Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Current Landscape in the Development of Small-molecule Modulators Targeting Sphingosine-1-phosphate Receptors to Treat Neurodegenerative Diseases

In Press, (this is not the final "Version of Record"). Available online 26 April, 2024
Author(s): Sidhartha Sankar Kar, Soumya Ranjan Gharai, Sujit Kumar Sahu, Velayutham Ravichandiran and Sharada Prasanna Swain*
Published on: 26 April, 2024

DOI: 10.2174/0115680266288509240422112839

Price: $95

Abstract

Sphingosine 1-phosphate (S1P) is extensively researched as a lysophospholipid and is crucial in various physiological and pathological processes. It achieves this via signalling through five different subtypes of G protein-coupled receptors (GPCRs), namely S1PR1 to S1PR5. S1PR modulators possess the ability to traverse the blood-brain barrier, potentially leading to direct ac-tions within the Central Nervous System (CNS). S1PR modulators specifically bind to receptors located on the surface of naive and central memory lymphocytes, causing these cells to be trapped or confined within the lymph node. The investigation of the S1P pathway has resulted in the ap-proval of three S1PR modulators, namely fingolimod, siponimod, and ozanimod, as medications for the treatment of patients suffering from Multiple Sclerosis (MS). Additionally, new S1PR modulators, such as ponesimod and etrasimod, are currently being developed and tested in clini-cal trials. Research on the creation of S1P modulators in neurodegenerative illnesses is ongoing as scientists continue to explore novel possibilities for selective S1P modulators. This study provides a concise overview of sphingolipid metabolism, the mechanism by which S1P receptors are af-fected, and the structural characteristics of several small molecule S1P modulators, with a particu-lar focus on their structure-activity connections.

[1]
The burden of neurological conditions in the region of the Americas. 2000-2019. Pan american health organization. 2021.
[2]
Martin, J.B. Molecular basis of the neurodegenerative disorders. N. Engl. J. Med., 1999, 340(25), 1970-1980.
[http://dx.doi.org/10.1056/NEJM199906243402507] [PMID: 10379022]
[3]
Hague, S.M.; Klaffke, S.; Bandmann, O. Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. J. Neurol. Neurosurg. Psychiatry, 2005, 76(8), 1058-1063.
[http://dx.doi.org/10.1136/jnnp.2004.060186] [PMID: 16024878]
[4]
Harding, B.N.; Kariya, S.; Monani, U.R.; Chung, W.K.; Benton, M.; Yum, S.W.; Tennekoon, G.; Finkel, R.S. Spectrum of neuropathophysiology in spinal muscular atrophy type I. J. Neuropathol. Exp. Neurol., 2015, 74(1), 15-24.
[http://dx.doi.org/10.1097/NEN.0000000000000144] [PMID: 25470343]
[5]
Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Primers, 2019, 5(1), 24.
[http://dx.doi.org/10.1038/s41572-019-0074-3] [PMID: 30975995]
[6]
Hoover, B.R.; Reed, M.N.; Su, J.; Penrod, R.D.; Kotilinek, L.A.; Grant, M.K.; Pitstick, R.; Carlson, G.A.; Lanier, L.M.; Yuan, L.L.; Ashe, K.H.; Liao, D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 2010, 68(6), 1067-1081.
[http://dx.doi.org/10.1016/j.neuron.2010.11.030] [PMID: 21172610]
[7]
Milnerwood, A.J.; Raymond, L.A. Early synaptic pathophysiology in neurodegeneration: Insights from Huntington’s disease. Trends Neurosci., 2010, 33(11), 513-523.
[http://dx.doi.org/10.1016/j.tins.2010.08.002] [PMID: 20850189]
[8]
Scott, D.A.; Tabarean, I.; Tang, Y.; Cartier, A.; Masliah, E.; Roy, S. A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J. Neurosci., 2010, 30(24), 8083-8095.
[http://dx.doi.org/10.1523/JNEUROSCI.1091-10.2010] [PMID: 20554859]
[9]
Kovacs, G.G. Molecular pathology of neurodegenerative diseases: Principles and practice. J. Clin. Pathol., 2019, 72(11), 725-735.
[http://dx.doi.org/10.1136/jclinpath-2019-205952] [PMID: 31395625]
[10]
Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol., 2011, 11(6), 403-415.
[http://dx.doi.org/10.1038/nri2974] [PMID: 21546914]
[11]
Maceyka, M.; Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature, 2014, 510(7503), 58-67.
[http://dx.doi.org/10.1038/nature13475] [PMID: 24899305]
[12]
Pyne, S.; Pyne, N.J. Translational aspects of sphingosine 1-phosphate biology. Trends Mol. Med., 2011, 17(8), 463-472.
[http://dx.doi.org/10.1016/j.molmed.2011.03.002] [PMID: 21514226]
[13]
Pattingre, S.; Bauvy, C.; Carpentier, S.; Levade, T.; Levine, B.; Codogno, P. Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J. Biol. Chem., 2009, 284(5), 2719-2728.
[http://dx.doi.org/10.1074/jbc.M805920200] [PMID: 19029119]
[14]
(a) Sanna, M.G.; Wang, S.K.; Gonzalez-Cabrera, P.J.; Don, A.; Marsolais, D.; Matheu, M.P.; Wei, S.H.; Parker, I.; Jo, E.; Cheng, W.C.; Cahalan, M.D.; Wong, C.H.; Rosen, H. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo. Nat. Chem. Biol., 2006, 2(8), 434-441.
[http://dx.doi.org/10.1038/nchembio804] [PMID: 16829954];
(b) Comi, G.; Hartung, H.P.; Bakshi, R.; Williams, I.M.; Wiendl, H. Benefit–risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs, 2017, 77(16), 1755-1768.
[http://dx.doi.org/10.1007/s40265-017-0814-1] [PMID: 28905255]
[15]
(a) Merrill, A.H., Jr Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev., 2011, 111(10), 6387-6422.
[http://dx.doi.org/10.1021/cr2002917] [PMID: 21942574];
(b) Lucaciu, A.; Brunkhorst, R.; Pfeilschifter, J.; Pfeilschifter, W.; Subburayalu, J. The S1P–S1PR axis in neurological disorders—insights into current and future therapeutic perspectives. Cells, 2020, 9(6), 1515.
[http://dx.doi.org/10.3390/cells9061515] [PMID: 32580348]
[16]
Liu, N.J.; Hou, L.P.; Bao, J.J.; Wang, L.J.; Chen, X.Y. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. Plant Commun., 2021, 2(5), 100214.
[http://dx.doi.org/10.1016/j.xplc.2021.100214] [PMID: 34746760]
[17]
Couttas, T.A.; Rustam, Y.H.; Song, H.; Qi, Y.; Teo, J.D.; Chen, J.; Reid, G.E.; Don, A.S. A novel function of sphingosine kinase 2 in the metabolism of sphinga-4,14-diene lipids. Metabolites, 2020, 10(6), 236.
[http://dx.doi.org/10.3390/metabo10060236] [PMID: 32521763]
[18]
Fanani, M.L.; Maggio, B. The many faces (and phases) of ceramide and sphingomyelin I – single lipids. Biophys. Rev., 2017, 9(5), 589-600.
[http://dx.doi.org/10.1007/s12551-017-0297-z] [PMID: 28815463]
[19]
Menzies, F.M.; Fleming, A.; Rubinsztein, D.C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci., 2015, 16(6), 345-357.
[http://dx.doi.org/10.1038/nrn3961] [PMID: 25991442]
[20]
Cuvillier, O.; Pirianov, G.; Kleuser, B.; Vanek, P.G.; Coso, O.A.; Gutkind, J.S.; Spiegel, S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature, 1996, 381(6585), 800-803.
[http://dx.doi.org/10.1038/381800a0] [PMID: 8657285]
[21]
Allende, M.L.; Sipe, L.M.; Tuymetova, G.; Wilson-Henjum, K.L.; Chen, W.; Proia, R.L. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis. J. Biol. Chem., 2013, 288(25), 18381-18391.
[http://dx.doi.org/10.1074/jbc.M113.478420] [PMID: 23637227]
[22]
Wieczorek, I.; Strosznajder, R.P. Recent insight into the role of sphingosine-1-phosphate lyase in neurodegeneration. Int. J. Mol. Sci., 2023, 24(7), 6180.
[http://dx.doi.org/10.3390/ijms24076180] [PMID: 37047151]
[23]
Grassi, S.; Mauri, L.; Prioni, S.; Cabitta, L.; Sonnino, S.; Prinetti, A.; Giussani, P. Sphingosine 1-phosphate receptors and metabolic enzymes as druggable targets for brain diseases. Front. Pharmacol., 2019, 10, 807.
[http://dx.doi.org/10.3389/fphar.2019.00807] [PMID: 31427962]
[24]
Paolini, G.V., Shapland, R.H., van Hoorn, W.P., Mason, J.S. and Hopkins, A.L. Global mappingof pharmacological space. Nature biotechnology, 2006, 24(7), 805-815.
[25]
McGowan, E.M.; Lin, Y.; Chen, S. Targeting chronic inflammation of the digestive system in cancer prevention: Modulators of the bioactive sphingolipid sphingosine-1-phosphate pathway. Cancers, 2022, 14(3), 535.
[http://dx.doi.org/10.3390/cancers14030535] [PMID: 35158806]
[26]
Cartier, A.; Hla, T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science, 2019, 366(6463), eaar5551.
[http://dx.doi.org/10.1126/science.aar5551] [PMID: 31624181]
[27]
Xiao, J. Sphingosine-1-phosphate lyase in the developing and injured nervous system: A Dichotomy? Mol. Neurobiol., 2023, 60(12), 6869-6882.
[http://dx.doi.org/10.1007/s12035-023-03524-3] [PMID: 37507574]
[28]
Mendelson, K.; Evans, T.; Hla, T. Sphingosine 1-phosphate signalling. Development, 2014, 141(1), 5-9.
[http://dx.doi.org/10.1242/dev.094805] [PMID: 24346695]
[29]
Yu, L.; He, L.; Gan, B.; Ti, R.; Xiao, Q.; Yang, X.; Hu, H.; Zhu, L.; Wang, S.; Ren, R. Structural insights into sphingosine-1-phosphate receptor activation. Proc. Natl. Acad. Sci. USA, 2022, 119(16), e2117716119.
[http://dx.doi.org/10.1073/pnas.2117716119] [PMID: 35412894]
[30]
Wang, E.; He, X.; Zeng, M. The role of S1P and the related signaling pathway in the development of tissue fibrosis. Front. Pharmacol., 2019, 9, 1504.
[http://dx.doi.org/10.3389/fphar.2018.01504] [PMID: 30687087]
[31]
Pyne, N.; Pyne, S. Sphingosine 1-phosphate receptor 1 signaling in mammalian cells. Molecules, 2017, 22(3), 344.
[http://dx.doi.org/10.3390/molecules22030344] [PMID: 28241498]
[32]
Citron, M.; Vigo-Pelfrey, C.; Teplow, D.B.; Miller, C.; Schenk, D.; Johnston, J.; Winblad, B.; Venizelos, N.; Lannfelt, L.; Selkoe, D.J. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc. Natl. Acad. Sci. USA, 1994, 91(25), 11993-11997.
[http://dx.doi.org/10.1073/pnas.91.25.11993] [PMID: 7991571]
[33]
Pyne, S.; Chapman, J.; Steele, L.; Pyne, N.J. Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur. J. Biochem., 1996, 237(3), 819-826.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0819p.x] [PMID: 8647130]
[34]
Baker, D.; Forte, E.; Pryce, G.; Kang, A.S.; James, L.K.; Giovannoni, G.; Schmierer, K. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Mult. Scler. Relat. Disord., 2023, 69, 104425.
[http://dx.doi.org/10.1016/j.msard.2022.104425] [PMID: 36470168]
[35]
Urbano, M.; Guerrero, M.; Rosen, H.; Roberts, E. Modulators of the Sphingosine 1-phosphate receptor 1. Bioorg. Med. Chem. Lett., 2013, 23(23), 6377-6389.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.058] [PMID: 24125884]
[36]
Lavieu, G.; Scarlatti, F.; Sala, G.; Carpentier, S.; Levade, T.; Ghidoni, R.; Botti, J.; Codogno, P. Regulation of autophagy by sphingosine kinase 1 and its role in cell survival during nutrient starvation. J. Biol. Chem., 2006, 281(13), 8518-8527.
[http://dx.doi.org/10.1074/jbc.M506182200] [PMID: 16415355]
[37]
Lyapina, E.; Marin, E.; Gusach, A.; Orekhov, P.; Gerasimov, A.; Luginina, A.; Vakhrameev, D.; Ergasheva, M.; Kovaleva, M.; Khusainov, G.; Khorn, P.; Shevtsov, M.; Kovalev, K.; Bukhdruker, S.; Okhrimenko, I.; Popov, P.; Hu, H.; Weierstall, U.; Liu, W.; Cho, Y.; Gushchin, I.; Rogachev, A.; Bourenkov, G.; Park, S.; Park, G.; Hyun, H.J.; Park, J.; Gordeliy, V.; Borshchevskiy, V.; Mishin, A.; Cherezov, V. Structural basis for receptor selectivity and inverse agonism in S1P5 receptors. Nat. Commun., 2022, 13(1), 4736.
[http://dx.doi.org/10.1038/s41467-022-32447-1] [PMID: 35961984]
[38]
Chun, J.; Giovannoni, G.; Hunter, S.F. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: Differential downstream receptor signalling and clinical profile effects. Drugs, 2021, 81(2), 207-231.
[http://dx.doi.org/10.1007/s40265-020-01431-8] [PMID: 33289881]
[39]
Brinkmann, V.; Billich, A.; Baumruker, T.; Heining, P.; Schmouder, R.; Francis, G.; Aradhye, S.; Burtin, P. Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov., 2010, 9(11), 883-897.
[http://dx.doi.org/10.1038/nrd3248] [PMID: 21031003]
[41]
Ward, M.D.; Jones, D.E.; Goldman, M.D. Overview and safety of fingolimod hydrochloride use in patients with multiple sclerosis. Expert Opin. Drug Saf., 2014, 13(7), 989-998.
[http://dx.doi.org/10.1517/14740338.2014.920820] [PMID: 24935480]
[42]
Sanford, M. Fingolimod: A review of its use in relapsing-remitting multiple sclerosis. Drugs, 2014, 74(12), 1411-1433.
[http://dx.doi.org/10.1007/s40265-014-0264-y] [PMID: 25063048]
[43]
La Mantia, L.; Tramacere, I.; Firwana, B.; Pacchetti, I.; Palumbo, R.; Filippini, G. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Database Syst. Rev., 2016, 4(4), CD009371.
[PMID: 27091121]
[44]
Australian government, department of health therapeutic goods administration. AusPMDS: Mayzent. 2019. Available from: https://www.tga.gov.au/apm-summa ry/mayzent Accessed 13th Sept. 2023.
[45]
Kappos, L.; Bar-Or, A.; Cree, B.A.C.; Fox, R.J.; Giovannoni, G.; Gold, R.; Vermersch, P.; Arnold, D.L.; Arnould, S.; Scherz, T.; Wolf, C.; Wallström, E.; Dahlke, F.; Achiron, A.; Achtnichts, L.; Agan, K.; Akman-Demir, G.; Allen, A.B.; Antel, J.P.; Antiguedad, A.R.; Apperson, M.; Applebee, A.M.; Ayuso, G.I.; Baba, M.; Bajenaru, O.; Balasa, R.; Balci, B.P.; Barnett, M.; Bass, A.; Becker, V.U.; Bejinariu, M.; Bergh, F.T.; Bergmann, A.; Bernitsas, E.; Berthele, A.; Bhan, V.; Bischof, F.; Bjork, R.J.; Blevins, G.; Boehringer, M.; Boerner, T.; Bonek, R.; Bowen, J.D.; Bowling, A.; Boyko, A.N.; Boz, C.; Bracknies, V.; Braune, S.; Brescia Morra, V.; Brochet, B.; Brola, W.; Brownstone, P.K.; Brozman, M.; Brunet, D.; Buraga, I.; Burnett, M.; Buttmann, M.; Butzkueven, H.; Cahill, J.; Calkwood, J.C.; Camu, W.; Cascione, M.; Castelnovo, G.; Centonze, D.; Cerqueira, J.; Chan, A.; Cimprichova, A.; Cohan, S.; Comi, G.; Conway, J.; Cooper, J.A.; Corboy, J.; Correale, J.; Costell, B.; Cottrell, D.A.; Coyle, P.K.; Craner, M.; Cui, L.; Cunha, L.; Czlonkowska, A.; da Silva, A.M.; de Sa, J.; de Seze, J.; Debouverie, M.; Debruyne, J.; Decoo, D.; Defer, G.; Derfuss, T.; Deri, N.H.; Dihenia, B.; Dioszeghy, P.; Donath, V.; Dubois, B.; Duddy, M.; Duquette, P.; Edan, G.; Efendi, H.; Elias, S.; Emrich, P.J.; Estruch, B.C.; Evdoshenko, E.P.; Faiss, J.; Fedyanin, A.S.; Feneberg, W.; Fermont, J.; Fernandez, O.F.; Ferrer, F.C.; Fink, K.; Ford, H.; Ford, C.; Francia, A.; Freedman, M.; Frishberg, B.; Galgani, S.; Garmany, G.P.; Gehring, K.; Gitt, J.; Gobbi, C.; Goldstick, L.P.; Gonzalez, R.A.; Grandmaison, F.; Grigoriadis, N.; Grigorova, O.; Grimaldi, L.M.E.; Gross, J.; Gross-Paju, K.; Gudesblatt, M.; Guillaume, D.; Haas, J.; Hancinova, V.; Hancu, A.; Hardiman, O.; Harmjanz, A.; Heidenreich, F.R.; Hengstman, G.J.D.; Herbert, J.; Herring, M.; Hodgkinson, S.; Hoffmann, O.M.; Hofmann, W.E.; Honeycutt, W.D.; Hua, L.H.; Huang, D.; Huang, Y.; Huang, D.R.; Hupperts, R.; Imre, P.; Jacobs, A.K.; Jakab, G.; Jasinska, E.; Kaida, K.; Kalnina, J.; Kaprelyan, A.; Karelis, G.; Karussis, D.; Katz, A.; Khabirov, F.A.; Khatri, B.; Kimura, T.; Kister, I.; Kizlaitiene, R.; Klimova, E.; Koehler, J.; Komatineni, A.; Kornhuber, A.; Kovacs, K.; Koves, A.; Kozubski, W.; Krastev, G.; Krupp, L.B.; Kurca, E.; Lassek, C.; Laureys, G.; Lee, L.; Lensch, E.; Leutmezer, F.; Li, H.; Linker, R.A.; Linnebank, M.; Liskova, P.; Llanera, C.; Lu, J.; Lutterotti, A.; Lycke, J.; Macdonell, R.; Maciejowski, M.; Maeurer, M.; Magzhanov, R.V.; Maida, E-M.; Malciene, L.; Mao-Draayer, Y.; Marfia, G.A.; Markowitz, C.; Mastorodimos, V.; Matyas, K.; Meca-Lallana, J.; Merino, J.A.G.; Mihetiu, I.G.; Milanov, I.; Miller, A.E.; Millers, A.; Mirabella, M.; Mizuno, M.; Montalban, X.; Montoya, L.; Mori, M.; Mueller, S.; Nakahara, J.; Nakatsuji, Y.; Newsome, S.; Nicholas, R.; Nielsen, A.S.; Nikfekr, E.; Nocentini, U.; Nohara, C.; Nomura, K.; Odinak, M.M.; Olsson, T.; van Oosten, B.W.; Oreja-Guevara, C.; Oschmann, P.; Overell, J.; Pachner, A.; Panczel, G.; Pandolfo, M.; Papeix, C.; Patrucco, L.; Pelletier, J.; Piedrabuena, R.; Pless, M.; Polzer, U.; Pozsegovits, K.; Rastenyte, D.; Rauer, S.; Reifschneider, G.; Rey, R.; Rizvi, S.A.; Robertson, D.; Rodriguez, J.M.; Rog, D.; Roshanisefat, H.; Rowe, V.; Rozsa, C.; Rubin, S.; Rusek, S.; Saccà, F.; Saida, T.; Salgado, A.V.; Sanchez, V.E.F.; Sanders, K.; Satori, M.; Sazonov, D.V.; Scarpini, E.A.; Schlegel, E.; Schluep, M.; Schmidt, S.; Scholz, E.; Schrijver, H.M.; Schwab, M.; Schwartz, R.; Scott, J.; Selmaj, K.; Shafer, S.; Sharrack, B.; Shchukin, I.A.; Shimizu, Y.; Shotekov, P.; Siever, A.; Sigel, K-O.; Silliman, S.; Simo, M.; Simu, M.; Sinay, V.; Siquier, A.E.; Siva, A.; Skoda, O.; Solomon, A.; Stangel, M.; Stefoski, D.; Steingo, B.; Stolyarov, I.D.; Stourac, P.; Strassburger-Krogias, K.; Strauss, E.; Stuve, O.; Tarnev, I.; Tavernarakis, A.; Tello, C.R.; Terzi, M.; Ticha, V.; Ticmeanu, M.; Tiel-Wilck, K.; Toomsoo, T.; Tubridy, N.; Tullman, M.J.; Tumani, H.; Turcani, P.; Turner, B.; Uccelli, A.; Urtaza, F.J.O.; Vachova, M.; Valikovics, A.; Walter, S.; Van Wijmeersch, B.; Vanopdenbosch, L.; Weber, J.R.; Weiss, S.; Weissert, R.; Vermersch, P.; West, T.; Wiendl, H.; Wiertlewski, S.; Wildemann, B.; Willekens, B.; Visser, L.H.; Vorobeychik, G.; Xu, X.; Yamamura, T.; Yang, Y.N.; Yelamos, S.M.; Yeung, M.; Zacharias, A.; Zelkowitz, M.; Zettl, U.; Zhang, M.; Zhou, H.; Zieman, U.; Ziemssen, T. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet, 2018, 391(10127), 1263-1273.
[http://dx.doi.org/10.1016/S0140-6736(18)30475-6] [PMID: 29576505]
[46]
European Medicines Agency. Mayzent: EPAR—product information. 2020. Available from: https://www.ema.europa.eu/en/documents/productinformation/mayzent-epar-product-information_en.pdf Accessed 15 September 2020.
[47]
Rosen, D. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 364(6435), 362.
[http://dx.doi.org/10.1038/364362c0] [PMID: 8332197]
[48]
DeJesus-Hernandez, M.; Mackenzie, I.R.; Boeve, B.F.; Boxer, A.L.; Baker, M.; Rutherford, N.J.; Nicholson, A.M.; Finch, N.A.; Flynn, H.; Adamson, J.; Kouri, N.; Wojtas, A.; Sengdy, P.; Hsiung, G.Y.R.; Karydas, A.; Seeley, W.W.; Josephs, K.A.; Coppola, G.; Geschwind, D.H.; Wszolek, Z.K.; Feldman, H.; Knopman, D.S.; Petersen, R.C.; Miller, B.L.; Dickson, D.W.; Boylan, K.B.; Graff-Radford, N.R.; Rademakers, R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72(2), 245-256.
[http://dx.doi.org/10.1016/j.neuron.2011.09.011] [PMID: 21944778]
[49]
Muñoz-Sáez, E.; de Munck García, E.; Arahuetes Portero, R.M.; Vicente, F.; Ortiz-López, F.J.; Cantizani, J.; Miguel, B.G. Neuroprotective role of sphingosine-1-phosphate in L-BMAA treated neuroblastoma cells (SH-SY5Y). Neurosci. Lett., 2015, 593, 83-89.
[http://dx.doi.org/10.1016/j.neulet.2015.03.010] [PMID: 25769802]
[50]
Potenza, R.L.; De Simone, R.; Armida, M.; Mazziotti, V.; Pèzzola, A.; Popoli, P.; Minghetti, L. Fingolimod: A disease-modifier drug in a mouse model of amyotrophic lateral sclerosis. Neurotherapeutics, 2016, 13(4), 918-927.
[http://dx.doi.org/10.1007/s13311-016-0462-2] [PMID: 27456702]
[51]
Zhou, Y.; Lekic, T.; Fathali, N.; Ostrowski, R.P.; Martin, R.D.; Tang, J.; Zhang, J.H. Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway. Stroke, 2010, 41(7), 1521-1527.
[http://dx.doi.org/10.1161/STROKEAHA.110.583757] [PMID: 20508187]
[52]
Schuhmann, M.K.; Krstic, M.; Kleinschnitz, C.; Fluri, F. Fingolimod (FTY720) reduces cortical infarction and neurological deficits during ischemic stroke through potential maintenance of microvascular patency. Curr. Neurovasc. Res., 2016, 13(4), 277-282.
[http://dx.doi.org/10.2174/1567202613666160823152446] [PMID: 27558201]
[53]
Hasegawa, Y.; Suzuki, H.; Altay, O.; Rolland, W.; Zhang, J.H. Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats. Transl. Stroke Res., 2013, 4(5), 524-532.
[http://dx.doi.org/10.1007/s12975-013-0260-7] [PMID: 24187597]
[54]
Czech, B.; Pfeilschifter, W.; Mazaheri-Omrani, N.; Strobel, M.A.; Kahles, T.; Neumann-Haefelin, T.; Rami, A.; Huwiler, A.; Pfeilschifter, J. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem. Biophys. Res. Commun., 2009, 389(2), 251-256.
[http://dx.doi.org/10.1016/j.bbrc.2009.08.142] [PMID: 19720050]
[55]
Ichijo, M.; Ishibashi, S.; Li, F.; Yui, D.; Miki, K.; Mizusawa, H.; Yokota, T. Sphingosine-1-phosphate receptor-1 selective agonist enhances collateral growth and protects against subsequent stroke. PLoS One, 2015, 10(9), e0138029.
[http://dx.doi.org/10.1371/journal.pone.0138029] [PMID: 26367258]
[56]
Jang, S.; Kim, D.; Lee, Y.; Moon, S.; Oh, S. Modulation of sphingosine 1-phosphate and tyrosine hydroxylase in the stress-induced anxiety. Neurochem. Res., 2011, 36(2), 258-267.
[http://dx.doi.org/10.1007/s11064-010-0313-1] [PMID: 21076868]
[57]
Mühle, C.; Reichel, M.; Gulbins, E.; Kornhuber, J. Sphingolipids in psychiatric disorders and pain syndromes. Handb. Exp. Pharmacol., 2013, 216(216), 431-456.
[http://dx.doi.org/10.1007/978-3-7091-1511-4_22] [PMID: 23563670]
[58]
Kucharska-Mazur, J.; Tarnowski, M.; Dołęgowska, B.; Budkowska, M.; Pędziwiatr, D.; Jabłoński, M.; Pełka-Wysiecka, J.; Kazimierczak, A.; Ratajczak, M.Z.; Samochowiec, J. Novel evidence for enhanced stem cell trafficking in antipsychotic-naïve subjects during their first psychotic episode. J. Psychiatr. Res., 2014, 49, 18-24.
[http://dx.doi.org/10.1016/j.jpsychires.2013.10.016] [PMID: 24246416]
[59]
Karbalaee, M.; Jameie, M.; Amanollahi, M.; TaghaviZanjani, F.; Parsaei, M.; Basti, F.A.; Mokhtari, S.; Moradi, K.; Ardakani, M.R.K.; Akhondzadeh, S. Efficacy and safety of adjunctive therapy with fingolimod in patients with schizophrenia: A randomized, double-blind, placebo-controlled clinical trial. Schizophr. Res., 2023, 254, 92-98.
[http://dx.doi.org/10.1016/j.schres.2023.02.020] [PMID: 36805834]
[60]
Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet., 1999, 23(2), 185-188.
[http://dx.doi.org/10.1038/13810] [PMID: 10508514]
[61]
O'Sullivan, S.; Dev, K.K. Sphingosine-1-phosphate receptor therapies: Advances in clinical trials for CNS-related diseases. Neuropharmacology, 2017, 113(Pt B), 597-607.
[62]
Asle-Rousta, M.; Kolahdooz, Z.; Oryan, S.; Ahmadiani, A.; Dargahi, L. FTY720 (fingolimod) attenuates beta-amyloid peptide (Aβ42)-induced impairment of spatial learning and memory in rats. J. Mol. Neurosci., 2013, 50(3), 524-532.
[http://dx.doi.org/10.1007/s12031-013-9979-6] [PMID: 23435938]
[63]
Tani, M.; Ito, M.; Igarashi, Y. Ceramide/sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell. Signal., 2007, 19(2), 229-237.
[http://dx.doi.org/10.1016/j.cellsig.2006.07.001] [PMID: 16963225]
[64]
Filippov, V.; Song, M.A.; Zhang, K.; Vinters, H.V.; Tung, S.; Kirsch, W.M.; Yang, J.; Duerksen-Hughes, P.J. Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J. Alzheimers Dis., 2012, 29(3), 537-547.
[http://dx.doi.org/10.3233/JAD-2011-111202] [PMID: 22258513]
[65]
Hemmati, F.; Dargahi, L.; Nasoohi, S.; Omidbakhsh, R.; Mohamed, Z.; Chik, Z.; Naidu, M.; Ahmadiani, A. Neurorestorative effect of FTY720 in a rat model of Alzheimer’s disease: Comparison with Memantine. Behav. Brain Res., 2013, 252, 415-421.
[http://dx.doi.org/10.1016/j.bbr.2013.06.016] [PMID: 23777795]
[66]
Asle-Rousta, M.; Kolahdooz, Z.; Dargahi, L.; Ahmadiani, A.; Nasoohi, S. Prominence of central sphingosine-1-phosphate receptor-1 in attenuating aβ-induced injury by fingolimod. J. Mol. Neurosci., 2014, 54(4), 698-703.
[http://dx.doi.org/10.1007/s12031-014-0423-3] [PMID: 25239520]
[67]
Di Pardo, A.; Amico, E.; Favellato, M.; Castrataro, R.; Fucile, S.; Squitieri, F.; Maglione, V. FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease. Hum. Mol. Genet., 2014, 23(9), 2251-2265.
[http://dx.doi.org/10.1093/hmg/ddt615] [PMID: 24301680]
[68]
Miguez, A.; García-Díaz Barriga, G.; Brito, V.; Straccia, M.; Giralt, A.; Ginés, S.; Canals, J.M.; Alberch, J. Fingolimod (FTY720) enhances hippocampal synaptic plasticity and memory in Huntington’s disease by preventing p75 NTR up-regulation and astrocyte-mediated inflammation. Hum. Mol. Genet., 2015, 24(17), 4958-4970.
[http://dx.doi.org/10.1093/hmg/ddv218] [PMID: 26063761]
[69]
Pyszko, J.A.; Strosznajder, J.B. Original article The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson’s disease. Folia Neuropathol., 2014, 3(3), 260-269.
[http://dx.doi.org/10.5114/fn.2014.45567] [PMID: 25310737]
[70]
Vidal-Martinez, G.; Segura-Ulate, I.; Yang, B.; Diaz-Pacheco, V.; Barragan, J.A.; De-Leon Esquivel, J.; Chaparro, S.A.; Vargas-Medrano, J.; Perez, R.G. FTY720-mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases gdnf expression in multiple system atrophy mouse models. Exp. Neurol., 2020, 325, 113120.
[http://dx.doi.org/10.1016/j.expneurol.2019.113120] [PMID: 31751571]
[71]
Vargas-Medrano, J.; Krishnamachari, S.; Villanueva, E.; Godfrey, W.H.; Lou, H.; Chinnasamy, R.; Arterburn, J.B.; Perez, R.G. Novel FTY720-based compounds stimulate neurotrophin expression and phosphatase activity in dopaminergic cells. ACS Med. Chem. Lett., 2014, 5(7), 782-786.
[http://dx.doi.org/10.1021/ml500128g] [PMID: 25050165]
[72]
Zhao, P.; Yang, X.; Yang, L.; Li, M.; Wood, K.; Liu, Q.; Zhu, X. Neuroprotective effects of fingolimod in mouse models of Parkinson’s disease. FASEB J., 2017, 31(1), 172-179.
[http://dx.doi.org/10.1096/fj.201600751r] [PMID: 27671228]
[73]
Vidal-Martínez, G.; Vargas-Medrano, J.; Gil-Tommee, C.; Medina, D.; Garza, N.T.; Yang, B.; Segura-Ulate, I.; Dominguez, S.J.; Perez, R.G. FTY720/fingolimod reduces synucleinopathy and improves gut motility in A53T mice. J. Biol. Chem., 2016, 291(39), 20811-20821.
[http://dx.doi.org/10.1074/jbc.M116.744029] [PMID: 27528608]
[74]
Novgorodov, S.A.; Riley, C.L.; Yu, J.; Borg, K.T.; Hannun, Y.A.; Proia, R.L.; Kindy, M.S.; Gudz, T.I. Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury. J. Biol. Chem., 2014, 289(19), 13142-13154.
[http://dx.doi.org/10.1074/jbc.M113.530311] [PMID: 24659784]
[75]
Zhang, Z.; Fauser, U.; Schluesener, H.J. Early attenuation of lesional interleukin‐16 up‐regulation by dexamethasone and FTY720 in experimental traumatic brain injury. Neuropathol. Appl. Neurobiol., 2008, 34(3), 330-339.
[http://dx.doi.org/10.1111/j.1365-2990.2007.00893.x] [PMID: 17983426]
[76]
Mencl, S.; Hennig, N.; Hopp, S.; Schuhmann, M.K.; Albert-Weissenberger, C.; Sirén, A.L.; Kleinschnitz, C. FTY720 does not protect from traumatic brain injury in mice despite reducing posttraumatic inflammation. J. Neuroimmunol., 2014, 274(1-2), 125-131.
[http://dx.doi.org/10.1016/j.jneuroim.2014.07.010] [PMID: 25081505]
[77]
Zhang, Z.; Zhang, Z.; Fauser, U.; Artelt, M.; Burnet, M.; Schluesener, H.J. FTY720 attenuates accumulation of EMAP‐II + and MHC‐II + monocytes in early lesions of rat traumatic brain injury. J. Cell. Mol. Med., 2007, 11(2), 307-314.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00019.x] [PMID: 17488479]
[78]
Zhang, L.; Ding, K.; Wang, H.; Wu, Y.; Xu, J. Traumatic brain injury-induced neuronal apoptosis is reduced through modulation of PI3K and autophagy pathways in mouse by FTY720. Cell. Mol. Neurobiol., 2016, 36(1), 131-142.
[http://dx.doi.org/10.1007/s10571-015-0227-1] [PMID: 26099903]
[79]
Gao, F.; Liu, Y.; Li, X.; Wang, Y.; Wei, D.; Jiang, W. Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol. Biochem. Behav., 2012, 103(2), 187-196.
[http://dx.doi.org/10.1016/j.pbb.2012.08.025] [PMID: 22960129]
[80]
Hodgson, D.M.; Taylor, A.N.; Zhang, Z.; Rosenberg, A. Lysosphingomyelin prevents behavioral aberrations and hippocampal neuron loss induced by the metabotropic glutamate receptor agonist quisqualate. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1999, 23(5), 877-892.
[http://dx.doi.org/10.1016/S0278-5846(99)00047-0] [PMID: 10509381]
[81]
Vanni, N.; Fruscione, F.; Ferlazzo, E.; Striano, P.; Robbiano, A.; Traverso, M.; Sander, T.; Falace, A.; Gazzerro, E.; Bramanti, P.; Bielawski, J.; Fassio, A.; Minetti, C.; Genton, P.; Zara, F. Impairment of ceramide synthesis causes a novel progressive myoclonus epilepsy. Ann. Neurol., 2014, 76(2), 206-212.
[http://dx.doi.org/10.1002/ana.24170] [PMID: 24782409]
[82]
Mikati, M.A.; Abi-Habib, R.J.; El Sabban, M.E.; Dbaibo, G.S.; Kurdi, R.M.; Kobeissi, M.; Farhat, F.; Asaad, W. Hippocampal programmed cell death after status epilepticus: Evidence for NMDA-receptor and ceramide-mediated mechanisms. Epilepsia, 2003, 44(3), 282-291.
[http://dx.doi.org/10.1046/j.1528-1157.2003.22502.x] [PMID: 12614382]
[83]
MacLennan, A.J.; Carney, P.R.; Zhu, W.J.; Chaves, A.H.; Garcia, J.; Grimes, J.R.; Anderson, K.J.; Roper, S.N.; Lee, N. An essential role for the H218/AGR16/Edg‐5/LP B2 sphingosine 1‐phosphate receptor in neuronal excitability. Eur. J. Neurosci., 2001, 14(2), 203-209.
[http://dx.doi.org/10.1046/j.0953-816x.2001.01634.x] [PMID: 11553273]
[84]
Akahoshi, N.; Ishizaki, Y.; Yasuda, H.; Murashima, Y.L.; Shinba, T.; Goto, K.; Himi, T.; Chun, J.; Ishii, I. Frequent spontaneous seizures followed by spatial working memory/anxiety deficits in mice lacking sphingosine 1-phosphate receptor 2. Epilepsy Behav., 2011, 22(4), 659-665.
[http://dx.doi.org/10.1016/j.yebeh.2011.09.002] [PMID: 22019019]
[85]
Nakamura, T.; Asano, M.; Sekiguchi, Y.; Mizuno, Y.; Tamaki, K.; Kimura, T.; Nara, F.; Kawase, Y.; Shimozato, T.; Doi, H.; Kagari, T.; Tomisato, W.; Inoue, R.; Nagasaki, M.; Yuita, H.; Oguchi-Oshima, K.; Kaneko, R.; Watanabe, N.; Abe, Y.; Nishi, T. Discovery of CS-2100, a potent, orally active and S1P3-sparing S1P1 agonist. Bioorg. Med. Chem. Lett., 2012, 22(4), 1788-1792.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.019] [PMID: 22264485]
[86]
Groves, A.; Kihara, Y.; Chun, J. Fingolimod: Direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J. Neurol. Sci., 2013, 328(1-2), 9-18.
[http://dx.doi.org/10.1016/j.jns.2013.02.011] [PMID: 23518370]
[87]
Brinkmann, V. FTY720 (fingolimod) in multiple sclerosis: Therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol., 2009, 158(5), 1173-1182.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00451.x] [PMID: 19814729]
[88]
Constantinescu, V.; Haase, R.; Akgün, K.; Ziemssen, T. S1P receptor modulators and the cardiovascular autonomic nervous system in multiple sclerosis: A narrative review. Ther. Adv. Neurol. Disord., 2022, 15.
[http://dx.doi.org/10.1177/17562864221133163] [PMID: 36437849]
[89]
Nishi, T.; Miyazaki, S.; Takemoto, T.; Suzuki, K.; Iio, Y.; Nakajima, K.; Ohnuki, T.; Kawase, Y.; Nara, F.; Inaba, S.; Izumi, T.; Yuita, H.; Oshima, K.; Doi, H.; Inoue, R.; Tomisato, W.; Kagari, T.; Shimozato, T. Discovery of CS-0777: A potent, selective, and orally active S1P 1 agonist. ACS Med. Chem. Lett., 2011, 2(5), 368-372.
[http://dx.doi.org/10.1021/ml100301k] [PMID: 24900318]
[90]
Park, S.J.; Yeon, S.K.; Kim, Y.; Kim, H.J.; Kim, S.; Kim, J.; Choi, J.W.; Kim, B.; Lee, E.H.; Kim, R.; Seo, S.H.; Lee, J.; Kim, J.W.; Lee, H.Y.; Hwang, H.; Bahn, Y.S.; Cheong, E.; Park, J.H.; Park, K.D. Discovery of novel sphingosine-1-phosphate-1 receptor agonists for the treatment of multiple sclerosis. J. Med. Chem., 2022, 65(4), 3539-3562.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01979] [PMID: 35077170]
[91]
Cruz-Orengo, L.; Daniels, B.P.; Dorsey, D.; Basak, S.A.; Grajales-Reyes, J.G.; McCandless, E.E.; Piccio, L.; Schmidt, R.E.; Cross, A.H.; Crosby, S.D.; Klein, R.S. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J. Clin. Invest., 2014, 124(6), 2571-2584.
[http://dx.doi.org/10.1172/JCI73408] [PMID: 24812668]
[92]
Pitman, M.R.; Lewis, A.C.; Davies, L.T.; Moretti, P.A.B.; Anderson, D.; Creek, D.J.; Powell, J.A.; Pitson, S.M. The sphingosine 1-phosphate receptor 2/4 antagonist JTE-013 elicits off-target effects on sphingolipid metabolism. Sci. Rep., 2022, 12(1), 454.
[http://dx.doi.org/10.1038/s41598-021-04009-w] [PMID: 35013382]
[93]
Satsu, H.; Schaeffer, M.T.; Guerrero, M.; Saldana, A.; Eberhart, C.; Hodder, P.; Cayanan, C.; Schürer, S.; Bhhatarai, B.; Roberts, E.; Rosen, H.; Brown, S.J. A sphingosine 1-phosphate receptor 2 selective allosteric agonist. Bioorg. Med. Chem., 2013, 21(17), 5373-5382.
[http://dx.doi.org/10.1016/j.bmc.2013.06.012] [PMID: 23849205]
[94]
Jin, J.; Hu, J.; Zhou, W.; Wang, X.; Xiao, Q.; Xue, N.; Yin, D.; Chen, X. Development of a selective S1P1 receptor agonist, Syl930, as a potential therapeutic agent for autoimmune encephalitis. Biochem. Pharmacol., 2014, 90(1), 50-61.
[http://dx.doi.org/10.1016/j.bcp.2014.04.010] [PMID: 24780445]
[95]
Jin, J.; Xue, N.; Liu, Y.; Fu, R.; Wang, M.; Ji, M.; Lai, F.; Hu, J.; Wang, X.; Xiao, Q.; Zhang, X.; Yin, D.; Bai, L.; Chen, X.; Rao, S. A novel S1P1 modulator IMMH002 ameliorates psoriasis in multiple animal models. Acta Pharm. Sin. B, 2020, 10(2), 276-288.
[http://dx.doi.org/10.1016/j.apsb.2019.11.006] [PMID: 32082973]
[96]
Imeri, F.; Stepanovska Tanturovska, B.; Zivkovic, A.; Enzmann, G.; Schwalm, S.; Pfeilschifter, J.; Homann, T.; Kleuser, B.; Engelhardt, B.; Stark, H.; Huwiler, A. Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology, 2021, 186, 108464.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108464] [PMID: 33460688]
[97]
Subei, A.M.; Cohen, J.A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis. CNS Drugs, 2015, 29(7), 565-575.
[http://dx.doi.org/10.1007/s40263-015-0261-z] [PMID: 26239599]
[98]
Park, S.J.; Kim, J.; Kim, J.; Kim, Y.; Lee, E.H.; Kim, H.J.; Kim, S.; Kim, B.; Kim, R.; Choi, J.W.; Park, J.H.; Park, K.D. Synthesis and evaluation of serinolamide derivatives as sphingosine-1-phosphate-1 (S1P1) receptor agonists. Molecules, 2022, 27(9), 2818.
[http://dx.doi.org/10.3390/molecules27092818] [PMID: 35566164]
[99]
Lescop, C.; Müller, C.; Mathys, B.; Birker, M.; de Kanter, R.; Kohl, C.; Hess, P.; Nayler, O.; Rey, M.; Sieber, P.; Steiner, B.; Weller, T.; Bolli, M.H. Novel S1P 1 receptor agonists – Part 4: Alkylaminomethyl substituted aryl head groups. Eur. J. Med. Chem., 2016, 116, 222-238.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.048]
[100]
Li, Z.; Chen, W.; Hale, J.J.; Lynch, C.L.; Mills, S.G.; Hajdu, R.; Keohane, C.A.; Rosenbach, M.J.; Milligan, J.A.; Shei, G.J.; Chrebet, G.; Parent, S.A.; Bergstrom, J.; Card, D.; Forrest, M.; Quackenbush, E.J.; Wickham, L.A.; Vargas, H.; Evans, R.M.; Rosen, H.; Mandala, S. Discovery of potent 3,5-diphenyl-1,2,4-oxadiazole sphingosine-1-phosphate-1 (S1P1) receptor agonists with exceptional selectivity against S1P2 and S1P3. J. Med. Chem., 2005, 48(20), 6169-6173.
[http://dx.doi.org/10.1021/jm0503244] [PMID: 16190743]
[101]
Hale, J.J.; Yan, L.; Neway, W.E.; Hajdu, R.; Bergstrom, J.D.; Milligan, J.A.; Shei, G.J.; Chrebet, G.L.; Thornton, R.A.; Card, D.; Rosenbach, M.; HughRosen; Mandala, S. Synthesis, stereochemical determination and biochemical characterization of the enantiomeric phosphate esters of the novel immunosuppressive agent FTY720. Bioorg. Med. Chem., 2004, 12(18), 4803-4807.
[http://dx.doi.org/10.1016/j.bmc.2004.07.020] [PMID: 15336258]
[102]
Sanna, M.G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.Y.; Peterson, M.S.; Webb, B.; Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J. Biol. Chem., 2004, 279(14), 13839-13848.
[http://dx.doi.org/10.1074/jbc.M311743200] [PMID: 14732717]
[103]
Tiper, I.V.; East, J.E.; Subrahmanyam, P.B.; Webb, T.J. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. Pathog. Dis., 2016, 74(6), ftw063.
[http://dx.doi.org/10.1093/femspd/ftw063] [PMID: 27354294]
[104]
Zhang, K.; Tran, C.; Alami, M.; Hamze, A.; Provot, O. Synthesis and biological activities of pyrazino[1,2-a]indole and Pyrazino[1,2-a]indol-1-one derivatives. Pharmaceuticals, 2021, 14(8), 779.
[http://dx.doi.org/10.3390/ph14080779] [PMID: 34451876]
[105]
Pan, S.; Gray, N.S.; Gao, W.; Mi, Y.; Fan, Y.; Wang, X.; Tuntland, T.; Che, J.; Lefebvre, S.; Chen, Y.; Chu, A.; Hinterding, K.; Gardin, A.; End, P.; Heining, P.; Bruns, C.; Cooke, N.G.; Nuesslein-Hildesheim, B. Discovery of BAF312 (Siponimod), a potent and selective S1P receptor modulator. ACS Med. Chem. Lett., 2013, 4(3), 333-337.
[http://dx.doi.org/10.1021/ml300396r] [PMID: 24900670]
[106]
Hobson, A.D.; Harris, C.M.; van der Kam, E.L.; Turner, S.C.; Abibi, A.; Aguirre, A.L.; Bousquet, P.; Kebede, T.; Konopacki, D.B.; Gintant, G.; Kim, Y.; Larson, K.; Maull, J.W.; Moore, N.S.; Shi, D.; Shrestha, A.; Tang, X.; Zhang, P.; Sarris, K.K. Discovery of A-971432, an orally bioavailable selective sphingosine-1-phosphate receptor 5 (S1P 5 ) agonist for the potential treatment of neurodegenerative disorders. J. Med. Chem., 2015, 58(23), 9154-9170.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00928] [PMID: 26509640]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy