Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Differential Effect of 4H-Benzo[d] [1, 3]oxazines on the Proliferation of Breast Cancer Cell Lines

Author(s): Ixamail Fraire-Soto, Jorge Gustavo Araujo-Huitrado, Angelica Judith Granados-López, Luis A. Segura-Quezada, Rafael Ortiz-Alvarado, Mayra Denise Herrera, Rosalinda Gutiérrez-Hernández, Claudia Araceli Reyes-Hernández, Yamilé López-Hernández, Melissa Tapia-Juárez, José Vicente Negrete-Díaz, Luis Chacón-García*, César R. Solorio-Alvarado* and Jesús Adrián López*

Volume 31, Issue 38, 2024

Published on: 26 April, 2024

Page: [6306 - 6318] Pages: 13

DOI: 10.2174/0109298673292365240422104456

Price: $65

Abstract

Background: A family of 4H-benzo[d][1,3]oxazines were obtained from a group of N-(2-alkynyl)aryl benzamides precursors via gold(I) catalysed chemoselective 6-exo-dig C-O cyclization.

Method: The precursors and oxazines obtained were studied in breast cancer cell lines MCF-7, CAMA-1, HCC1954 and SKBR-3 with differential biological activity showing various degrees of inhibition with a notable effect for those that had an aryl substituted at C-2 of the molecules. 4H-benzo[d][1,3]oxazines showed an IC50 rating from 0.30 to 157.4 µM in MCF-7, 0.16 to 139 in CAMA-1, 0.09 to 93.08 in SKBR-3, and 0.51 to 157.2 in HCC1954 cells.

Results: We observed that etoposide is similar to benzoxazines while taxol effect is more potent. Four cell lines responded to benzoxazines while SKBR-3 cell line responded to precursors and benzoxazines. Compounds 16, 24, 25 and 26 have the potent effect in cell proliferation inhibition in the 4 cell lines tested and correlated with oxidant activity suggesting a possible mechanism by ROS generation.

Conclusion: These compounds represent possible drug candidates for the treatment of breast cancer. However, further trials are needed to elucidate its full effect on cellular and molecular features of cancer.

« Previous
[1]
Zhang, Y.R.; Xie, J.W.; Huang, X.J.; Zhu, W.D. Construction of functionalized 2,3-dihydro-1,4-benzoxazines via [5 + 1] annulations of 2-halo-1,3-dicarbonyl compounds with imines. Org. Biomol. Chem., 2012, 10(32), 6554-6561.
[http://dx.doi.org/10.1039/c2ob25927c] [PMID: 22760526]
[2]
Sugimoto, Y.; Otani, T.; Oie, S.; Wierzba, K.; Yamada, Y. Mechanism of action of a new macromolecular antitumor antibiotic, C-1027. J. Antibiot., 1990, 43(4), 417-421.
[http://dx.doi.org/10.7164/antibiotics.43.417]
[3]
Liu, Y.L.; Hsu, C-W.; Chou, C-I. Silicon-containing benzoxazines and their polymers: Copolymerization and copolymer properties. J. Polym. Sci. A Polym. Chem., 2007, 45(6), 1007-1015.
[http://dx.doi.org/10.1002/pola.21853]
[4]
Zinad, D.S.; Mahal, A.; Mohapatra, R.K.; Sarangi, A.K.; Pratama, M.R.F. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem. Biol. Drug Des., 2020, 95(1), 16-47.
[http://dx.doi.org/10.1111/cbdd.13633] [PMID: 31583840]
[5]
Girard, C.; Liu, S.; Cadepond, F.; Adams, D.; Lacroix, C.; Verleye, M.; Gillardin, J.M.; Baulieu, E.E.; Schumacher, M.; Schweizer-Groyer, G. Etifoxine improves peripheral nerve regeneration and functional recovery. Proc. Natl. Acad. Sci. USA, 2008, 105(51), 20505-20510.
[http://dx.doi.org/10.1073/pnas.0811201106] [PMID: 19075249]
[6]
Nahide, P.D.; Alba-Betancourt, C.; Chávez-Rivera, R.; Romo-Rodríguez, P.; Solís-Hernández, M.; Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Gámez-Montaño, R.; Deveze-Álvarez, M.A.; Ramírez-Morales, M.A.; Alonso-Castro, A.J.; Zapata-Morales, J.R.; Ruiz-Padilla, A.J.; Mendoza-Macías, C.L.; Meza-Carmen, V.; Cortés-García, C.J.; Corrales-Escobosa, A.R.; Núñez-Anita, R.E.; Ortíz-Alvarado, R.; Chacón-García, L.; Solorio-Alvarado, C.R. Novel 2-aryl-4-aryloxyquinoline-based fungistatics for Mucor circinelloides. Biological evaluation of activity, QSAR and docking study. Bioorg. Med. Chem. Lett., 2022, 63, 128649.
[http://dx.doi.org/10.1016/j.bmcl.2022.128649] [PMID: 35245665]
[7]
Torres-Carbajal, K.R.S-Q. Indomethacin synthesis, historical overview of their structural modifications. ChemistrySelect, 2022, 7, e202201897.
[8]
Zhang, P.; Terefenko, E.A.; Fensome, A.; Wrobel, J.; Winneker, R.; Lundeen, S.; Marschke, K.B.; Zhang, Z. 6-Aryl-1,4-dihydro-benzo[d][1,3]oxazin- 2-ones: A novel class of potent, selective, and orally active nonsteroidal progesterone receptor antagonists. J. Med. Chem., 2002, 45(20), 4379-4382.
[http://dx.doi.org/10.1021/jm025555e] [PMID: 12238914]
[9]
Hays, S.J.; Caprathe, B.W.; Gilmore, J.L.; Amin, N.; Emmerling, M.R.; Michael, W.; Nadimpalli, R.; Nath, R.; Raser, K.J.; Stafford, D.; Watson, D.; Wang, K.; Jaen, J.C. 2-Amino-4 H -3,1-benzoxazin-4-ones as inhibitors of C1r serine protease. J. Med. Chem., 1998, 41(7), 1060-1067.
[http://dx.doi.org/10.1021/jm970394d] [PMID: 9544206]
[10]
Hernández, E.; Vélez, J.M.; Vlaar, C.P. Synthesis of 1,4-dihydro-benzo[d][1,3]oxazin-2-ones from phthalides via an aminolysis-Hofmann rearrangement protocol. Tetrahedron Lett., 2007, 48(51), 8972-8975.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.114] [PMID: 19096499]
[11]
Zhang, P.; Terefenko, E.A.; Fensome, A.; Zhang, Z.; Zhu, Y.; Cohen, J.; Winneker, R.; Wrobel, J.; Yardley, J. Potent nonsteroidal progesterone receptor agonists: Synthesis and SAR study of 6-aryl benzoxazines. Bioorg. Med. Chem. Lett., 2002, 12(5), 787-790.
[http://dx.doi.org/10.1016/S0960-894X(02)00025-2] [PMID: 11859003]
[12]
Yarim, M.; Koksal, M.; Durmaz, I.; Atalay, R. Cancer cell cytotoxicities of 1-(4-substitutedbenzoyl)-4-(4-chlorobenzhydryl)piperazine derivatives. Int. J. Mol. Sci., 2012, 13(7), 8071-8085.
[http://dx.doi.org/10.3390/ijms13078071] [PMID: 22942690]
[13]
Ataollahi, M.R.; Sharifi, J.; Paknahad, M.R.; Paknahad, A. Breast cancer and associated factors: A review. J Med Life, 2015, 8(Spec Iss 4), 6-11.
[14]
Ramadoss, V.; Alonso-Castro, A.J.; Campos-Xolalpa, N.; Solorio-Alvarado, C.R. Protecting-group-free total synthesis and biological evaluation of 3-methylkealiiquinone and structural analogues. J. Org. Chem., 2018, 83(17), 10627-10635.
[http://dx.doi.org/10.1021/acs.joc.8b01436] [PMID: 30091606]
[15]
Bhat, M.; Al-Dhfyan, A.; Naglah, A.; Khan, A.; Al-Omar, M. Lead optimization of 2-Cyclohexyl-N- [(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides for targeting the HER-2 overexpressed breast cancer cell line SKBr-3. Molecules, 2015, 20(10), 18246-18263.
[http://dx.doi.org/10.3390/molecules201018246] [PMID: 26457700]
[16]
Ramadoss, V.; Alonso-Castro, A.J.; Campos-Xolalpa, N.; Ortiz-Alvarado, R.; Yahuaca-Juárez, B.; Solorio-Alvarado, C.R. Total synthesis of kealiiquinone: The regio-controlled strategy for accessing its 1-methyl-4-arylbenzimidazolone core. RSC Advances, 2018, 8(54), 30761-30776.
[http://dx.doi.org/10.1039/C8RA06676K] [PMID: 35548717]
[17]
Ramadoss, V.G-M. Solorio-Alvarado, C.R.; Ramadoss, V.; Gámez-Montaño, R.; Zapata-Morales, J.R.; and Alonso-Castro, A.J.; Total synthesis of the linear and angular 3-methylated regioisomers of the marine natural product Kealiiquinone and biological evaluation of related Leucetta sp. alkaloids on human breast cancer Med. Chem. Res., 2019, 28, 473-484.
[18]
Sharma, G.N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(2), 109-126.
[PMID: 22247839]
[19]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[20]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 1-23.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[21]
Comşa, Ş.; Cîmpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res., 2015, 35(6), 3147-3154.
[PMID: 26026074]
[22]
Booms, A.; Coetzee, G.A.; Pierce, S.E. MCF-7 as a model for functional analysis of breast cancer risk variants. Cancer Epidemiol. Biomarkers Prev., 2019, 28(10), 1735-1745.
[http://dx.doi.org/10.1158/1055-9965.EPI-19-0066] [PMID: 31292138]
[23]
Gazdar, A.F.; Kurvari, V.; Virmani, A.; Gollahon, L.; Sakaguchi, M.; Westerfield, M.; Kodagoda, D.; Stasny, V.; Cunningham, H.T.; Wistuba, I.I.; Tomlinson, G.; Tonk, V.; Ashfaq, R.; Leitch, A.M.; Minna, J.D.; Shay, J.W. Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer. Int. J. Cancer, 1998, 78(6), 766-774.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19981209)78:6<766::AID-IJC15>3.0.CO;2-L] [PMID: 9833771]
[24]
Fogh, J.; Wright, W.C.; Loveless, J.D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J. Natl. Cancer Inst., 1977, 58(2), 209-214.
[http://dx.doi.org/10.1093/jnci/58.2.209] [PMID: 833871]
[25]
Lal, K.; Yadav, P. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 18(1), 21-37.
[http://dx.doi.org/10.2174/1871520616666160811113531] [PMID: 27528183]
[26]
Córdova-Rivas, S.; Araujo-Huitrado, J.G.; Rivera-Avalos, E.; Escalante-García, I.L.; Durón-Torres, S.M.; López-Hernández, Y.; Hernández-López, H.; López, L.; de Loera, D.; López, J.A. Differential proliferation effect of the newly synthesized valine, tyrosine and tryptophan–naphthoquinones in immortal and tumorigenic cervical cell lines. Molecules, 2020, 25(9), 2058.
[http://dx.doi.org/10.3390/molecules25092058] [PMID: 32354078]
[27]
Segura-Quezada, L.A.; Torres-Carbajal, K.R.; Mali, N.; Patil, D.B.; Luna-Chagolla, M.; Ortiz-Alvarado, R.; Tapia-Juárez, M.; Fraire-Soto, I.; Araujo-Huitrado, J.G.; Granados-López, A.J.; Gutiérrez-Hernández, R.; Reyes-Estrada, C.A.; López-Hernández, Y.; López, J.A.; Chacón-García, L.; Solorio-Alvarado, C.R. Gold(I)-catalyzed synthesis of 4 H -Benzo[ d ][1,3]oxazines and biological evaluation of activity in breast cancer cells. ACS Omega, 2022, 7(8), 6944-6955.
[http://dx.doi.org/10.1021/acsomega.1c06637] [PMID: 35252686]
[28]
Managa, M.G.; Sultanbawa, Y.; Sivakumar, D. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in chinese cabbage (Brassica rapa L. subsp. chinensis) and nightshade (Solanum retroflexum Dun.). Molecules, 2020, 25(6), 1326.
[http://dx.doi.org/10.3390/molecules25061326] [PMID: 32183223]
[29]
Xu, B.J.; Chang, S.K.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci., 2007, 72(2), S159-S166.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00260.x] [PMID: 17995858]
[30]
Nahide, P.D.; Jiménez-Halla, J.O.C.; Wrobel, K.; Solorio-Alvarado, C.R.; Ortiz Alvarado, R.; Yahuaca-Juárez, B. Gold( I )-catalysed high-yielding synthesis of indenes by direct C sp3 –H bond activation. Org. Biomol. Chem., 2018, 16(40), 7330-7335.
[http://dx.doi.org/10.1039/C8OB02056F] [PMID: 30259052]
[31]
Mato, M.; Franchino, A.; García-Morales, C.; Echavarren, A.M. Gold-catalyzed synthesis of small rings. Chem. Rev., 2021, 121(14), 8613-8684.
[http://dx.doi.org/10.1021/acs.chemrev.0c00697] [PMID: 33136374]
[32]
Brandes, L.J.; Hermonat, M.W. Receptor status and subsequent sensitivity of subclones of MCF-7 human breast cancer cells surviving exposure to diethylstilbestrol. Cancer Res., 1983, 43(6), 2831-2835.
[PMID: 6850594]
[33]
Lewandowski, M.; Gwozdzinski, K. Nitroxides as antioxidants and anticancer drugs. Int. J. Mol. Sci., 2017, 18(11), 2490.
[http://dx.doi.org/10.3390/ijms18112490] [PMID: 29165366]
[34]
Winter, J.M.; Yadav, T.; Rutter, J. Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Mol. Cell, 2022, 82(18), 3321-3332.
[http://dx.doi.org/10.1016/j.molcel.2022.07.012] [PMID: 35961309]
[35]
Valabrega, G.; Berrino, G.; Milani, A.; Aglietta, M.; Montemurro, F. A retrospective analysis of the activity and safety of oral Etoposide in heavily pretreated metastatic breast cancer patients. Breast J., 2015, 21(3), 241-245.
[http://dx.doi.org/10.1111/tbj.12398] [PMID: 25772707]
[36]
Gottesman, M.M.; Pastan, I.; Ambudkar, S.V. P-glycoprotein and multidrug resistance. Curr. Opin. Genet. Dev., 1996, 6(5), 610-617.
[http://dx.doi.org/10.1016/S0959-437X(96)80091-8] [PMID: 8939727]
[37]
Mbaba, M.; Dingle, L.M.K.; Cash, D.; Mare, J.A.; Laming, D.; Taylor, D.; Hoppe, H.C.; Edkins, A.L.; Khanye, S.D. Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1,3-benzoxazine derivatives. Eur. J. Med. Chem., 2020, 187, 111924.
[http://dx.doi.org/10.1016/j.ejmech.2019.111924] [PMID: 31855792]
[38]
Bollu, R.; Palem, J.D.; Bantu, R.; Guguloth, V.; Nagarapu, L.; Polepalli, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur. J. Med. Chem., 2015, 89, 138-146.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.051] [PMID: 25462234]
[39]
de Brito, M.R.M.; Peláez, W.J.; Faillace, M.S.; Militão, G.C.G.; Almeida, J.R.G.S.; Argüello, G.A.; Szakonyi, Z.; Fülöp, F.; Salvadori, M.C.; Teixeira, F.S.; Freitas, R.M.; Pinto, P.L.S.; Mengarda, A.C.; Silva, M.P.N.; Da Silva Filho, A.A.; de Moraes, J. Cyclohexene-fused 1,3-oxazines with selective antibacterial and antiparasitic action and low cytotoxic effects. Toxicol. In vitro, 2017, 44, 273-279.
[http://dx.doi.org/10.1016/j.tiv.2017.07.021] [PMID: 28755871]
[40]
Nishiyama, T.; Hatae, N.; Yoshimura, T.; Takaki, S.; Abe, T.; Ishikura, M.; Hibino, S.; Choshi, T. Concise synthesis of carbazole-1,4-quinones and evaluation of their antiproliferative activity against HCT-116 and HL-60 cells. Eur. J. Med. Chem., 2016, 121, 561-577.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.065] [PMID: 27318980]
[41]
Choi, S.J.; Lee, J.E.; Jeong, S.Y.; Im, I.; Lee, S.D.; Lee, E.J.; Lee, S.K.; Kwon, S.M.; Ahn, S.G.; Yoon, J.H.; Han, S.Y.; Kim, J.I.; Kim, Y.C. 5,5′-substituted indirubin-3′-oxime derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity. J. Med. Chem., 2010, 53(9), 3696-3706.
[http://dx.doi.org/10.1021/jm100080z] [PMID: 20361800]
[42]
Tercel, M.; Lee, H.H.; Mehta, S.Y.; Youte Tendoung, J.J.; Bai, S.Y.; Liyanage, H.D.S.; Pruijn, F.B. Influence of a basic side chain on the properties of hypoxia-selective nitro analogues of the duocarmycins: Demonstration of substantial anticancer activity in combination with irradiation or chemotherapy. J. Med. Chem., 2017, 60(13), 5834-5856.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00563] [PMID: 28644035]
[43]
Muthu Ramalingam, B.; Dhatchana Moorthy, N.; Chowdhury, S.R.; Mageshwaran, T.; Vellaichamy, E.; Saha, S.; Ganesan, K.; Rajesh, B.N.; Iqbal, S.; Majumder, H.K.; Gunasekaran, K.; Siva, R.; Mohanakrishnan, A.K. Synthesis and biological evaluation of calothrixins B and their deoxygenated analogues. J. Med. Chem., 2018, 61(3), 1285-1315.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01797] [PMID: 29313676]
[44]
Beck, D.E.; Abdelmalak, M.; Lv, W.; Reddy, P.V.N.; Tender, G.S.; O’Neill, E.; Agama, K.; Marchand, C.; Pommier, Y.; Cushman, M. Discovery of potent indenoisoquinoline topoisomerase I poisons lacking the 3-nitro toxicophore. J. Med. Chem., 2015, 58(9), 3997-4015.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00303] [PMID: 25909279]
[45]
Dhatchana Moorthy, N.; Muthu Ramalingam, B.; Iqbal, S.; Mohanakrishnan, A.K.; Gunasekaran, K.; Vellaichamy, E. Novel isothiacalothrixin B analogues exhibit cytotoxic activity on human colon cancer cells in vitro by inducing irreversible DNA damage. PLoS One, 2018, 13(9), e0202903.
[http://dx.doi.org/10.1371/journal.pone.0202903] [PMID: 30188913]
[46]
Qiu, G.L.; He, S.S.; Chen, S.C.; Li, B.; Wu, H.H.; Zhang, J.; Tang, W.J. Design, synthesis and biological evaluation of tricyclic pyrazolo[1,5- c ][1,3]benzoxazin-5(5 H )-one scaffolds as selective BuChE inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1506-1515.
[http://dx.doi.org/10.1080/14756366.2018.1488696] [PMID: 30284486]
[47]
Jalili-Baleh, L.; Nadri, H.; Moradi, A.; Bukhari, S.N.A.; Shakibaie, M.; Jafari, M.; Golshani, M.; Homayouni Moghadam, F.; Firoozpour, L.; Asadipour, A.; Emami, S.; Khoobi, M.; Foroumadi, A. New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 280-289.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.072] [PMID: 28803044]
[48]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[49]
Tanos, T.; Rojo, L.J.; Echeverria, P.; Brisken, C. ER and PR signaling nodes during mammary gland development. Breast Cancer Res., 2012, 14(4), 210.
[http://dx.doi.org/10.1186/bcr3166] [PMID: 22809143]
[50]
Hilton, H.N.; Doan, T.B.; Graham, J.D.; Oakes, S.R.; Silvestri, A.; Santucci, N.; Kantimm, S.; Huschtscha, L.I.; Ormandy, C.J.; Funder, J.W.; Simpson, E.R.; Kuczek, E.S.; Leedman, P.J.; Tilley, W.D.; Fuller, P.J.; Muscat, G.E.O.; Clarke, C.L. Acquired convergence of hormone signaling in breast cancer: ER and PR transition from functionally distinct in normal breast to predictors of metastatic disease. Oncotarget, 2014, 5(18), 8651-8664.
[http://dx.doi.org/10.18632/oncotarget.2354] [PMID: 25261374]
[51]
Diep, C.H.; Ahrendt, H.; Lange, C.A. Progesterone induces progesterone receptor gene (PGR) expression via rapid activation of protein kinase pathways required for cooperative estrogen receptor alpha (ER) and progesterone receptor (PR) genomic action at ER/PR target genes. Steroids, 2016, 114, 48-58.
[http://dx.doi.org/10.1016/j.steroids.2016.09.004] [PMID: 27641443]
[52]
Du, Z.; Gao, W.; Sun, J.; Li, Y.; Sun, Y.; Chen, T.; Ge, S.; Guo, W. Identification of long non-coding RNA-mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2- and triple negative breast cancer. Int. J. Mol. Med., 2019, 44(3), 1015-1025.
[http://dx.doi.org/10.3892/ijmm.2019.4261] [PMID: 31257479]
[53]
Radojicic, J.; Zaravinos, A.; Vrekoussis, T.; Kafousi, M.; Spandidos, D.A.; Stathopoulos, E.N. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle, 2011, 10(3), 507-517.
[http://dx.doi.org/10.4161/cc.10.3.14754] [PMID: 21270527]
[54]
Zhao, Y.G.; Chen, Y.; Miao, G.; Zhao, H.; Qu, W.; Li, D.; Wang, Z.; Liu, N.; Li, L.; Chen, S.; Liu, P.; Feng, D.; Zhang, H. The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol. Cell, 2017, 67(6), 974-989.
[http://dx.doi.org/10.1016/j.molcel.2017.08.005] [PMID: 28890335]
[55]
Kolesnikov, N.N.; Veryaskina, Y.A.; Titov, S.E.; Rodionov, V.V.; Gening, T.P.; Abakumova, T.V.; Kometova, V.V.; Torosyan, M.K.; Zhimulev, I.F. Expression of micrornas in molecular genetic breast cancer subtypes. Cancer Treat. Res. Commun., 2019, 20, 100026.
[http://dx.doi.org/10.1016/j.ctarc.2016.08.006] [PMID: 31255253]
[56]
Kundu, T.; Bhattacharjee, B.; Hazra, S.; Ghosh, A.K.; Bandyopadhyay, D.; Pramanik, A. Synthesis and biological assessment of pyrrolobenzoxazine scaffold as a potent antioxidant. J. Med. Chem., 2019, 62(13), 6315-6329.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00717] [PMID: 31246452]
[57]
Kavalappa, Y.P.; Gopal, S.S.; Ponesakki, G. Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and induces apoptosis. J. Cell. Physiol., 2021, 236(3), 1798-1809.
[http://dx.doi.org/10.1002/jcp.29961] [PMID: 32710479]
[58]
Sowmya Shree, G.; Yogendra Prasad, K.; Arpitha, H.S.; Deepika, U.R.; Nawneet Kumar, K.; Mondal, P.; Ganesan, P. β-carotene at physiologically attainable concentration induces apoptosis and down-regulates cell survival and antioxidant markers in human breast cancer (MCF-7) cells. Mol. Cell. Biochem., 2017, 436(1-2), 1-12.
[http://dx.doi.org/10.1007/s11010-017-3071-4] [PMID: 28550445]
[59]
Sharma, P.; Kumar, S. Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD). Cell Oncol., 2018, 41(6), 637-650.
[http://dx.doi.org/10.1007/s13402-018-0398-0] [PMID: 30088260]
[60]
Firpo, G.; Ramírez, M.L.; Faillace, M.S.; de Brito, M.R.M.; e Silva, A.P.S.C.L.; Costa, J.P.; Rodríguez, M.C.; Argüello, G.A.; Szakonyi, Z.; Fülöp, F.; Peláez, W.J. Evaluation of the antioxidant activity of Cis/Trans-N-Phenyl-1,4,4a,5,8,8a-Hexahydro-3,1-Benzoxazin-2-Imines. Antioxidants, 2019, 8(6), 197.
[http://dx.doi.org/10.3390/antiox8060197] [PMID: 31242617]
[61]
Castelli, S.; Ciccarone, F.; Tavian, D.; Ciriolo, M.R. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. J. Exp. Clin. Cancer Res., 2021, 40(1), 94.
[http://dx.doi.org/10.1186/s13046-021-01887-w] [PMID: 33706793]
[62]
Hou, X.; Yang, S.; Yin, J. Blocking the REDD1/TXNIP axis ameliorates LPS-induced vascular endothelial cell injury through repressing oxidative stress and apoptosis. Am. J. Physiol. Cell Physiol., 2019, 316(1), C104-C110.
[http://dx.doi.org/10.1152/ajpcell.00313.2018] [PMID: 30485138]
[63]
Wu, Z.; Wang, H.; Fang, S.; Xu, C. Roles of endoplasmic reticulum stress and autophagy on H2O2-induced oxidative stress injury in HepG2 cells. Mol. Med. Rep., 2018, 18(5), 4163-4174.
[http://dx.doi.org/10.3892/mmr.2018.9443] [PMID: 30221706]
[64]
Luo, Y.; Ma, J.; Lu, W. The significance of mitochondrial dysfunction in cancer. Int. J. Mol. Sci., 2020, 21(16), 5598.
[http://dx.doi.org/10.3390/ijms21165598] [PMID: 32764295]
[65]
Holenya, P.; Can, S.; Rubbiani, R.; Alborzinia, H.; Jünger, A.; Cheng, X.; Ott, I.; Wölfl, S. Detailed analysis of pro-apoptotic signaling and metabolic adaptation triggered by a N-heterocyclic carbene–gold( I ) complex. Metallomics, 2014, 6(9), 1591-1601.
[http://dx.doi.org/10.1039/C4MT00075G] [PMID: 24777153]
[66]
Zeng, C.; Lin, J.; Zhang, K.; Ou, H.; Shen, K.; Liu, Q.; Wei, Z.; Dong, X.; Zeng, X.; Zeng, L.; Wang, W.; Yao, J. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci., 2022, 113(11), 3766-3775.
[http://dx.doi.org/10.1111/cas.15531] [PMID: 35968603]
[67]
Purohit, P.K.; Edwards, R.; Tokatlidis, K.; Saini, N. MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biol., 2019, 16(7), 918-929.
[http://dx.doi.org/10.1080/15476286.2019.1600999] [PMID: 30932749]
[68]
Yang, A.J.; Shi, W.W.; Li, Y.; Wang, Z.; Shao, R.G.; Li, D.D.; He, Q.Y. Role of prosurvival molecules in the action of lidamycin toward human tumor cells. Biomed. Environ. Sci., 2009, 22(3), 244-252.
[http://dx.doi.org/10.1016/S0895-3988(09)60052-0] [PMID: 19725468]
[69]
Wei, R.; Zhao, Y.; Wang, J.; Yang, X.; Li, S.; Wang, Y.; Yang, X.; Fei, J.; Hao, X.; Zhao, Y.; Gui, L.; Ding, X. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int. J. Biol. Sci., 2021, 17(11), 2703-2717.
[http://dx.doi.org/10.7150/ijbs.59404] [PMID: 34345202]
[70]
Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci., 2016, 73(17), 3221-3247.
[http://dx.doi.org/10.1007/s00018-016-2223-0] [PMID: 27100828]
[71]
Facchinetti, M.M. Heme-Oxygenase-1. Antioxid. Redox Signal., 2020, 32(17), 1239-1242.
[http://dx.doi.org/10.1089/ars.2020.8065] [PMID: 32148070]
[72]
Son, Y.; Kim, S.; Chung, H.T.; Pae, H.O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol., 2013, 528, 27-48.
[http://dx.doi.org/10.1016/B978-0-12-405881-1.00002-1] [PMID: 23849857]
[73]
Torres, M.; Forman, H.J. Redox signaling and the MAP kinase pathways. Biofactors, 2003, 17(1-4), 287-296.
[http://dx.doi.org/10.1002/biof.5520170128] [PMID: 12897450]
[74]
Kma, L.; Baruah, T.J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol. Appl. Biochem., 2022, 69(1), 248-264.
[http://dx.doi.org/10.1002/bab.2104] [PMID: 33442914]
[75]
Deng, S.; Dai, G.; Chen, S.; Nie, Z.; Zhou, J.; Fang, H.; Peng, H. Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed. Pharmacother., 2019, 110, 602-608.
[http://dx.doi.org/10.1016/j.biopha.2018.11.103] [PMID: 30537677]
[76]
Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy