Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance in Cancer Cells

In Press, (this is not the final "Version of Record"). Available online 26 April, 2024
Author(s): Fatemeh Jalali-Zefrei, Seyed Mehdi Mousavi, Kourosh Delpasand, Mohammad Shourmij and Soghra Farzipour*
Published on: 26 April, 2024

DOI: 10.2174/0115665232301727240422092311

Price: $95

Abstract

Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in in vitro and preclinical research.

[1]
Zhou T, Zhang LY, He JZ, et al. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol 2023; 14: 1133899.
[http://dx.doi.org/10.3389/fimmu.2023.1133899] [PMID: 36865554]
[2]
Farzipour S, Jalali F, Alvandi M, Shaghaghi Z. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiov Hematol Age Med Chem 2023; 21(1): 2-9.
[3]
May JM, Bylicky M, Chopra S, Coleman CN, Aryankalayil MJ. Long and short non-coding RNA and radiation response: A review. Transl Res 2021; 233: 162-79.
[http://dx.doi.org/10.1016/j.trsl.2021.02.005] [PMID: 33582242]
[4]
Zhang X, Xie K, Zhou H, et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer 2020; 19(1): 47.
[http://dx.doi.org/10.1186/s12943-020-01171-z] [PMID: 32122355]
[5]
Raeispour M, Talebpour Amiri F, Farzipour S, Ghasemi A, Hosseinimehr SJ. Febuxostat, an inhibitor of xanthine oxidase, ameliorates ionizing radiation-induced lung injury by suppressing caspase-3, oxidative stress and NF-κB. Drug Chem Toxicol 2022; 45(6): 2586-93.
[http://dx.doi.org/10.1080/01480545.2021.1977315] [PMID: 34538151]
[6]
Panwar B, Arora A, Raghava GPS. Prediction and classification of ncRNAs using structural information. BMC Genomics 2014; 15(1): 127.
[http://dx.doi.org/10.1186/1471-2164-15-127] [PMID: 24521294]
[7]
Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and Long Non-Coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol 2020; 15(3): 261-78.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[8]
Malek E, Jagannathan S, Driscoll JJ. Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 2014; 5(18): 8027-38.
[http://dx.doi.org/10.18632/oncotarget.2469] [PMID: 25275300]
[9]
Szymanowska A, Rodriguez-Aguayo C, Lopez-Berestein G, Amero P. Non-Coding RNAs: Foes or friends for targeting tumor microenvironment. Noncoding RNA 2023; 9(5): 52.
[http://dx.doi.org/10.3390/ncrna9050052] [PMID: 37736898]
[10]
Mofed D, Omran JI, Sabet S, Baiomy AA, Emara M, Salem TZ. The regulatory role of long non- coding RNAs as a novel controller of immune response against cancer cells. Mol Biol Rep 2022; 49(12): 11775-93.
[http://dx.doi.org/10.1007/s11033-022-07947-4] [PMID: 36207500]
[11]
Wang J, Zhu S, Meng N, He Y, Lu R, Yan GR. ncRNA-encoded peptides or proteins and cancer. Mol Ther 2019; 27(10): 1718-25.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.001] [PMID: 31526596]
[12]
Yang Y, Gao X, Zhang M, et al. Novel Role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 2018; 110(3): 304-15.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[13]
Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018; 9(1): 4475.
[http://dx.doi.org/10.1038/s41467-018-06862-2] [PMID: 30367041]
[14]
Zhao L, Lu X, Cao Y. MicroRNA and signal transduction pathways in tumor radiation response. Cell Signal 2013; 25(7): 1625-34.
[http://dx.doi.org/10.1016/j.cellsig.2013.04.004] [PMID: 23602933]
[15]
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5(1): 60.
[http://dx.doi.org/10.1038/s41392-020-0150-x] [PMID: 32355263]
[16]
Xiao-chun W, Wei W, Zhu-Bo Z, Jing Z, Xiao-Gang T, Jian-Chao L. Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer. Radiat Oncol 2013; 8(1): 146.
[http://dx.doi.org/10.1186/1748-717X-8-146] [PMID: 23777591]
[17]
Josson S, Sung SY, Lao K, Chung LWK, Johnstone PAS. Radiation modulation of MicroRNA in prostate cancer cell lines. Prostate 2008; 68(15): 1599-606.
[http://dx.doi.org/10.1002/pros.20827] [PMID: 18668526]
[18]
Okazaki R. Role of p53 in regulating radiation responses. Life 2022; 12(7): 1099.
[http://dx.doi.org/10.3390/life12071099] [PMID: 35888186]
[19]
Wu W, Zhang S, He J. The mechanism of long non-coding RNA in cancer radioresistance/radiosensitivity: A systematic review. Front Pharmacol 2022; 13: 879704.
[http://dx.doi.org/10.3389/fphar.2022.879704] [PMID: 35600868]
[20]
Zhang S, Wang B, Xiao H, et al. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR -449b-5p. Thorac Cancer 2020; 11(7): 1801-16.
[http://dx.doi.org/10.1111/1759-7714.13450] [PMID: 32374522]
[21]
Xiu D, Liu L, Cheng M, Sun X, Ma X. Knockdown of lncRNA TUG1 enhances radiosensitivity of prostate cancer via the TUG1/miR-139-5p/SMC1A Axis. OncoTargets Ther 2020; 13: 2319-31.
[http://dx.doi.org/10.2147/OTT.S236860] [PMID: 32256083]
[22]
Gao ZQ, Wang J, Chen DH, et al. Long non-coding RNA GAS5 antagonizes the chemoresistance of pancreatic cancer cells through down-regulation of miR-181c-5p. Biomed Pharmacother 2018; 97: 809-17.
[http://dx.doi.org/10.1016/j.biopha.2017.10.157] [PMID: 29112934]
[23]
Zhou JM, Liang R, Zhu SY, et al. LncRNA WWC2-AS1 functions AS a novel competing endogenous RNA in the regulation of FGF2 expression by sponging miR-16 in radiation-induced intestinal fibrosis. BMC Cancer 2019; 19(1): 647.
[http://dx.doi.org/10.1186/s12885-019-5754-6] [PMID: 31262262]
[24]
Brownmiller T, Juric JA, Ivey AD, et al. Y Chromosome LncRNA are involved in radiation response of male non–small cell lung cancer cells. Cancer Res 2024; 80(19): 4046-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-4032]
[25]
Han D, Wang J, Cheng G. LncRNA NEAT1 enhances the radio-resistance of cervical cancer via miR-193b-3p/CCND1 axis. Oncotarget 2018; 9(2): 2395-409.
[http://dx.doi.org/10.18632/oncotarget.23416] [PMID: 29416780]
[26]
Lin LC, Lee HT, Chien PJ, et al. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1. Int J Med Sci 2020; 17(14): 2214-24.
[http://dx.doi.org/10.7150/ijms.45706] [PMID: 32922184]
[27]
Ma X, Zhou J, Liu J, et al. LncRNA ANCR promotes proliferation and radiation resistance of nasopharyngeal carcinoma by inhibiting PTEN expression. OncoTargets Ther 2018; 11: 8399-408.
[http://dx.doi.org/10.2147/OTT.S182573] [PMID: 30568463]
[28]
Zhang N, Zeng X, Sun C, et al. LncRNA LINC00963 promotes tumorigenesis and radioresistance in breast cancer by sponging miR-324-3p and inducing ACK1 Expression. Mol Ther Nucleic Acids 2019; 18: 871-81.
[http://dx.doi.org/10.1016/j.omtn.2019.09.033] [PMID: 31751910]
[29]
Ghiam AF, Taeb S, Huang X, et al. Long non-coding RNA urothelial carcinoma associated 1 (UCA1) mediates radiation response in prostate cancer. Oncotarget 2017; 8(3): 4668-89.
[http://dx.doi.org/10.18632/oncotarget.13576] [PMID: 27902466]
[30]
Liu SJ, Malatesta M, Lien BV, et al. CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma. Genome Biol 2020; 21(1): 83.
[http://dx.doi.org/10.1186/s13059-020-01995-4] [PMID: 32234056]
[31]
Li Y, Tong Y, Liu J, Lou J. The role of MicroRNA in DNA damage response. Front Genet 2022; 13: 850038.
[http://dx.doi.org/10.3389/fgene.2022.850038] [PMID: 35591858]
[32]
Valenti F, Sacconi A, Ganci F, et al. The miR-205-5p/BRCA1/RAD17 axis promotes genomic instability in head and neck squamous cell carcinomas. Cancers 2019; 11(9): 1347.
[http://dx.doi.org/10.3390/cancers11091347] [PMID: 31514456]
[33]
Xu T, Xie M, Jing X, Cui J, Wu X, Shu Y. Crosstalk between environmental inflammatory stimuli and non-coding rna in cancer occurrence and development. Cancers 2021; 13(17): 4436.
[http://dx.doi.org/10.3390/cancers13174436] [PMID: 34503246]
[34]
Han T, Jing X, Bao J, et al. H. pylori infection alters repair of DNA double-strand breaks via SNHG17. J Clin Invest 2020; 130(7): 3901-18.
[http://dx.doi.org/10.1172/JCI125581] [PMID: 32538894]
[35]
Piotto C, Biscontin A, Millino C, Mognato M. Functional validation of miRNAs targeting genes of DNA double-strand break repair to radiosensitize non-small lung cancer cells. Biochim Biophys Acta Gene Regul Mech 2018; 1861(12): 1102-18.
[http://dx.doi.org/10.1016/j.bbagrm.2018.10.010] [PMID: 30389599]
[36]
Dray E, Etchin J, Wiese C, et al. Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2. Nat Struct Mol Biol 2010; 17(10): 1255-9.
[http://dx.doi.org/10.1038/nsmb.1916] [PMID: 20871616]
[37]
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic targeting of micrornas in the tumor microenvironment. Int J Mol Sci 2021; 22(4): 2210.
[http://dx.doi.org/10.3390/ijms22042210] [PMID: 33672261]
[38]
Lal A, Pan Y, Navarro F, et al. miR-24–mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 2009; 16(5): 492-8.
[http://dx.doi.org/10.1038/nsmb.1589] [PMID: 19377482]
[39]
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in cancer radiosensitivity: MicroRNAs and lncRNAs as regulators of radiation-induced signaling pathways. Cancers 2020; 12(6): 1662.
[http://dx.doi.org/10.3390/cancers12061662] [PMID: 32585857]
[40]
Zhou S, Zhang M, Zhou C, Wang W, Yang H, Ye W. The role of epithelial-mesenchymal transition in regulating radioresistance. Crit Rev Oncol Hematol 2020; 150: 102961.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102961] [PMID: 32361589]
[41]
Wu Z, Wang Y. Studies of lncRNAs in DNA double strand break repair: What is new? Oncotarget 2017; 8(60): 102690-704.
[http://dx.doi.org/10.18632/oncotarget.22090] [PMID: 29254281]
[42]
Hu WL, Jin L, Xu A, et al. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol 2018; 20(4): 492-502.
[http://dx.doi.org/10.1038/s41556-018-0066-7] [PMID: 29593331]
[43]
Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA tumor suppressor network in chromosome damage repair by homologous recombination. Annu Rev Biochem 2019; 88(1): 221-45.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111058] [PMID: 30917004]
[44]
Zhang M, Wang G, Zhu Y, Wu D. Characterization of BRCA1/2-Directed ceRNA network identifies a novel three-lncRNA signature to predict prognosis and chemo-response in ovarian cancer patients with wild-type BRCA1/2. Front Cell Dev Biol 2020; 8: 680.
[http://dx.doi.org/10.3389/fcell.2020.00680] [PMID: 32850807]
[45]
Durut N, Mittelsten Scheid O. The role of noncoding RNAs in double-strand break repair. Front Plant Sci 2019; 10: 1155.
[http://dx.doi.org/10.3389/fpls.2019.01155] [PMID: 31611891]
[46]
Goyal A, Fiškin E, Gutschner T, et al. A cautionary tale of sense-antisense gene pairs: Independent regulation despite inverse correlation of expression. Nucleic Acids Res 2017; 45(21): 12496-508.
[http://dx.doi.org/10.1093/nar/gkx952] [PMID: 29059299]
[47]
Dai N, Qing Y, Cun Y, et al. miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease. Oncotarget 2018; 9(39): 25414-26.
[http://dx.doi.org/10.18632/oncotarget.11003] [PMID: 29875998]
[48]
López DJ, Rodríguez JA, Bañuelos S. Molecular mechanisms regulating the DNA Repair Protein APE1: A focus on its flexible n-terminal tail domain. Int J Mol Sci 2021; 22(12): 6308.
[http://dx.doi.org/10.3390/ijms22126308] [PMID: 34208390]
[49]
Zhao H, Zheng GH, Li GC, et al. Long noncoding RNA LINC00958 regulates cell sensitivity to radiotherapy through RRM2 by binding to microRNA-5095 in cervical cancer. J Cell Physiol 2019; 234(12): 23349-59.
[http://dx.doi.org/10.1002/jcp.28902] [PMID: 31169309]
[50]
Liu R, Zhang Q, Shen L, et al. Long noncoding RNA lnc-RI regulates DNA damage repair and radiation sensitivity of CRC cells through NHEJ pathway. Cell Biol Toxicol 2020; 36(5): 493-507.
[http://dx.doi.org/10.1007/s10565-020-09524-6] [PMID: 32279126]
[51]
Chen M, Liu P, Chen Y, et al. Long Noncoding RNA FAM201A mediates the radiosensitivity of esophageal squamous cell cancer by regulating atm and mtor expression via miR-101. Front Genet 2018; 9: 611.
[http://dx.doi.org/10.3389/fgene.2018.00611] [PMID: 30574162]
[52]
Chen W, Jiang J, Gong L, et al. Hepatitis B virus P protein initiates glycolytic bypass in HBV-related hepatocellular carcinoma via a FOXO3/miRNA-30b-5p/MINPP1 axis. J Exp Clin Cancer Res 2021; 40(1): 1.
[http://dx.doi.org/10.1186/s13046-020-01803-8] [PMID: 33390177]
[53]
Dey A, Flajšhans M, Pšenička M, Gazo I. DNA repair genes play a variety of roles in the development of fish embryos. Front Cell Dev Biol 2023; 11: 1119229.
[http://dx.doi.org/10.3389/fcell.2023.1119229] [PMID: 36936683]
[54]
Zheng RP, Ma DK, Li Z, Zhang HF. MiR-145 regulates the chemoresistance of hepatic carcinoma cells against 5-fluorouracil by targeting toll-like receptor 4. Cancer Manag Res 2020; 12: 6165-75.
[http://dx.doi.org/10.2147/CMAR.S257598] [PMID: 32801865]
[55]
Santos TG, Martins V, Hajj G. Unconventional secretion of heat shock proteins in cancer. Int J Mol Sci 2017; 18(5): 946.
[http://dx.doi.org/10.3390/ijms18050946] [PMID: 28468249]
[56]
Liu L, Zhu Y, Liu AM, Feng Y, Chen Y. Long noncoding RNA LINC00511 involves in breast cancer recurrence and radioresistance by regulating STXBP4 expression via miR-185. Eur Rev Med Pharmacol Sci 2019; 23(17): 7457-68.
[http://dx.doi.org/10.26355/eurrev_201909_18855] [PMID: 31539133]
[57]
Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013; 13(1): 37-50.
[http://dx.doi.org/10.1038/nrc3409] [PMID: 23235912]
[58]
Li L, Lin X, Xu P, Jiao Y, Fu P. LncRNA GAS5 sponges miR -362-5p to promote sensitivity of thyroid cancer cells to 131I by upregulating SMG1. IUBMB Life 2020; 72(11): 2420-31.
[http://dx.doi.org/10.1002/iub.2365] [PMID: 32856394]
[59]
Wang B, Zheng J, Li R, et al. Long noncoding RNA LINC02582 acts downstream of miR-200c to promote radioresistance through CHK1 in breast cancer cells. Cell Death Dis 2019; 10(10): 764.
[http://dx.doi.org/10.1038/s41419-019-1996-0] [PMID: 31601781]
[60]
Aranza-Martínez A, Sánchez-Pérez J, Brito-Elias L, et al. Non- Coding RNAs associated with radioresistance in triple-negative breast cancer. Front Oncol 2021; 11: 752270.
[http://dx.doi.org/10.3389/fonc.2021.752270] [PMID: 34804940]
[61]
Liu Y, Yue P, Zhou T, Zhang F, Wang H, Chen X. LncRNA MEG3 enhances 131I sensitivity in thyroid carcinoma via sponging miR-182. Biomed Pharmacother 2018; 105: 1232-9.
[http://dx.doi.org/10.1016/j.biopha.2018.06.087] [PMID: 30021359]
[62]
Zhang R, Xia T. Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Int J Oncol 2017; 51(5): 1460-70.
[http://dx.doi.org/10.3892/ijo.2017.4127] [PMID: 29048648]
[63]
Zhang Y, Zhu Z, Huang S, et al. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int 2019; 19(1): 198.
[http://dx.doi.org/10.1186/s12935-019-0909-8] [PMID: 31384173]
[64]
Tang J, Frascaroli G, Lebbink RJ, Ostermann E, Brune W. Human cytomegalovirus glycoprotein B variants affect viral entry, cell fusion, and genome stability. Proc Natl Acad Sci USA 2019; 116(36): 18021-30.
[http://dx.doi.org/10.1073/pnas.1907447116] [PMID: 31427511]
[65]
Wu SY, Wu ATH, Liu SH. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing. Oncotarget 2016; 7(32): 51482-93.
[http://dx.doi.org/10.18632/oncotarget.9856] [PMID: 27285985]
[66]
Ma W, Yu J, Qi X, et al. Radiation-induced microrna-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget 2015; 6(18): 15984-94.
[http://dx.doi.org/10.18632/oncotarget.3762] [PMID: 25961730]
[67]
Sun D, Mu Y, Piao H. MicroRNA-153-3p enhances cell radiosensitivity by targeting BCL2 in human glioma. Biol Res 2018; 51(1): 56.
[http://dx.doi.org/10.1186/s40659-018-0203-6] [PMID: 30537994]
[68]
Kwon JE, Kim BY, Kwak SY, Bae IH, Han YH. Ionizing radiation-inducible microRNA miR-193a-3p induces apoptosis by directly targeting Mcl-1. Apoptosis 2013; 18(7): 896-909.
[http://dx.doi.org/10.1007/s10495-013-0841-7] [PMID: 23546867]
[69]
Lee HC, Her NG, Kang D, et al. Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase. Cell Death Dis 2017; 8(3): e2693-3.
[http://dx.doi.org/10.1038/cddis.2017.116] [PMID: 28333152]
[70]
Mao A, Liu Y, Zhang H, Di C, Sun C. microRNA expression and biogenesis in cellular response to ionizing radiation. DNA Cell Biol 2014; 33(10): 667-79.
[http://dx.doi.org/10.1089/dna.2014.2401] [PMID: 24905898]
[71]
Yang QS, Jiang LP, He CY, Tong YN, Liu YY. Up-regulation of MicroRNA-133a inhibits the MEK/ERK signaling pathway to promote cell apoptosis and enhance radio-sensitivity by targeting EGFR in esophageal cancer in vivo and in vitro. J Cell Biochem 2017; 118(9): 2625-34.
[http://dx.doi.org/10.1002/jcb.25829] [PMID: 27933650]
[72]
Wang Y, Zeng G, Jiang Y. The emerging roles of mir-125b in cancers. Cancer Manag Res 2020; 12: 1079-88.
[http://dx.doi.org/10.2147/CMAR.S232388] [PMID: 32104088]
[73]
Liu C, Xing H, Guo C, Yang Z, Wang Y, Wang Y. MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways. Cell Cycle 2019; 18(18): 2215-27.
[http://dx.doi.org/10.1080/15384101.2019.1638182] [PMID: 31286834]
[74]
Xu LM, Yu H, Yuan YJ, et al. Overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1α-suppression mediated methylation of PTEN. Front Cell Dev Biol 2020; 8: 553733.
[http://dx.doi.org/10.3389/fcell.2020.553733] [PMID: 33304897]
[75]
Yang B, Kuai F, Chen Z, et al. miR-634 decreases the radioresistance of human breast cancer cells by targeting STAT3. Cancer Biother Radiopharm 2020; 35(3): 241-8.
[http://dx.doi.org/10.1089/cbr.2019.3220] [PMID: 32077744]
[76]
Wu SJ, Chen J, Wu B, Wang YJ, Guo KY. MicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma. J Exp Clin Cancer Res 2018; 37(1): 18.
[http://dx.doi.org/10.1186/s13046-017-0639-5] [PMID: 29386059]
[77]
Liu HY, Zhang YY, Zhu BL, et al. MiR-203a-3p regulates the biological behaviors of ovarian cancer cells through mediating the Akt/GSK-3β/Snail signaling pathway by targeting ATM. J Ovarian Res 2019; 12(1): 60.
[http://dx.doi.org/10.1186/s13048-019-0532-2] [PMID: 31277702]
[78]
Li Y, Zhang Z, Zhang X, et al. A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. Am J Transl Res 2016; 8(2): 719-31.
[PMID: 27158364]
[79]
Gao X, Qin T, Mao J, et al. PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. J Exp Clin Cancer Res 2019; 38(1): 256.
[http://dx.doi.org/10.1186/s13046-019-1260-6] [PMID: 31196157]
[80]
He X, Fan S. hsa-miR-212 modulates the radiosensitivity of glioma cells by targeting BRCA1. Oncol Rep 2017; 39(3): 977-84.
[http://dx.doi.org/10.3892/or.2017.6156] [PMID: 29286157]
[81]
Gao J, Liu L, Li G, et al. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol 2019; 126: 994-1001.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.176] [PMID: 30579899]
[82]
Peng F, Liao M, Qin R, et al. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7(1): 286.
[http://dx.doi.org/10.1038/s41392-022-01110-y] [PMID: 35963853]
[83]
Wang B, Wang K, Jin T, et al. NCK1-AS1 enhances glioma cell proliferation, radioresistance and chemoresistance via miR-22-3p/IGF1R ceRNA pathway. Biomed Pharmacother 2020; 129: 110395.
[http://dx.doi.org/10.1016/j.biopha.2020.110395] [PMID: 32887025]
[84]
Gou C, Han P, Li J, et al. Knockdown of lncRNA BLACAT1 enhances radiosensitivity of head and neck squamous cell carcinoma cells by regulating PSEN1. Br J Radiol 2020; 93(1108): 20190154.
[http://dx.doi.org/10.1259/bjr.20190154] [PMID: 31944856]
[85]
Jiang H, Hu X, Zhang H, Li W. Down-regulation of LncRNA TUG1 enhances radiosensitivity in bladder cancer via suppressing HMGB1 expression. Radiat Oncol 2017; 12(1): 65.
[http://dx.doi.org/10.1186/s13014-017-0802-3] [PMID: 28376901]
[86]
Song W, Zhang J, Xia Q, Sun M. RETRACTED ARTICLE: Down-regulated lncRNA TP73-AS1 reduces radioresistance in hepatocellular carcinoma via the PTEN/Akt signaling pathway. Cell Cycle 2019; 18(22): 3177-88.
[http://dx.doi.org/10.1080/15384101.2019.1671089] [PMID: 31564201]
[87]
Wang X, Li M, Wang Z, et al. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J Biol Chem 2015; 290(7): 3925-35.
[http://dx.doi.org/10.1074/jbc.M114.596866] [PMID: 25538231]
[88]
Li K, Yao T, Zhang Y, Li W, Wang Z. NEAT1 as a competing endogenous RNA in tumorigenesis of various cancers: Role, mechanism and therapeutic potential. Int J Biol Sci 2021; 17(13): 3428-40.
[http://dx.doi.org/10.7150/ijbs.62728] [PMID: 34512157]
[89]
Lu Y, Li T, Wei G, et al. The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol 2016; 37(9): 11733-41.
[http://dx.doi.org/10.1007/s13277-015-4773-4] [PMID: 27020592]
[90]
Wang H, Zhang M, Sun G. Long non-coding RNA NEAT1 regulates the proliferation, migration and invasion of gastric cancer cells via targeting miR-335-5p/ROCK1 axis. Pharmazie 2018; 73(3): 150-5.
[http://dx.doi.org/10.1691/ph.2018.7877] [PMID: 29544562]
[91]
Huang C, Liang J, Lin S, et al. N6-methyladenosine associated silencing of mir-193b promotes cervical cancer aggressiveness by targeting CCND1. Front Oncol 2021; 11: 666597.
[http://dx.doi.org/10.3389/fonc.2021.666597] [PMID: 34178650]
[92]
Li X, Chen W, Jia J, et al. The long non-coding RNA-RoR promotes the tumorigenesis of human colorectal cancer by targeting mir-6833-3p through SMC4. OncoTargets Ther 2020; 13: 2573-81.
[http://dx.doi.org/10.2147/OTT.S238947] [PMID: 32273727]
[93]
Yu Z, Wang G, Zhang C, et al. LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating microRNA-302a/MBNL3 axis. Cell Cycle 2020; 19(3): 300-16.
[http://dx.doi.org/10.1080/15384101.2019.1708016] [PMID: 31928130]
[94]
Lu Q, Lou J, Cai R, Han W, Pan H. Emerging roles of a pivotal lncRNA SBF2-AS1 in cancers. Cancer Cell Int 2021; 21(1): 417.
[http://dx.doi.org/10.1186/s12935-021-02123-3] [PMID: 34372871]
[95]
Wu YH, Yu B, Chen WX, et al. Downregulation of lncRNA SBF2-AS1 inhibits hepatocellular carcinoma proliferation and migration by regulating the miR-361-5p/TGF-β1 signaling pathway. Aging (Albany NY) 2021; 13(15): 19260-71.
[http://dx.doi.org/10.18632/aging.203248] [PMID: 34341185]
[96]
Tan F, Chen J, Wang B, et al. LncRNA SBF2-AS1: A budding star in various cancers. Curr Pharm Des 2022; 28(18): 1513-22.
[http://dx.doi.org/10.2174/1381612828666220418131506] [PMID: 35440300]
[97]
Zhang J, Li W. Long noncoding RNA CYTOR sponges miR-195 to modulate proliferation, migration, invasion and radiosensitivity in nonsmall cell lung cancer cells. Biosci Rep 2018; 38(6): BSR20181599.
[http://dx.doi.org/10.1042/BSR20181599] [PMID: 30487160]
[98]
Lai Y, Chen Y, Lin Y, Ye L. Down-regulation of LncRNA CCAT1 enhances radiosensitivity via regulating miR-148b in breast cancer. Cell Biol Int 2018; 42(2): 227-36.
[http://dx.doi.org/10.1002/cbin.10890] [PMID: 29024383]
[99]
Gao L, Xia T, Qin M, Xue X, Jiang L, Zhu X. CircPTK2 suppresses the progression of gastric cancer by targeting the MiR-196a-3p/AATK Axis. Front Oncol 2021; 11: 706415.
[http://dx.doi.org/10.3389/fonc.2021.706415] [PMID: 34604044]
[100]
Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[101]
Vitto VAM, Bianchin S, Zolondick AA, et al. Molecular mechanisms of autophagy in cancer development, progression, and therapy. Biomedicines 2022; 10(7): 1596.
[http://dx.doi.org/10.3390/biomedicines10071596] [PMID: 35884904]
[102]
Zhang X, Shi H, Lin S, Ba M, Cui S. MicroRNA-216a enhances the radiosensitivity of pancreatic cancer cells by inhibiting beclin-1-mediated autophagy. Oncol Rep 2015; 34(3): 1557-64.
[http://dx.doi.org/10.3892/or.2015.4078] [PMID: 26134156]
[103]
Meng C, Liu Y, Shen Y, et al. MicroRNA-26b suppresses autophagy in breast cancer cells by targeting DRAM1 mRNA, and is downregulated by irradiation. Oncol Lett 2017; 15(2): 1435-40.
[http://dx.doi.org/10.3892/ol.2017.7452] [PMID: 29399189]
[104]
Yi H, Liang B, Jia J, et al. Differential roles of miR-199a-5p in radiation-induced autophagy in breast cancer cells. FEBS Lett 2013; 587(5): 436-43.
[http://dx.doi.org/10.1016/j.febslet.2012.12.027] [PMID: 23337876]
[105]
Wang P, Zhang J, Zhang L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 2013; 145(5): 1133-1143.e12.
[http://dx.doi.org/10.1053/j.gastro.2013.07.048] [PMID: 23916944]
[106]
Hu JL, He GY, Lan XL, et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 2018; 7(2): 16.
[http://dx.doi.org/10.1038/s41389-018-0028-8] [PMID: 29459645]
[107]
Chong ZX, Yeap SK, Ho WY. Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 2021; 28(1): 21.
[http://dx.doi.org/10.1186/s12929-021-00715-9] [PMID: 33761957]
[108]
Sun Q, Liu T, Yuan Y, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer 2015; 136(5): 1003-12.
[http://dx.doi.org/10.1002/ijc.29065] [PMID: 25044403]
[109]
Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-205: A potential biomedicine for cancer therapy. Cells 2020; 9(9): 1957.
[http://dx.doi.org/10.3390/cells9091957] [PMID: 32854238]
[110]
Xu CG, Yang MF, Fan JX, Wang W. MiR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1. Eur Rev Med Pharmacol Sci 2016; 20(8): 1501-8.
[PMID: 27160121]
[111]
Fan L, Wang J, Cao Q, Ding X, Li B. Aberrant miR-1246 expression promotes radioresistance in non-small cell lung cancer: a potential prognostic biomarker and radiotherapy sensitization target. Am J Cancer Res 2020; 10(1): 314-35.
[PMID: 32064170]
[112]
Shen Y, Liu Y, Sun T, Yang W. LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res 2017; 358(2): 188-98.
[http://dx.doi.org/10.1016/j.yexcr.2017.06.016] [PMID: 28689810]
[113]
Ashrafizadeh M, Paskeh MDA, Mirzaei S, et al. Targeting autophagy in prostate cancer: Preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41(1): 105.
[http://dx.doi.org/10.1186/s13046-022-02293-6] [PMID: 35317831]
[114]
Chen C, Wang K, Wang Q, Wang X. LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells. Braz J Med Biol Res 2018; 51(6): e7080.
[http://dx.doi.org/10.1590/1414-431x20187080] [PMID: 29694502]
[115]
Wu C, Yang L, Qi X, Wang T, Li M, Xu K. Inhibition of long non-coding RNA HOTAIR enhances radiosensitivity via regulating autophagy in pancreatic cancer. Cancer Manag Res 2018; 10: 5261-71.
[http://dx.doi.org/10.2147/CMAR.S174066] [PMID: 30464623]
[116]
Guo X, Xiao H, Guo S, et al. Retracted: Long noncoding RNA HOTAIR knockdown inhibits autophagy and epithelial–mesenchymal transition through the Wnt signaling pathway in radioresistant human cervical cancer HeLa cells. J Cell Physiol 2019; 234(4): 3478-89.
[http://dx.doi.org/10.1002/jcp.26828] [PMID: 30367473]
[117]
Zuo YB, Zhang YF, Zhang R, et al. Ferroptosis in cancer progression: Role of Noncoding RNAs. Int J Biol Sci 2022; 18(5): 1829-43.
[http://dx.doi.org/10.7150/ijbs.66917] [PMID: 35342359]
[118]
He F, Zhang P, Liu J, et al. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J Hepatol 2023; 79(2): 362-77.
[http://dx.doi.org/10.1016/j.jhep.2023.03.016] [PMID: 36996941]
[119]
Li Z, Qu Z, Wang Y, Qin M, Zhang H. miR-101-3p sensitizes non-small cell lung cancer cells to irradiation. Open Med 2020; 15(1): 413-23.
[http://dx.doi.org/10.1515/med-2020-0044] [PMID: 33336000]
[120]
Shaghaghi Z, Salari A, Jalali F, Alvandi M, Farzipour S, Zarei Polgardani N. Targeting ferroptosis as a new approach for radiation protection and mitigation. Recent Patents Anticancer Drug Discov 2024; 19(1): 57-71.
[http://dx.doi.org/10.2174/1574892818666230119153247]
[121]
Deng S, Wu D, Li L, et al. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun 2021; 549: 54-60.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.077] [PMID: 33662669]
[122]
Luo M, Wu L, Zhang K, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 2018; 25(8): 1457-72.
[http://dx.doi.org/10.1038/s41418-017-0053-8] [PMID: 29348676]
[123]
Zhang Q, Fan X, Zhang X, Ju S. Ferroptosis in tumors and its relationship to other programmed cell death: Role of non-coding RNAs. J Transl Med 2023; 21(1): 514.
[http://dx.doi.org/10.1186/s12967-023-04370-6] [PMID: 37516888]
[124]
Song Z, Jia G, Ma P, Cang S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci 2021; 276: 119399.
[http://dx.doi.org/10.1016/j.lfs.2021.119399] [PMID: 33781830]
[125]
Chen X, Zhang L, He Y, et al. Regulation of m6A modification on ferroptosis and its potential significance in radiosensitization. Cell Death Discov 2023; 9(1): 343.
[http://dx.doi.org/10.1038/s41420-023-01645-1] [PMID: 37714846]
[126]
Mo G, Mo J, Tan X, Wang J, Yan Z, Liu Y. RETRACTED ARTICLE: Yin Yang 1 (YY1)-induced long intergenic non-protein coding RNA 472 (LINC00472) aggravates sepsis-associated cardiac dysfunction via the micro-RNA-335-3p (miR-335-3p)/Monoamine oxidase A (MAOA) cascade. Bioengineered 2022; 13(1): 1049-61.
[http://dx.doi.org/10.1080/21655979.2021.2017589] [PMID: 35112970]
[127]
Mao C, Wang X, Liu Y, et al. A G3BP1-Interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res 2018; 78(13): 3484-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3454] [PMID: 29588351]
[128]
Qi W, Li Z, Xia L, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep 2019; 9(1): 16185.
[http://dx.doi.org/10.1038/s41598-019-52837-8] [PMID: 31700067]
[129]
Gai C, Liu C, Wu X, et al. MT1DP loaded by folate-modified liposomes sensitizes erastin-induced ferroptosis via regulating miR-365a-3p/NRF2 axis in non-small cell lung cancer cells. Cell Death Dis 2020; 11(9): 751.
[http://dx.doi.org/10.1038/s41419-020-02939-3] [PMID: 32929075]
[130]
Zhang Y, Guo S, Wang S, et al. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cadmium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol Environ Saf 2021; 220: 112376.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112376] [PMID: 34051661]
[131]
Wu H, Liu A. Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. J Int Med Res 2021; 49(3)
[http://dx.doi.org/10.1177/0300060521996183] [PMID: 33730930]
[132]
Zhang Z, Ye B, Lin Y, Liu W, Deng J, Ji W. LncRNA OTUD6B-AS1 overexpression promoted GPX4-mediated ferroptosis to suppress radioresistance in colorectal cancer. Clin Transl Oncol 2023; 25(11): 3217-29.
[http://dx.doi.org/10.1007/s12094-023-03193-7] [PMID: 37184781]
[133]
Yang Y, Zhu T, Wang X, et al. ACSL3 and ACSL4, distinct roles in ferroptosis and cancers. Cancers 2022; 14(23): 5896.
[http://dx.doi.org/10.3390/cancers14235896] [PMID: 36497375]
[134]
Hu Q, Huang T. Regulation of the cell cycle by ncRNAs affects the efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24(10): 8939.
[http://dx.doi.org/10.3390/ijms24108939] [PMID: 37240281]
[135]
Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J 2004; 23(16): 3386-96.
[http://dx.doi.org/10.1038/sj.emboj.7600328] [PMID: 15272308]
[136]
Chen Y, Cui J, Gong Y, Wei S, Wei Y, Yi L. MicroRNA: A novel implication for damage and protection against ionizing radiation. Environ Sci Pollut Res Int 2021; 28(13): 15584-96.
[http://dx.doi.org/10.1007/s11356-021-12509-5] [PMID: 33533004]
[137]
Labbé M, Hoey C, Ray J, et al. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Mol Cancer 2020; 19(1): 63.
[http://dx.doi.org/10.1186/s12943-020-01186-6] [PMID: 32293453]
[138]
Liu Y, Xing R, Zhang X, et al. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells. DNA Repair 2013; 12(9): 741-50.
[http://dx.doi.org/10.1016/j.dnarep.2013.06.002] [PMID: 23835407]
[139]
He J, Feng X, Hua J, et al. miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells. Cell Cycle 2017; 16(20): 1943-53.
[http://dx.doi.org/10.1080/15384101.2017.1367070] [PMID: 28895780]
[140]
Ye C, Sun N, Ma Y, et al. MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells. FEBS Lett 2015; 589(6): 702-9.
[http://dx.doi.org/10.1016/j.febslet.2015.01.037] [PMID: 25666710]
[141]
Zheng L, Zhang Y, Liu Y, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med 2015; 13(1): 252.
[http://dx.doi.org/10.1186/s12967-015-0592-z] [PMID: 26238857]
[142]
Gupta S, Silveira DA, Mombach JCM. Modeling the role of microRNA-449a in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation. PLoS One 2018; 13(7): e0200768.
[http://dx.doi.org/10.1371/journal.pone.0200768] [PMID: 30024932]
[143]
Zhou Y, Wang Y, Lin M, Wu D, Zhao M. LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int 2021; 21(1): 400.
[http://dx.doi.org/10.1186/s12935-021-02103-7] [PMID: 34320988]
[144]
Hoeferlin LA, Oleinik NV, Krupenko NI, Krupenko SA. Activation of p21-Dependent G1/G2 arrest in the absence of dna damage as an antiapoptotic response to metabolic stress. Genes Cancer 2011; 2(9): 889-99.
[http://dx.doi.org/10.1177/1947601911432495] [PMID: 22593801]
[145]
Liang T, Wang Y, Jiao Y, et al. LncRNA MALAT1 accelerates cervical carcinoma proliferation by suppressing mir-124 expression in cervical tumor cells. J Oncol 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/8836078] [PMID: 34221014]
[146]
Hu M, Yang J. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p. Cancer Cell Int 2020; 20(1): 449.
[http://dx.doi.org/10.1186/s12935-020-01538-8] [PMID: 32943997]
[147]
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324(5930): 1029-33.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[148]
Ediriweera MK, Jayasena S. The role of reprogrammed glucose metabolism in cancer. Metabolites 2023; 13(3): 345.
[http://dx.doi.org/10.3390/metabo13030345] [PMID: 36984785]
[149]
Cao K, Li J, Chen J, et al. microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma. Oncotarget 2017; 8(48): 83660-72.
[http://dx.doi.org/10.18632/oncotarget.19014] [PMID: 29137372]
[150]
Lan F, Qin Q, Yu H, Yue X. Effect of glycolysis inhibition by miR-448 on glioma radiosensitivity. J Neurosurg 2020; 132(5): 1456-64.
[http://dx.doi.org/10.3171/2018.12.JNS181798] [PMID: 31003211]
[151]
Mi Y, He M, Liu B. MiR-133b affect the proliferation and drug sensitivity in A549 lung cancer stem cells by targeting PKM2. Zhongguo Fei Ai Za Zhi 2017; 20(6): 376-81.
[http://dx.doi.org/10.3779/j.issn.1009-3419.2017.06.02] [PMID: 28641694]
[152]
Li L, Liu H, Du L, et al. miR-449a Suppresses LDHA-mediated glycolysis to enhance the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Res 2018; 26(4): 547-56.
[http://dx.doi.org/10.3727/096504017X15016337254605] [PMID: 28800787]
[153]
Guan Y, Cao Z, Du J, Liu T, Wang T. Circular RNA circPITX1 knockdown inhibits glycolysis to enhance radiosensitivity of glioma cells by miR-329-3p/NEK2 axis. Cancer Cell Int 2020; 20(1): 80.
[http://dx.doi.org/10.1186/s12935-020-01169-z] [PMID: 32190004]
[154]
Zhang X, Wang S, Lin G, Wang D. Down-regulation of circ-PTN suppresses cell proliferation, invasion and glycolysis in glioma by regulating miR-432-5p/RAB10 axis. Neurosci Lett 2020; 735: 135153.
[http://dx.doi.org/10.1016/j.neulet.2020.135153] [PMID: 32629066]
[155]
El-Sahli S, Xie Y, Wang L, Liu S. Wnt signaling in cancer metabolism and immunity. Cancers 2019; 11(7): 904.
[http://dx.doi.org/10.3390/cancers11070904] [PMID: 31261718]
[156]
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A. Crosstalk of the Wnt/β-catenin signaling pathway in the induction of apoptosis on cancer cells. Pharmaceuticals 2021; 14(9): 871.
[http://dx.doi.org/10.3390/ph14090871] [PMID: 34577571]
[157]
Yang CX, Zhang SM, Li J, et al. MicroRNA-320 regulates the radiosensitivity of cervical cancer cells C33AR by targeting β- catenin. Oncol Lett 2016; 12(6): 4983-90.
[http://dx.doi.org/10.3892/ol.2016.5340] [PMID: 28105205]
[158]
Su H, Wu Y, Fang Y, et al. MicroRNA-301a targets WNT1 to suppress cell proliferation and migration and enhance radiosensitivity in esophageal cancer cells. Oncol Rep 2018; 41(1): 599-607.
[http://dx.doi.org/10.3892/or.2018.6799] [PMID: 30365079]
[159]
Li G, Wang Y, Liu Y, et al. miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT 2B in vitro. Cancer Sci 2014; 105(12): 1560-8.
[http://dx.doi.org/10.1111/cas.12555] [PMID: 25297925]
[160]
Liu C, Li G, Yang N, et al. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma. Cancer Cell Int 2017; 17(1): 2.
[http://dx.doi.org/10.1186/s12935-016-0372-8] [PMID: 28053597]
[161]
An L, Li M, Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer 2023; 22(1): 140.
[http://dx.doi.org/10.1186/s12943-023-01839-2] [PMID: 37598158]
[162]
Javed Z, Khan K, Sadia H, et al. LncRNA & Wnt signaling in colorectal cancer. Cancer Cell Int 2020; 20(1): 326.
[http://dx.doi.org/10.1186/s12935-020-01412-7] [PMID: 32699525]
[163]
Jiang Y, Li Z, Zheng S, et al. The long non-coding RNA HOTAIR affects the radiosensitivity of pancreatic ductal adenocarcinoma by regulating the expression of Wnt inhibitory factor 1. Tumour Biol 2016; 37(3): 3957-67.
[http://dx.doi.org/10.1007/s13277-015-4234-0] [PMID: 26482614]
[164]
Li J, Hou S, Ye Z, Wang W, Hu X, Hang Q. Long non-coding RNAs in pancreatic cancer: Biologic functions, mechanisms, and clinical significance. Cancers 2022; 14(9): 2115.
[http://dx.doi.org/10.3390/cancers14092115] [PMID: 35565245]
[165]
Zhang H, Luo H, Hu Z, et al. Targeting WISP1 to sensitize esophageal squamous cell carcinoma to irradiation. Oncotarget 2015; 6(8): 6218-34.
[http://dx.doi.org/10.18632/oncotarget.3358] [PMID: 25749038]
[166]
Bandres E, Bitarte N, Arias F, et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009; 15(7): 2281-90.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1818] [PMID: 19318487]
[167]
Wang G, Li Z, Zhao Q, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep 2014; 31(4): 1839-45.
[http://dx.doi.org/10.3892/or.2014.3047] [PMID: 24573322]
[168]
Zhang Y, Zheng L, Huang J, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One 2014; 9(4): e93917.
[http://dx.doi.org/10.1371/journal.pone.0093917] [PMID: 24705396]
[169]
Wan LY, Deng J, Xiang XJ, et al. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy In Vitro by targeting FOXM1. Biochem Biophys Res Commun 2015; 457(2): 125-32.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.039] [PMID: 25446103]
[170]
Zhang Y, Yu J, Liu H, et al. Novel Epigenetic CREB-miR-630 signaling axis regulates radiosensitivity in colorectal cancer. PLoS One 2015; 10(8): e0133870.
[http://dx.doi.org/10.1371/journal.pone.0133870] [PMID: 26263387]
[171]
Zhu Y, Wang C, Becker SA, et al. miR-145 Antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer. Mol Ther 2018; 26(3): 744-54.
[http://dx.doi.org/10.1016/j.ymthe.2017.12.023] [PMID: 29475734]
[172]
Shen YN, Bae IS, Park GH, Choi HS, Lee KH, Kim SH. MicroRNA-196b enhances the radiosensitivity of SNU-638 gastric cancer cells by targeting RAD23B. Biomed Pharmacother 2018; 105: 362-9.
[http://dx.doi.org/10.1016/j.biopha.2018.05.111] [PMID: 29864624]
[173]
Zou Y, Yao S, Chen X, et al. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol 2018; 97(5): 369-78.
[http://dx.doi.org/10.1016/j.ejcb.2018.04.005] [PMID: 29773344]
[174]
Li H, Jin X, Liu B, Zhang P, Chen W, Li Q. CircRNA CBL.11 suppresses cell proliferation by sponging miR-6778-5p in colorectal cancer. BMC Cancer 2019; 19(1): 826.
[http://dx.doi.org/10.1186/s12885-019-6017-2] [PMID: 31438886]
[175]
Su F, Duan J, Zhu J, Fu H, Zheng X, Ge C. Long non-coding RNA nuclear paraspeckle assembly transcript 1 regulates ionizing radiation-induced pyroptosis via microRNA-448/gasdermin E in colorectal cancer cells. Int J Oncol 2021; 59(4): 79.
[http://dx.doi.org/10.3892/ijo.2021.5259] [PMID: 34476497]
[176]
Samadi P, Afshar S, Amini R, et al. Let-7e enhances the radiosensitivity of colorectal cancer cells by directly targeting insulin-like growth factor 1 receptor. J Cell Physiol 2019; 234(7): 10718-25.
[http://dx.doi.org/10.1002/jcp.27742] [PMID: 30515804]
[177]
Ge Y, Tu W, Li J, et al. MiR-122-5p increases radiosensitivity and aggravates radiation-induced rectal injury through CCAR1. Toxicol Appl Pharmacol 2020; 399: 115054.
[http://dx.doi.org/10.1016/j.taap.2020.115054] [PMID: 32422326]
[178]
Liao F, Chen X, Peng P, Dong W. RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer. Aging 2020; 12(20): 20512-22.
[http://dx.doi.org/10.18632/aging.103907] [PMID: 33033230]
[179]
Yang XD, Xu HT, Xu XH, et al. Knockdown of long non-coding RNA HOTAIR inhibits proliferation and invasiveness and improves radiosensitivity in colorectal cancer. Oncol Rep 2016; 35(1): 479-87.
[http://dx.doi.org/10.3892/or.2015.4397] [PMID: 26549670]
[180]
Yang X, Liu W, Xu X, et al. Downregulation of long non‑coding RNA UCA1 enhances the radiosensitivity and inhibits migration via suppression of epithelial-mesenchymal transition in colorectal cancer cells. Oncol Rep 2018; 40(3): 1554-64.
[http://dx.doi.org/10.3892/or.2018.6573] [PMID: 30015983]
[181]
Kang Z, Jifu E, Guo K, Ma X, Zhang Y, Yu E. Knockdown of long non-coding RNA TINCR decreases radioresistance in colorectal cancer cells. Pathol Res Pract 2019; 215(11): 152622.
[http://dx.doi.org/10.1016/j.prp.2019.152622] [PMID: 31540772]
[182]
Zhou Y, Shao Y, Hu W, et al. A novel long noncoding RNA SP100-AS1 induces radioresistance of colorectal cancer via sponging miR-622 and stabilizing ATG3. Cell Death Differ 2023; 30(1): 111-24.
[http://dx.doi.org/10.1038/s41418-022-01049-1] [PMID: 35978049]
[183]
Lee J, Kim DY, Kim Y, Shin US, Kim KS, Kim EJ. IGFL2-AS1, a Long Non-Coding RNA, is associated with radioresistance in colorectal cancer. Int J Mol Sci 2023; 24(2): 978.
[http://dx.doi.org/10.3390/ijms24020978] [PMID: 36674495]
[184]
Troschel FM, Böhly N, Borrmann K, et al. miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance In Vitro. Tumour Biol 2018; 40(8)
[http://dx.doi.org/10.1177/1010428318791887] [PMID: 30091683]
[185]
Fabris L, Berton S, Citron F, et al. Radiotherapy-induced miR-223 prevents relapse of breast cancer by targeting the EGF pathway. Oncogene 2016; 35(37): 4914-26.
[http://dx.doi.org/10.1038/onc.2016.23] [PMID: 26876200]
[186]
Luo J, Chen J, He L. mir-129-5p attenuates irradiation-induced autophagy and decreases radioresistance of breast cancer cells by targeting HMGB1. Med Sci Monit 2015; 21: 4122-9.
[http://dx.doi.org/10.12659/MSM.896661] [PMID: 26720492]
[187]
Zhang J, Cui Y, Lin X, Zhang G, Li Z. MiR-122-3p sensitizes breast cancer cells to ionizing radiation via controlling of cell apoptosis, migration and invasion. Int J Clin Exp Pathol 2017; 10(1): 215-23.
[188]
Wolfe AR, Bambhroliya A, Reddy JP, et al. MiR-33a decreases high-density lipoprotein-induced radiation sensitivity in breast cancer. Int J Radiat Oncol Biol Phys 2016; 95(2): 791-9.
[http://dx.doi.org/10.1016/j.ijrobp.2016.01.025] [PMID: 27055396]
[189]
Luo M, Ding L, Li Q, Yao H. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα. Breast Cancer 2017; 24(5): 673-82.
[http://dx.doi.org/10.1007/s12282-017-0756-1] [PMID: 28138801]
[190]
Zhang X, Li Y, Wang D, Wei X. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res 2017; 50(1): 27.
[http://dx.doi.org/10.1186/s40659-017-0133-8] [PMID: 28882183]
[191]
Tan X, Li Z, Ren S, et al. Dynamically decreased miR-671-5p expression is associated with oncogenic transformation and radiochemoresistance in breast cancer. Breast Cancer Res 2019; 21(1): 89.
[http://dx.doi.org/10.1186/s13058-019-1173-5] [PMID: 31391072]
[192]
Zhang P, Wang L, Rodriguez-Aguayo C, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun 2014; 5(1): 5671.
[http://dx.doi.org/10.1038/ncomms6671] [PMID: 25476932]
[193]
Pajic M, Froio D, Daly S, et al. miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of dna repair and ros defense. Cancer Res 2018; 78(2): 501-15.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3105] [PMID: 29180477]
[194]
Wu J, Chen H, Ye M, et al. Corrigendum to “Downregulation of long noncoding RNA HCP5 contributes to cisplatin resistance in human triple-negative breast cancer via regulation of PTEN expression” [Biomed. Pharmacother. 115 (2019) 108869]. Biomed Pharmacother 2020; 122: 109789.
[http://dx.doi.org/10.1016/j.biopha.2019.109789] [PMID: 31864836]
[195]
Wang Y, Liu M, Liu X, Guo X. LINC00963-FOSB-mediated transcription activation of UBE3C enhances radioresistance of breast cancer cells by inducing ubiquitination-dependent protein degradation of TP73. J Transl Med 2023; 21(1): 321.
[http://dx.doi.org/10.1186/s12967-023-04153-z] [PMID: 37173692]
[196]
Tao Z, Xu S, Ruan H, et al. MiR-195/-16 family enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 immune checkpoint. Cell Physiol Biochem 2018; 48(2): 801-14.
[http://dx.doi.org/10.1159/000491909] [PMID: 30032144]
[197]
Ray J, Haughey C, Hoey C, et al. miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA. Cancer Lett 2020; 473: 107-17.
[http://dx.doi.org/10.1016/j.canlet.2019.12.025] [PMID: 31874245]
[198]
Xu Z, Zhang Y, Ding J, et al. miR-17-3p downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells. Mol Ther Nucleic Acids 2018; 13: 64-77.
[http://dx.doi.org/10.1016/j.omtn.2018.08.009] [PMID: 30240971]
[199]
Wang W, Liu J, Wu Q. MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1. Eur Rev Med Pharmacol Sci 2016; 20(1): 92-100.
[PMID: 26813458]
[200]
Song CL, Liu B, Diao HY, et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget 2016; 7(26): 39740-57.
[http://dx.doi.org/10.18632/oncotarget.9240] [PMID: 27175593]
[201]
Yu T, Du H, Sun C. Circ-ABCC4 contributes to prostate cancer progression and radioresistance by mediating miR-1253/SOX4 cascade. Anticancer Drugs 2023; 34(1): 155-65.
[http://dx.doi.org/10.1097/CAD.0000000000001361] [PMID: 36539368]
[202]
Chang JH, Hwang YH, Lee DJ, et al. MicroRNA-203 Modulates the radiation sensitivity of human malignant glioma cells. Int J Radiat Oncol Biol Phys 2016; 94(2): 412-20.
[http://dx.doi.org/10.1016/j.ijrobp.2015.10.001] [PMID: 26678661]
[203]
Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal mir-301a activates wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther 2019; 27(11): 1939-49.
[http://dx.doi.org/10.1016/j.ymthe.2019.07.011] [PMID: 31402274]
[204]
Kwak SY, Yang JS, Kim BY, Bae IH, Han YH. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B RhoGAP. Biochim Biophys Acta Mol Cell Res 2014; 1843(3): 508-16.
[http://dx.doi.org/10.1016/j.bbamcr.2013.11.021] [PMID: 24316134]
[205]
Upraity S, Kazi S, Padul V, Shirsat NV. MiR-224 expression increases radiation sensitivity of glioblastoma cells. Biochem Biophys Res Commun 2014; 448(2): 225-30.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.095] [PMID: 24785373]
[206]
Li W, Liu Y, Yang W, et al. MicroRNA-378 enhances radiation response in ectopic and orthotopic implantation models of glioblastoma. J Neurooncol 2018; 136(1): 63-71.
[http://dx.doi.org/10.1007/s11060-017-2646-y] [PMID: 29081036]
[207]
Fan H, Yuan R, Cheng S, Xiong K, Zhu X, Zhang Y. Overexpressed miR-183 promoted glioblastoma radioresistance via down-regulating LRIG1. Biomed Pharmacother 2018; 97: 1554-63.
[http://dx.doi.org/10.1016/j.biopha.2017.11.050] [PMID: 29793318]
[208]
Zheng C, Wei Y, Zhang Q, et al. Multiomics analyses reveal DARS1-AS1 /YBX1–controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance. Sci Adv 2023; 9(31): eadf3984.
[http://dx.doi.org/10.1126/sciadv.adf3984] [PMID: 37540752]
[209]
Huang D, Bian G, Pan Y, et al. MiR–20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells. Cancer Cell Int 2017; 17(1): 32.
[http://dx.doi.org/10.1186/s12935-017-0389-7] [PMID: 28265202]
[210]
Yang F, Liu Q, Hu CM. Epstein-Barr virus-encoded LMP1 increases miR-155 expression, which promotes radioresistance of nasopharyngeal carcinoma via suppressing UBQLN1. Eur Rev Med Pharmacol Sci 2015; 19(23): 4507-15.
[PMID: 26698246]
[211]
Kong L, Wei Q, Hu X, Chen L, Li J. miR-193a-3p promotes radio-resistance of nasopharyngeal cancer cells by targeting srsf2 gene and hypoxia signaling pathway. Med Sci Monit Basic Res 2019; 25: 53-62.
[http://dx.doi.org/10.12659/MSMBR.914572] [PMID: 30773530]
[212]
Wang T, Dong XM, Zhang FL, Zhang JR. miR-206 enhances nasopharyngeal carcinoma radiosensitivity by targeting IGF1. Kaohsiung J Med Sci 2017; 33(9): 427-32.
[http://dx.doi.org/10.1016/j.kjms.2017.05.015] [PMID: 28865599]
[213]
Feng X, Lv W, Wang S, He Q. miR-495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells. Oncol Rep 2018; 40(3): 1223-32.
[http://dx.doi.org/10.3892/or.2018.6538] [PMID: 30015969]
[214]
Han YY, Liu K, Xie J, Li F, Wang Y, Yan B. LINC00114 promoted nasopharyngeal carcinoma progression and radioresistance in vitro and in vivo through regulating ERK/JNK signaling pathway via targeting miR-203. Eur Rev Med Pharmacol Sci 2020; 24(5): 2491-504.
[http://dx.doi.org/10.26355/eurrev_202003_20517] [PMID: 32196600]
[215]
Jiang LP, Zhu ZT, Zhang Y, He CY. Downregulation of MicroRNA-330 correlates with the radiation sensitivity and prognosis of patients with brain metastasis from lung cancer. Cell Physiol Biochem 2017; 42(6): 2220-9.
[http://dx.doi.org/10.1159/000479996] [PMID: 28817811]
[216]
Yuan D, Xu J, Wang J, et al. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget 2016; 7(22): 32707-22.
[http://dx.doi.org/10.18632/oncotarget.9017] [PMID: 27129166]
[217]
Guo Y, Jiang Y, Sang M, Xu C. RETRACTED: Down-regulation of miR-373 increases the radiosensitivity of lung cancer cells by targeting TIMP2. Int J Biochem Cell Biol 2018; 99: 203-10.
[http://dx.doi.org/10.1016/j.biocel.2018.04.014] [PMID: 29673878]
[218]
Chen G, Yu L, Dong H, Liu Z, Sun Y. MiR-182 enhances radioresistance in non-small cell lung cancer cells by regulating FOXO 3. Clin Exp Pharmacol Physiol 2019; 46(2): 137-43.
[http://dx.doi.org/10.1111/1440-1681.13041] [PMID: 30307642]
[219]
Song Y, Zuo Y, Qian XL, et al. Inhibition of MicroRNA-21-5p promotes the radiation sensitivity of non-small cell lung cancer through HMSH2. Cell Physiol Biochem 2017; 43(3): 1258-72.
[http://dx.doi.org/10.1159/000481839] [PMID: 29024929]
[220]
Zhu L, Xue F, Cui Y, et al. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells. Biofactors 2019; 45(3): 393-400.
[http://dx.doi.org/10.1002/biof.1500] [PMID: 30901121]
[221]
He X, Yang A, McDonald DG, et al. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget 2017; 8(41): 69797-807.
[http://dx.doi.org/10.18632/oncotarget.19267] [PMID: 29050242]
[222]
Hou J, Wang Y, Zhang H, Hu Y, Xin X, Li X. Silencing of LINC00461 enhances radiosensitivity of lung adenocarcinoma cells by down-regulating HOXA10 via microRNA-195. J Cell Mol Med 2020; 24(5): 2879-90.
[http://dx.doi.org/10.1111/jcmm.14859] [PMID: 31967713]
[223]
Chen J, Shen Z, Zheng Y, Wang S, Mao W. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR. Int J Clin Exp Pathol 2015; 8(7): 7878-86.
[PMID: 26339352]
[224]
Wang J, Zhao H, Yu J, et al. MiR-92b targets p57kip2 to modulate the resistance of hepatocellular carcinoma (HCC) to ionizing radiation (IR) -based radiotherapy. Biomed Pharmacother 2019; 110: 646-55.
[http://dx.doi.org/10.1016/j.biopha.2018.11.080] [PMID: 30544064]
[225]
Zheng J, Luo J, Zeng H, Guo L, Shao G. 125I suppressed the Warburg effect via regulating miR-338/PFKL axis in hepatocellular carcinoma. Biomed Pharmacother 2019; 119: 109402.
[http://dx.doi.org/10.1016/j.biopha.2019.109402] [PMID: 31514072]
[226]
Zhang Y, Zheng L, Ding Y, et al. MiR-20a induces cell radioresistance by activating the PTEN/PI3K/Akt signaling pathway in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2015; 92(5): 1132-40.
[http://dx.doi.org/10.1016/j.ijrobp.2015.04.007] [PMID: 26031366]
[227]
Deng P, Wu Y. Knockdown of miR-106a suppresses migration and invasion and enhances radiosensitivity of hepatocellular carcinoma cells by upregulating FBXW7. Int J Clin Exp Pathol 2019; 12(4): 1184-93.
[PMID: 31933933]
[228]
Li X, Lu P, Li B, et al. Sensitization of hepatocellular carcinoma cells to irradiation by miR-34a through targeting lactate dehydrogenase-A. Mol Med Rep 2016; 13(4): 3661-7.
[http://dx.doi.org/10.3892/mmr.2016.4974] [PMID: 26956717]
[229]
Chen X, Zhang N. Downregulation of lncRNA NEAT1_2 radiosensitizes hepatocellular carcinoma cells through regulation of miR-101-3p/WEE1 axis. Cell Biol Int 2019; 43(1): 44-55.
[http://dx.doi.org/10.1002/cbin.11077] [PMID: 30488993]
[230]
Jin Q, Hu H, Yan S, et al. lncRNA MIR22HG-Derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 Activity. Front Oncol 2021; 11: 572585.
[http://dx.doi.org/10.3389/fonc.2021.572585] [PMID: 33718133]
[231]
Ma H, Yuan L, Li W, Xu K, Yang L. The LncRNA H19/miR-193a-3p axis modifies the radio-resistance and chemotherapeutic tolerance of hepatocellular carcinoma cells by targeting PSEN1. J Cell Biochem 2018; 119(10): 8325-35.
[http://dx.doi.org/10.1002/jcb.26883] [PMID: 29968942]
[232]
Zhang X, Yang J. Role of Non-coding RNAs on the radiotherapy sensitivity and resistance of head and neck cancer: from basic research to clinical application. Front Cell Dev Biol 2021; 8: 637435.
[http://dx.doi.org/10.3389/fcell.2020.637435] [PMID: 33644038]
[233]
Chen L, Wen Y, Zhang J, et al. Prediction of radiotherapy response with a 5-microRNA signature-based nomogram in head and neck squamous cell carcinoma. Cancer Med 2018; 7(3): 726-35.
[http://dx.doi.org/10.1002/cam4.1369] [PMID: 29473326]
[234]
Piotrowski I, Zhu X, Saccon TD, et al. miRNAs as biomarkers for diagnosing and predicting survival of head and neck squamous cell carcinoma patients. Cancers 2021; 13(16): 3980.
[http://dx.doi.org/10.3390/cancers13163980] [PMID: 34439138]
[235]
Guo Z, Wang YH, Xu H, et al. LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma. Cell Death Dis 2021; 12(1): 69.
[http://dx.doi.org/10.1038/s41419-020-03302-2] [PMID: 33431817]
[236]
Garrido-Palacios A, Rojas Carvajal AM, Núñez-Negrillo AM, Cortés-Martín J, Sánchez-García JC, Aguilar-Cordero MJ. MicroRNA dysregulation in early breast cancer diagnosis: A systematic review and meta-analysis. Int J Mol Sci 2023; 24(9): 8270.
[http://dx.doi.org/10.3390/ijms24098270] [PMID: 37175974]
[237]
van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 2015; 17(1): 21.
[http://dx.doi.org/10.1186/s13058-015-0526-y] [PMID: 25849621]
[238]
Zhang Z, Li W, Jiang D, Liu C, Lai Z. MicroRNA-139-5p inhibits cell viability, migration and invasion and suppresses tumor growth by targeting HDGF in non-small cell lung cancer. Oncol Lett 2020; 19(3): 1806-14.
[http://dx.doi.org/10.3892/ol.2020.11296] [PMID: 32194674]
[239]
Ito M, Miyata Y, Okada M. Current clinical trials with non-coding RNA-based therapeutics in malignant diseases: A systematic review. Transl Oncol 2023; 31: 101634.
[http://dx.doi.org/10.1016/j.tranon.2023.101634] [PMID: 36841158]
[240]
Seto AG, Beatty X, Lynch JM, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 2018; 183(3): 428-44.
[http://dx.doi.org/10.1111/bjh.15547] [PMID: 30125933]
[241]
Viteri S, Rosell R. An innovative mesothelioma treatment based on miR-16 mimic loaded EGFR targeted minicells (TargomiRs). Transl Lung Cancer Res 2018; 7(S1): S1-4.
[http://dx.doi.org/10.21037/tlcr.2017.12.01] [PMID: 29531894]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy