Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Application of Time-of-flight Secondary Ion Mass Spectrometry in Lithium-ion Batteries

In Press, (this is not the final "Version of Record"). Available online 29 April, 2024
Author(s): Pengwei Li* and Xiaoning Xia*
Published on: 29 April, 2024

DOI: 10.2174/0115734110299035240422114008

Price: $95

Abstract

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is becoming a powerful tool in the Lithium-Ion Batteries (LIBs) field due to its excellent resolution and sensitivity, as well as its ability to provide spectrally and depth-resolved information. The perspective comprehensively delves into the application of ToF-SIMS in two major areas of LIBs research. Firstly, the article elucidates how ToF-SIMS has been instrumental in deciphering the Solid Electrolyte Interphase (SEI) composition and analyzing electrolyte aging. The insights gleaned from such studies have paved the way for enhancing the longevity and safety of LIBs. Secondly, we explore the role of ToF-SIMS in scrutinizing the distribution of interface reactions, which are critical for understanding charge and discharge mechanisms. The analysis aids in optimizing the interface properties, thereby improving battery performance. Such detections are paramount in ensuring the safety and operational stability of batteries. Overall, the integration of ToF-SIMS in LIBs research offers a promising avenue for the development of advanced and safer energy storage systems.

[1]
Li, P.; Luo, S.; Zhang, L.; Liu, Q.; Wang, Y.; Lin, Y.; Xu, C.; Guo, J.; Cheali, P.; Xia, X. Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review. Journal of Energy Chemistry, 2024, 89, 144-171.
[http://dx.doi.org/10.1016/j.jechem.2023.10.012]
[2]
Geng, X.; Hou, X.; He, X.; Fan, H.J. Challenges and strategies on interphasial regulation for aqueous rechargeable batteries. Adv. Energy Mater., 2024, 25, 2304094.
[http://dx.doi.org/10.1002/aenm.202304094]
[3]
Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J.G.; Ren, X.; Cao, R.; Xu, W.; Baer, D.R.; Du, Y.; Borodin, O.; Wang, Y.; Wang, X.L.; Xu, K.; Xu, Z.; Wang, C.; Zhu, Z. Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol., 2020, 15(3), 224-230.
[http://dx.doi.org/10.1038/s41565-019-0618-4] [PMID: 31988500]
[4]
Gardner, W.; Winkler, D.A.; Muir, B.W.; Pigram, P.J. Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systems. Biointerphases, 2022, 17(2), 020802.
[http://dx.doi.org/10.1116/6.0001590] [PMID: 35345884]
[5]
Ma, S.S.; Fang, T.T.; Yang, L.Q.; Hu, S.W. Application of chromatography-mass spectrometry in study of lithium ion battery. Energy Storage Sci. Technol, 2022, 11(1), 60-65.
[6]
Shen, Y.; Howard, L.; Yu, X.Y. Secondary ion mass spectral imaging of metals and alloys. Materials, 2024, 17(2), 528.
[http://dx.doi.org/10.3390/ma17020528] [PMID: 38276468]
[7]
Ding, Z.; Chen, M.; Yuan, J.; Yu, A.; Dai, H.; Bai, S. Fenton oxidation modification mechanism of pyrite and its response to Cu-S flotation separation: Experiment, DFT, XPS and ToF-SIMS studies. Appl. Surf. Sci., 2024, 652, 159305.
[http://dx.doi.org/10.1016/j.apsusc.2024.159305]
[8]
Göldner, V.; Quach, L.; Adhitama, E.; Behrens, A.; Junk, L.; Winter, M.; Placke, T.; Glorius, F.; Karst, U. Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries. iScience, 2023, 26(9), 107517.
[http://dx.doi.org/10.1016/j.isci.2023.107517] [PMID: 37636078]
[9]
Collin, M.; Gin, S.; Jollivet, P.; Dupuy, L.; Dauvois, V.; Duffours, L. ToF-SIMS depth profiling of altered glass. npj Materials Degradation, 2019, 3(1), 14.
[http://dx.doi.org/10.1038/s41529-019-0076-3]
[10]
Lombardo, T.; Walther, F.; Kern, C.; Moryson, Y.; Weintraut, T.; Henss, A.; Rohnke, M. ToF-SIMS in battery research: Advantages, limitations, and best practices. J. Vac. Sci. Technol. A, 2023, 41(5), 053207.
[http://dx.doi.org/10.1116/6.0002850]
[11]
Peled, E.; Menkin, S. Review—SEI: Past, present and future. J. Electrochem. Soc., 2017, 164(7), A1703-A1719.
[http://dx.doi.org/10.1149/2.1441707jes]
[12]
Zhang, Z.; Han, W.Q. From liquid to solid-state lithium metal batteries: Fundamental issues and recent developments. Nano-Micro Lett., 2024, 16(1), 24.
[http://dx.doi.org/10.1007/s40820-023-01234-y] [PMID: 37985522]
[13]
Yan, C.; Cheng, X.B.; Tian, Y.; Chen, X.; Zhang, X.Q.; Li, W.J.; Huang, J.Q.; Zhang, Q. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater., 2018, 30(25), 1707629.
[http://dx.doi.org/10.1002/adma.201707629] [PMID: 29676037]
[14]
Ma, C.; Xu, F.; Song, T. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces, 2022, 14(17), 20197-20207.
[http://dx.doi.org/10.1021/acsami.2c00842] [PMID: 35470659]
[15]
Xu, H.; Li, Z.; Liu, T.; Han, C.; Guo, C.; Zhao, H.; Li, Q.; Lu, J.; Amine, K.; Qiu, X. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode. Angew. Chem. Int. Ed., 2022, 61(30), e202202894.
[http://dx.doi.org/10.1002/anie.202202894] [PMID: 35441399]
[16]
Priebe, A.; Barnes, J.P.; Edwards, T.E.J.; Pethö, L.; Balogh, I.; Michler, J. 3D imaging of nanoparticles in an inorganic matrix using TOF-SIMS validated with STEM and EDX. Anal. Chem., 2019, 91(18), 11834-11839.
[http://dx.doi.org/10.1021/acs.analchem.9b02545] [PMID: 31429257]
[17]
Liu, Y.K.; Zhao, C.Z.; Du, J.; Zhang, X.Q.; Chen, A.B.; Zhang, Q. Research progresses of liquid electrolytes in lithium-ion batteries. Small, 2023, 19(8), 2205315.
[http://dx.doi.org/10.1002/smll.202205315] [PMID: 36470676]
[18]
Heller, D.; Hagenhoff, B.; Engelhard, C. Time-of-flight secondary ion mass spectrometry as a screening method for the identification of degradation products in lithium-ion batteries—A multivariate data analysis approach. J. Vac. Sci. Technol. B, 2016, 34, 03H138.
[http://dx.doi.org/10.1116/1.4948371]
[19]
Schäfer, D.; Hankins, K.; Allion, M.; Krewer, U.; Karcher, F.; Derr, L.; Schuster, R.; Maibach, J.; Mück, S.; Kramer, D.; Mönig, R.; Jeschull, F.; Daboss, S.; Philipp, T.; Neusser, G.; Romer, J.; Palanisamy, K.; Kranz, C.; Buchner, F.; Behm, R.J.; Ahmadian, A.; Kübel, C.; Mohammad, I.; Samoson, A.; Witter, R.; Smarsly, B.; Rohnke, M. Multiscale investigation of sodium-ion battery anodes: analytical techniques and applications. Adv. Energy Mater., 2024, 35, 2302830.
[http://dx.doi.org/10.1002/aenm.202302830]
[20]
Wang, Y.; Chen, X.B.; Wang, Y.X.; Zheng, J.Y.; Liu, X.S.; Li, H. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries. Energy Storage Sci. Technol, 2023, 12, 2079.
[21]
Peled, E.; Golodnitsky, D.; Ulus, A.; Yufit, V. Effect of carbon substrate on SEI composition and morphology. Electrochim. Acta, 2004, 50(2-3), 391-395.
[http://dx.doi.org/10.1016/j.electacta.2004.01.130]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy