Maliszewski, D.; Wróbel, A.; Ratkiewicz, A.; Sienkiewicz, M. New benzamides as multi-targeted compounds: A study on synthesis, AChE and BACE1 inhibitory activity and molecular docking. Int. J. Mol. Sci., 2023, 24(19), 14901.
[http://dx.doi.org/10.3390/ijms241914901] [PMID: 37834347]
[47]
Tawalbeh, D.; U’datt, A.M.H.; Wan Ahmad, W.A.N.; Ahmad, F.; Sarbon, N.M. Recent advances in in vitro and in vivo studies of antioxidant, ace-inhibitory, and anti-inflammatory peptides from legume protein hydrolysates. Molecules, 2023, 28(6), 2423.
[http://dx.doi.org/10.3390/molecules28062423] [PMID: 36985395]
[48]
Banda, D.M.; Pereira, J.H.; Liu, A.K.; Orr, D.J.; Hammel, M.; He, C.; Parry, M.A.J.; Carmo-Silva, E.; Adams, P.D.; Banfield, J.F.; Shih, P.M. Novel bacterial clade reveals origin of form I Rubisco. Nat. Plants, 2020, 6(9), 1158-1166.
[http://dx.doi.org/10.1038/s41477-020-00762-4] [PMID: 32868887]
[49]
Zhu, X.; Cai, L.; Liu, J.; Zhu, W.; Cui, C.; Ouyang, D.; Ye, J. Effect of seabuckthorn seed protein and its arginine-enriched peptides on combating memory impairment in mice. Int. J. Biol. Macromol., 2023, 232, 123409.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123409] [PMID: 36706884]
[50]
Porter, J.L.; Rusli, R.A.; Ollis, D.L. Directed evolution of enzymes for industrial biocatalysis. ChemBioChem, 2016, 17(3), 197-203.
[http://dx.doi.org/10.1002/cbic.201500280] [PMID: 26661585]
[51]
Zheng, F.; Xue, L.; Hou, S.; Liu, J.; Zhan, M.; Yang, W.; Zhan, C.G. A highly efficient cocaine-detoxifying enzyme obtained by computational design. Nat. Commun., 2014, 5(1), 3457.
[http://dx.doi.org/10.1038/ncomms4457] [PMID: 24643289]
[52]
Tuszynski, M.H.; Yang, J.H.; Barba, D.; U, H.S.; Bakay, R.A.E.; Pay, M.M.; Masliah, E.; Conner, J.M.; Kobalka, P.; Roy, S.; Nagahara, A.H. Nerve growth factor gene therapy: Activation of neuronal responses in Alzheimer disease. JAMA Neurol., 2015, 72(10), 1139-1147.
[http://dx.doi.org/10.1001/jamaneurol.2015.1807] [PMID: 26302439]
[53]
Patnode, C.D.; Perdue, L.A.; Rossom, R.C.; Rushkin, M.C.; Redmond, N.; Thomas, R.G.; Lin, J.S. Screening for cognitive impairment in older adults: updated evidence reports and systematic review for the US Preventive Services Task Force. JAMA, 2020, 323(8), 764-785.
[http://dx.doi.org/10.1001/jama.2019.22258] [PMID: 32096857]
[54]
Han, J.; Besser, L.M.; Xiong, C.; Kukull, W.A.; Morris, J.C. Cholinesterase inhibitors may not benefit mild cognitive impairment and mild Alzheimer’s disease dementia. Alzheimer Dis. Assoc. Disord., 2019, 33(2), 87-94.
[http://dx.doi.org/10.1097/WAD.0000000000000291] [PMID: 30633043]
[55]
Moghadam, M.; Salami, M.; Mohammadian, M.; Djomeh, E.Z.; Jahanbani, R.; Movahedi, M.A.A. Physicochemical and bio-functional properties of walnut proteins as affected by trypsin-mediated hydrolysis. Food Biosci., 2020, 36, 100611.
[http://dx.doi.org/10.1016/j.fbio.2020.100611]
[56]
Fang, WS; Sun, D; Yang, S; Guo, N β-Secretase (BACE1) inhibitors from natural products. Natural products targeting clinically relevant enzymes, 2017, 2, 93-134.
[57]
Lin, L.; Li, C.; Li, T.; Zheng, J.; Shu, Y.; Zhang, J.; Shen, Y.; Ren, D. Plant-derived peptides for the improvement of Alzheimer’s disease: Production, functions, and mechanisms. Food Front., 2023, 4(2), 677-699.
[http://dx.doi.org/10.1002/fft2.210]
[58]
Lee, D.H.; Lee, D.H.; Lee, J.S. Characterization of a new antidementia β-secretase inhibitory peptide from Rubus coreanus. Food Sci. Biotechnol., 2008, 17(3), 489-494.
[59]
Xu, H.Y.; Feng, X.H.; Zhao, P.F.; Damirin, A.; Ma, C.M. Procyanidin A2 penetrates L-02 cells and protects against tert-butyl hydroperoxide-induced oxidative stress by activating Nrf2 through JNK and p38 phosphorylation. J. Funct. Foods, 2019, 62, 103562.
[http://dx.doi.org/10.1016/j.jff.2019.103562]
[60]
Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener., 2020, 15(1), 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[61]
Yang, H.S.; Zhang, C.; Carlyle, B.C.; Zhen, S.Y.; Trombetta, B.A.; Schultz, A.P.; Pruzin, J.J.; Fitzpatrick, C.D.; Yau, W.Y.W.; Kirn, D.R.; Rentz, D.M.; Arnold, S.E.; Johnson, K.A.; Sperling, R.A.; Chhatwal, J.P.; Tanzi, R.E. Plasma IL-12/IFN-γ axis predicts cognitive trajectories in cognitively unimpaired older adults. Alzheimers Dement., 2022, 18(4), 645-653.
[http://dx.doi.org/10.1002/alz.12399] [PMID: 34160128]
[62]
Tian, R.; Feng, J.; Huang, G.; Tian, B.; Zhang, Y.; Jiang, L.; Sui, X. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrason. Sonochem., 2020, 68, 105202.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105202] [PMID: 32593148]
[63]
Wu, S.; Wu, Q.; Wang, J.; Li, Y.; Chen, B.; Zhu, Z.; Huang, R.; Chen, M.; Huang, A.; Xie, Y.; Jiao, C.; Ding, Y. Novel selenium peptides obtained from selenium-enriched Cordyceps militaris alleviate neuroinflammation and gut microbiota dysbacteriosis in LPS-injured mice. J. Agric. Food Chem., 2022, 70(10), 3194-3206.
[http://dx.doi.org/10.1021/acs.jafc.1c08393] [PMID: 35238567]
[64]
Jash, A.; Ubeyitogullari, A.; Rizvi, S.S.H. Liposomes for oral delivery of protein and peptide-based therapeutics: Challenges, formulation strategies, and advances. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(24), 4773-4792.
[http://dx.doi.org/10.1039/D1TB00126D] [PMID: 34027542]
[65]
Xu, T.; Cock, I.E. A review of the sedative, anti-anxiety and immunosti-mulant properties of Withania somnifera (L.) Dunal (Ashwagandha). Pharmacogn. Commun., 2023, 13(1), 15-23.
[http://dx.doi.org/10.5530/pc.2023.1.4]
[66]
Lv, R.; Dong, Y.; Bao, Z.; Zhang, S.; Lin, S.; Sun, N. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides. Trends Food Sci. Technol., 2022, 122, 171-186.
[http://dx.doi.org/10.1016/j.tifs.2022.02.026]
[67]
Shabbir, U.; Rubab, M.; Tyagi, A.; Oh, D.H. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: The implication of nanotechnology. Int. J. Mol. Sci., 2020, 22(1), 196.
[http://dx.doi.org/10.3390/ijms22010196] [PMID: 33375513]
[68]
Sharma, R.; Singla, R.K.; Banerjee, S.; Sinha, B.; Shen, B.; Sharma, R. Role of shankhpushpi (Convolvulus pluricaulis) in neurological disorders: An umbrella review covering evidence from ethnopharmacology to clinical studies. Neurosci. Biobehav. Rev., 2022, 140, 104795.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104795] [PMID: 35878793]
[69]
Hosseini, M.; Boskabady, M.H.; Khazdair, M.R. Neuroprotective effects of Coriandrum sativum and its constituent, linalool: A review. Avicenna J. Phytomed., 2021, 11(5), 436-450.
[PMID: 34745916]
[70]
Olorunfemi, F.G.; Adewolu, A.M. Medicinal plants used in management and treatment of alzheimer’s disease in Africa: An insight into therapeutic avenues and possible development as future phytopharmaceuticals. J. Nat. Sci. Res., 2020, 10(10.)
[71]
Dabhekar, S.V.; Chandurkar, P.A.; Kale, M.B.; Wankhede, N.L.; Taksande, B.G.; Umekar, M.J.; Upaganlawar, A.B. Herbal medicine in the treatment of alzheimer’s disease and dementia: Phytoconstituent & their possible pharmacological activities. Depress Anxiet. Open Access., 2022, 5, 1002.
[72]
Jagtap, S.R.; Pol, S.L.; Bhosale, S.S.; Kadam, V.J. Memory enhancing activity of ginger (Zingiber officinale), its treatments in dementia and alzheimer’s disease. Int. J. Res. Appl. Sci. Biotechnol., 2022, 9(3), 73-84.
[73]
George, N.; AbuKhader, M.; Balushi, A.K.; Sabahi, A.B.; Khan, S.A. An insight into the neuroprotective effects and molecular targets of pomegranate ( Punica granatum ) against Alzheimer’s disease. Nutr. Neurosci., 2023, 26(10), 975-996.
[http://dx.doi.org/10.1080/1028415X.2022.2121092] [PMID: 36125072]
[74]
Rajabian, A.; Hosseini, A.; Hosseini, M.; Sadeghnia, H.R. A review of the potential efficacy of Saffron (Crocus sativus L.) in cognitive dysfunction and seizures. Prev. Nutr. Food Sci., 2019, 24(4), 363-372.
[http://dx.doi.org/10.3746/pnf.2019.24.4.363] [PMID: 31915630]
[75]
Ertas, A.; Yigitkan, S.; Orhan, I.E. A focused review on cognitive improvement by the genus Salvia L. (Sage)—From ethnopharmacology to clinical evidence. Pharmaceuticals, 2023, 16(2), 171.
[http://dx.doi.org/10.3390/ph16020171] [PMID: 37259321]
[76]
Mukne, A.; Dangat, S.; Shirodkar, P.; Sawate, K. Herbs for autoimmune diseases Role of Herbal Medicines. Management of Lifestyle Diseases, 2024, 27, 361-388.
[77]
Akram, M.; Nawaz, A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res., 2017, 12(4), 660-670.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]
[78]
Mashayekh, A.; Pham, D.L.; Yousem, D.M.; Dizon, M.; Barker, P.B.; Lin, D.D.M. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: A pilot study. Neuroradiology, 2011, 53(3), 185-191.
[http://dx.doi.org/10.1007/s00234-010-0790-6] [PMID: 21061003]
[79]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[80]
Yoon, J.J.; Jeong, J.W.; Choi, E.O.; Kim, M.J.; Hwang-Bo, H.; Kim, H.J.; Hong, S.H.; Park, C.; Lee, D.H.; Choi, Y.H. Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes. EXCLI J., 2017, 16, 426-438.
[PMID: 28694748]
[81]
Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory effects of curcumin in microglial cells. Front. Pharmacol., 2018, 9, 386.
[http://dx.doi.org/10.3389/fphar.2018.00386] [PMID: 29731715]
[82]
Tabeshpour, J.; Mehri, S.; Shaebani Behbahani, F.; Hosseinzadeh, H. Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytother. Res., 2018, 32(11), 2164-2190.
[http://dx.doi.org/10.1002/ptr.6168] [PMID: 30088293]
[83]
Kennedy, D.O.; Pace, S.; Haskell, C.; Okello, E.J.; Milne, A.; Scholey, A.B. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology, 2006, 31(4), 845-852.
[http://dx.doi.org/10.1038/sj.npp.1300907] [PMID: 16205785]
[84]
López-Cruz, L.; Salamone, J.D.; Correa, M. Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression. Front. Pharmacol., 2018, 9, 526.
[http://dx.doi.org/10.3389/fphar.2018.00526] [PMID: 29910727]
[85]
Bazyar, H.; Hosseini, S.A.; Saradar, S.; Mombaini, D.; Allivand, M.; Labibzadeh, M.; Alipour, M. Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: A clinical trial. J. Complement. Integr. Med., 2021, 18(2), 405-411.
[http://dx.doi.org/10.1515/jcim-2020-0090] [PMID: 34187117]
[86]
Hafiz, Z.Z.; Amin, M.A.M.; Johari James, R.M.; Teh, L.K.; Salleh, M.Z.; Adenan, M.I. Inhibitory effects of raw-extract Centella Asiatica (RECA) on acetylcholinesterase, inflammations, and oxidative stress activities viain vitro and in vivo. Molecules, 2020, 25(4), 892.
[http://dx.doi.org/10.3390/molecules25040892] [PMID: 32079355]
[87]
Halperin, J.M.; Healey, D.M. The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: Can we alter the developmental trajectory of ADHD? Neurosci. Biobehav. Rev., 2011, 35(3), 621-634.
[http://dx.doi.org/10.1016/j.neubiorev.2010.07.006] [PMID: 20691725]
[88]
Yu, T.; Guo, J.; Zhu, S.; Zhang, X.; Zhu, Z.Z.; Cheng, S.; Cong, X. Protective effects of selenium-enriched peptides from Cardamine violifolia on d-galactose-induced brain aging by alleviating oxidative stress, neuroinflammation, and neuron apoptosis. J. Funct. Foods, 2020, 75, 104277.
[http://dx.doi.org/10.1016/j.jff.2020.104277]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy