Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Effects of Metformin Therapy on Thyroid Volume and Functions in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Single-center Prospective Study

Author(s): Mehtap Evran Olgun*, Gizem Pire and İsa Burak Güney

Volume 24, Issue 15, 2024

Published on: 26 April, 2024

Page: [1842 - 1855] Pages: 14

DOI: 10.2174/0118715303307313240315162000

Price: $65

Abstract

Objective: Patients with impaired glucose metabolism have increased thyroid volume and a higher prevalence of nodules. Yet, some studies show that there is an improvement in these thyroid parameters after diabetes treatment. Our observational study aimed to reveal the effect of treatment on thyroid function, thyroid volume, and the presence of nodules in newly diagnosed type 2 diabetes mellitus (T2DM) patients who were started on metformin treatment.

Methods: Euthyroid and subclinically hypothyroid patients with a serum TSH level of <10 mU/L, who were newly diagnosed with T2DM and started on metformin as an antidiabetic treatment and not used any thyroid medication previously, were included in our study. Patients' characteristics were recorded. Baseline and 6th-month serum thyroid function tests were scheduled. Baseline and 6th-month thyroid gland characteristics were examined by thyroid ultrasonography.

Results: A total of 101 (37 males, 64 females) newly diagnosed T2DM patients with euthyroid (n=95) or subclinical hypothyroidism (n=6) were included in the study. The mean age of the patients was 53.02 ± 11.9 years, and the mean BMI was 29.60 ± 3.9 kg/m2. Fifty-two (52%) patients were classified as obese. Body weight, BMI, serum TSH, ALT, Anti-TPO levels, and thyroid volume decreased significantly in the 6th-month compared to baseline values (p = 0.000; p = 0.000; p = 0.011; p = 0.022; p = 0.000, respectively). Serum anti-Tg, fT4, fT3 levels, and thyroid nodule count did not change significantly. A high agreement was found between the baseline and 6thmonth nodule counts (gamma= 0.886; p < 0.001) and the presence of multi-nodularity in the thyroid (gamma= 0.941; p < 0.001), but no significant change was observed. Anti-TPO levels showed a significant decrease in both with and without obesity groups at the end of 6 months (p = 0.003, p = 0.009, respectively). Serum TSH level decreased significantly only in non-obese subjects (p = 0.004), and thyroid volume decreased significantly only in obese subjects (p = 0.000).

Conclusion: Our results suggest that metformin treatment significantly reduces body weight, BMI, thyroid volume, and serum TSH, ALT, and Anti-TPO levels in patients with newly diagnosed T2DM. Moreover, serum TSH levels showed a significant decrease in non-obese subjects, while thyroid volume showed a significant decrease in obese subjects.

[1]
Masharani, U. Greenspan’s Basic and Clinical Endocrinology; 10th ed. Gardner, D.G.; Shoback, D., Eds.; Mc Graw Hill: New York, 2011.
[2]
Goolsby, M.J.; Blackwell, J. Identification, evaluation, and treatment of overweight and obese adults. J. Am. Acad. Nurse Pract., 2002, 14(5), 196-198.
[http://dx.doi.org/10.1111/j.1745-7599.2002.tb00113.x] [PMID: 12051142]
[3]
Frontczak, R.A.; Majchrzak, A.; Ziółkiewicz, Z.D. Insulin resistance in endocrine disorders - Treatment options. Endokrynol. Pol., 2017, 68(3), 334-351.
[http://dx.doi.org/10.5603/EP.2017.0026] [PMID: 28660991]
[4]
Junik, R.; Kozinski, M.; Kozinska, D.K. Thyroid ultrasound in diabetic patients without overt thyroid disease. Acta Radiol., 2006, 47(7), 687-691.
[http://dx.doi.org/10.1080/02841850600806308] [PMID: 16950706]
[5]
Duran, A.O.; Anil, C.; Gursoy, A.; Nar, A.; Inanc, M.; Bozkurt, O.; Tutuncu, N.B. Thyroid volume in patients with glucose metabolism disorders. Arq. Bras. Endocrinol. Metabol, 2014, 58(8), 824-827.
[http://dx.doi.org/10.1590/0004-2730000003418] [PMID: 25465604]
[6]
Anil, C.; Akkurt, A.; Ayturk, S.; Kut, A.; Gursoy, A. Impaired glucose metabolism is a risk factor for increased thyroid volume and nodule prevalence in a mild-to-moderate iodine deficient area. Metabolism, 2013, 62(7), 970-975.
[http://dx.doi.org/10.1016/j.metabol.2013.01.009] [PMID: 23395200]
[7]
Tang, Y.; Yan, T.; Wang, G.; Chen, Y.; Zhu, Y.; Jiang, Z.; Yang, M.; Li, C.; Li, Z.; Yu, P.; Wang, S.; Zhu, N.; Ren, Q.; Ni, C Correlation between insulin resistance and thyroid nodule in type 2 diabetes mellitus. Int. J. Endocrinol., 2017, 2017, 1617458.
[http://dx.doi.org/10.1155/2017/1617458]
[8]
Maxzud, C.M.; Rasjido, G.L.; Fregenal, M.; Calafiore, A.F.; Lanus, C.M.; D’Urso, M.; Luciardi, H. Prevalence of thyroid dysfunction in patients with type 2 diabetes mellitus. Medicina, 2016, 76(6), 355-358.
[PMID: 27959843]
[9]
Meng, X.; Xu, S.; Chen, G.; Derwahl, M.; Liu, C. Metformin and thyroid disease. J. Endocrinol., 2017, 233(1), R43-R51.
[http://dx.doi.org/10.1530/JOE-16-0450] [PMID: 28196954]
[10]
Schmid, D.; Behrens, G.; Jochem, C.; Keimling, M.; Leitzmann, M. Physical activity, diabetes, and risk of thyroid cancer: A systematic review and meta-analysis. Eur. J. Epidemiol., 2013, 28(12), 945-958.
[http://dx.doi.org/10.1007/s10654-013-9865-0] [PMID: 24243033]
[11]
Balkan, F.; Onal, E.D.; Usluogullari, A.; Tuzun, D.; Ozdemir, D.; Inancli, S.S.; Ersoy, R.; Cakir, B. “Is there any association between insulin resistance and thyroid cancer?: A case control study”. Endocrine, 2014, 45(1), 55-60.
[http://dx.doi.org/10.1007/s12020-013-9942-x] [PMID: 23564559]
[12]
Grigoriadis, G.; Koufakis, T.; Kotsa, K. Epidemiological, pathophysiological, and clinical considerations on the interplay between thyroid disorders and type 2 diabetes mellitus. Medicina, 2023, 59(11), 2013.
[http://dx.doi.org/10.3390/medicina59112013]
[13]
Ittermann, T.; Markus, M.R.; Schipf, S.; Derwahl, M.; Meisinger, C.; Völzke, H. Metformin inhibits goitrogenous effects of type 2 diabetes. Eur. J. Endocrinol., 2013, 169(1), 9-15.
[http://dx.doi.org/10.1530/EJE-13-0101]
[14]
Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[15]
Wang, Y.W.; He, S.J.; Feng, X.; Cheng, J.; Luo, Y.T.; Tian, L.; Huang, Q. Metformin: A review of its potential indications. Drug Des. Devel. Ther., 2017, 11, 2421-2429.
[http://dx.doi.org/10.2147/DDDT.S141675] [PMID: 28860713]
[16]
Chen, G.; Xu, S.; Renko, K.; Derwahl, M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J. Clin. Endocrinol. Metab., 2012, 97(4), E510-E520.
[http://dx.doi.org/10.1210/jc.2011-1754] [PMID: 22278418]
[17]
Han, B.; Cui, H.; Kang, L.; Zhang, X.; Jin, Z.; Lu, L.; Fan, Z. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumour Biol., 2015, 36(8), 6295-6304.
[http://dx.doi.org/10.1007/s13277-015-3315-4] [PMID: 25854169]
[18]
Tseng, C.H. Metformin reduces thyroid cancer risk in Taiwanese patients with type 2 diabetes. PLoS One, 2014, 9(10), e109852.
[http://dx.doi.org/10.1371/journal.pone.0109852] [PMID: 25303400]
[19]
Krysiak, R.; Szkróbka, W.; Okopień, B. Sex-dependent effect of metformin on hypothalamic-pituitary-thyroid axis activity in patients with subclinical hypothyroidism. Pharmacol. Rep., 2016, 68(6), 1115-1119.
[http://dx.doi.org/10.1016/j.pharep.2016.07.002] [PMID: 27588386]
[20]
Cannarella, R.; Condorelli, R.A.; Barbagallo, F.; Aversa, A.; Calogero, A.E.; La Vignera, S. TSH lowering effects of metformin: A possible mechanism of action. J. Endocrinol. Invest., 2021, 44(7), 1547-1550.
[http://dx.doi.org/10.1007/s40618-020-01445-9] [PMID: 33058005]
[21]
Krysiak, R.; Szkrobka, W.; Okopien, B. The effect of metformin on the hypothalamic-pituitary-thyroid axis in patients with type 2 diabetes and subclinical hyperthyroidism. Exp. Clin. Endocrinol. Diabetes, 2015, 123(4), 205-208.
[http://dx.doi.org/10.1055/s-0034-1398621] [PMID: 25658660]
[22]
Krysiak, R.; Gilowska, M.; Szkróbka, W.; Okopień, B. The effect of metformin on the hypothalamic-pituitary-thyroid axis in patients with type 2 diabetes and amiodarone-induced hypothyroidism. Pharmacol. Rep., 2016, 68(2), 490-494.
[http://dx.doi.org/10.1016/j.pharep.2015.11.010] [PMID: 26922558]
[23]
American Diabetes Association. Standards of medical care in diabetes—2018 abridged for primary care providers. Clin. Diabetes, 2018, 36(1), 14-37.
[http://dx.doi.org/10.2337/cd17-0119] [PMID: 29382975]
[24]
Carvalho, G.A.; Perez, C.L.; Ward, L.S. The clinical use of thyroid function tests. Arq. Bras. Endocrinol. Metabol, 2013, 57(3), 193-204.
[http://dx.doi.org/10.1590/S0004-27302013000300005] [PMID: 23681265]
[25]
Singh, R.J.; Kaur, P. Thyroid hormone testing in the 21st century. Clin. Biochem., 2016, 49(12), 843-845.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.06.007] [PMID: 27329994]
[26]
Sarafidis, P.A.; Lasaridis, A.N.; Nilsson, P.M.; Pikilidou, M.I.; Stafilas, P.C.; Kanaki, A.; Kazakos, K.; Yovos, J.; Bakris, G.L. Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley’s indices in patients with hypertension and type II diabetes. J. Hum. Hypertens., 2007, 21(9), 709-716.
[http://dx.doi.org/10.1038/sj.jhh.1002201] [PMID: 17443211]
[27]
Taylor, P.N.; Albrecht, D.; Scholz, A.; Buey, G.G.; Lazarus, J.H.; Dayan, C.M.; Okosieme, O.E. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol., 2018, 14(5), 301-316.
[http://dx.doi.org/10.1038/nrendo.2018.18] [PMID: 29569622]
[28]
Peeters, R.P. Subclinical hypothyroidism. N. Engl. J. Med., 2017, 376(26), 2556-2565.
[http://dx.doi.org/10.1056/NEJMcp1611144] [PMID: 28657873]
[29]
Loevner, L.A. Imaging of the thyroid gland. Semin. Ultrasound CT MR, 1996, 17(6), 539-562.
[http://dx.doi.org/10.1016/S0887-2171(96)90003-7] [PMID: 9023867]
[30]
Burgos, N.; Ospina, N.S.; Sipos, J.A. The future of thyroid nodule risk stratification. Endocrinol. Metab. Clin. North Am., 2022, 51(2), 305-321.
[http://dx.doi.org/10.1016/j.ecl.2021.12.002] [PMID: 35662443]
[31]
Brunn, J.; Block, U.; Ruf, G.; Bos, I.; Kunze, W.P.; Scriba, P.C. Volumetric analysis of thyroid lobes by real-time ultrasound. Dtsch. Med. Wochenschr., 1981, 106(41), 1338-1340.
[http://dx.doi.org/10.1055/s-2008-1070506] [PMID: 7274082]
[32]
Anil, C.; Kut, A.; Atesagaoglu, B.; Nar, A.; Tutuncu, B.N.; Gursoy, A. Metformin decreases thyroid volume and nodule size in subjects with insulin resistance: A preliminary study. Med. Princ. Pract., 2016, 25(3), 233-236.
[http://dx.doi.org/10.1159/000442821] [PMID: 26618447]
[33]
Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; Lindstedt, P.A.; Aali, A.; Abate, Y.H.; Abate, M.D.; Abbasian, M.; Kangevari, A.Z.; Kangevari, A.M.; ElHafeez, A.S.; Rabu, A.R.; Abdulah, D.M.; Abdullah, A.Y.M.; Abedi, V.; Abidi, H.; Aboagye, R.G.; Abolhassani, H.; Gharbieh, A.E.; Zaid, A.A.; Adane, T.D.; Adane, D.E.; Addo, I.Y.; Adegboye, O.A.; Adekanmbi, V.; Adepoju, A.V.; Adnani, Q.E.S.; Afolabi, R.F.; Agarwal, G.; Aghdam, Z.B.; Botero, A.M.; Arriagada, A.C.E.; Duah, A.W.; Ahinkorah, B.O.; Ahmad, D.; Ahmad, R.; Ahmad, S.; Ahmad, A.; Ahmadi, A.; Ahmadi, K.; Ahmed, A.; Ahmed, A.; Ahmed, L.A.; Ahmed, S.A.; Ajami, M.; Akinyemi, R.O.; Hamad, A.H.; Hasan, A.S.M.; Ahdal, A.T.M.A.; Alalwan, T.A.; Al-Aly, Z.; AlBataineh, M.T.; Rabanal, A.J.E.; Alemi, S.; Ali, H.; Alinia, T.; Aljunid, S.M.; Almustanyir, S.; Raddadi, A.L.R.M.; Guzman, A.N.; Amare, F.; Ameyaw, E.K.; Amiri, S.; Amusa, G.A.; Andrei, C.L.; Anjana, R.M.; Ansar, A.; Ansari, G.; Moghaddam, A.A.; Anyasodor, A.E.; Arabloo, J.; Aravkin, A.Y.; Areda, D.; Arifin, H.; Arkew, M.; Armocida, B.; Ärnlöv, J.; Artamonov, A.A.; Arulappan, J.; Aruleba, R.T.; Arumugam, A.; Aryan, Z.; Asemu, M.T.; Jafarabadi, A.M.; Askari, E.; Asmelash, D.; Burt, A.T.; Athar, M.; Athari, S.S.; Atout, M.M.W.; Burgos, A.L.; Awaisu, A.; Azadnajafabad, S.; B, D.B.; Babamohamadi, H.; Badar, M.; Badawi, A.; Badiye, A.D.; Baghcheghi, N.; Bagheri, N.; Bagherieh, S.; Bah, S.; Bahadory, S.; Bai, R.; Baig, A.A.; Baltatu, O.C.; Baradaran, H.R.; Barchitta, M.; Bardhan, M.; Barengo, N.C.; Bärnighausen, T.W.; Barone, M.T.U.; Barone-Adesi, F.; Barrow, A.; Bashiri, H.; Basiru, A.; Basu, S.; Basu, S.; Batiha, A-M.M.; Batra, K.; Bayih, M.T.; Bayileyegn, N.S.; Behnoush, A.H.; Bekele, A.B.; Belete, M.A.; Belgaumi, U.I.; Belo, L.; Bennett, D.A.; Bensenor, I.M.; Berhe, K.; Berhie, A.Y.; Bhaskar, S.; Bhat, A.N.; Bhatti, J.S.; Bikbov, B.; Bilal, F.; Bintoro, B.S.; Bitaraf, S.; Bitra, V.R.; Mikanovic, B.V.; Bodolica, V.; Boloor, A.; Brauer, M.; Sayavera, B.J.; Brenner, H.; Butt, Z.A.; Calina, D.; Campos, L.A.; Nonato, C.I.R.; Cao, Y.; Cao, C.; Car, J.; Carvalho, M.; Orjuela, C.C.A.; López, C.F.; Cerin, E.; Chadwick, J.; Chandrasekar, E.K.; Chanie, G.S.; Charan, J.; Chattu, V.K.; Chauhan, K.; Cheema, H.A.; Abebe, C.E.; Chen, S.; Cherbuin, N.; Chichagi, F.; Chidambaram, S.B.; Cho, W.C.S.; Choudhari, S.G.; Chowdhury, R.; Chowdhury, E.K.; Chu, D-T.; Chukwu, I.S.; Chung, S-C.; Coberly, K.; Columbus, A.; Contreras, D.; Cousin, E.; Criqui, M.H.; Cruz-Martins, N.; Cuschieri, S.; Dabo, B.; Dadras, O.; Dai, X.; Damasceno, A.A.M.; Dandona, R.; Dandona, L.; Das, S.; Dascalu, A.M.; Dash, N.R.; Dashti, M.; Cervantes, D.C.A.; De la Góngora, C.V.; Debele, G.R.; Delpasand, K.; Demisse, F.W.; Demissie, G.D.; Deng, X.; Gutiérrez, D.E.; Deo, S.V.; Dervišević, E.; Desai, H.D.; Desale, A.T.; Dessie, A.M.; Desta, F.; Dewan, S.M.R.; Dey, S.; Dhama, K.; Dhimal, M.; Diao, N.; Diaz, D.; Dinu, M.; Diress, M.; Djalalinia, S.; Doan, L.P.; Dongarwar, D.; dos Figueiredo, S.F.W.; Duncan, B.B.; Dutta, S.; Dziedzic, A.M.; Edinur, H.A.; Ekholuenetale, M.; Ekundayo, T.C.; Elgendy, I.Y.; Elhadi, M.; El-Huneidi, W.; Elmeligy, O.A.A.; Elmonem, M.A.; Endeshaw, D.; Esayas, H.L.; Eshetu, H.B.; Etaee, F.; Fadhil, I.; Fagbamigbe, A.F.; Fahim, A.; Falahi, S.; Faris, M.A.I.E.M.; Farrokhpour, H.; Farzadfar, F.; Fatehizadeh, A.; Fazli, G.; Feng, X.; Ferede, T.Y.; Fischer, F.; Flood, D.; Forouhari, A.; Foroumadi, R.; Koudehi, F.M.; Gaidhane, A.M.; Gaihre, S.; Gaipov, A.; Galali, Y.; Ganesan, B.; Gordillo, G.M.A.; Gautam, R.K.; Gebrehiwot, M.; Gebrekidan, K.G.; Gebremeskel, T.G.; Getacher, L.; Ghadirian, F.; Ghamari, S-H.; Nour, G.M.; Ghassemi, F.; Golechha, M.; Goleij, P.; Golinelli, D.; Gopalani, S.V.; Guadie, H.A.; Guan, S-Y.; Gudayu, T.W.; Guimarães, R.A.; Guled, R.A.; Gupta, R.; Gupta, K.; Gupta, V.B.; Gupta, V.K.; Gyawali, B.; Haddadi, R.; Hadi, N.R.; Haile, T.G.; Hajibeygi, R.; Haj-Mirzaian, A.; Halwani, R.; Hamidi, S.; Hankey, G.J.; Hannan, M.A.; Haque, S.; Harandi, H.; Harlianto, N.I.; Hasan, S.M.M.; Hasan, S.S.; Hasani, H.; Hassanipour, S.; Hassen, M.B.; Haubold, J.; Hayat, K.; Heidari, G.; Heidari, M.; Hessami, K.; Hiraike, Y.; Holla, R.; Hossain, S.; Hossain, M.S.; Hosseini, M-S.; Hosseinzadeh, M.; Hosseinzadeh, H.; Huang, J.; Huda, M.N.; Hussain, S.; Huynh, H-H.; Hwang, B-F.; Ibitoye, S.E.; Ikeda, N.; Ilic, I.M.; Ilic, M.D.; Inbaraj, L.R.; Iqbal, A.; Islam, S.M.S.; Islam, R.M.; Ismail, N.E.; Iso, H.; Isola, G.; Itumalla, R.; Iwagami, M.; Iwu, C.C.D.; Iyamu, I.O.; Iyasu, A.N.; Jacob, L.; Jafarzadeh, A.; Jahrami, H.; Jain, R.; Jaja, C.; Jamalpoor, Z.; Jamshidi, E.; Janakiraman, B.; Jayanna, K.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jebai, R.; Jeong, W.; Jin, Y.; Jokar, M.; Jonas, J.B.; Joseph, N.; Joseph, A.; Joshua, C.E.; Joukar, F.; Jozwiak, J.J.; Kaambwa, B.; Kabir, A.; Kabthymer, R.H.; Kadashetti, V.; Kahe, F.; Kalhor, R.; Kandel, H.; Karanth, S.D.; Karaye, I.M.; Karkhah, S.; Katoto, P.D.M.C.; Kaur, N.; Kazemian, S.; Kebede, S.A.; Khader, Y.S.; Khajuria, H.; Khalaji, A.; Khan, M.A.B.; Khan, M.; Khan, A.; Khanal, S.; Khatatbeh, M.M.; Khater, A.M.; Khateri, S.; khorashadizadeh, F.; Khubchandani, J.; Kibret, B.G.; Kim, M.S.; Kimokoti, R.W.; Kisa, A.; Kivimäki, M.; Kolahi, A-A.; Komaki, S.; Kompani, F.; Koohestani, H.R.; Korzh, O.; Kostev, K.; Kothari, N.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, Y.; Kuate Defo, B.; Kuddus, M.; Kuddus, M.A.; Kumar, R.; Kumar, H.; Kundu, S.; Kurniasari, M.D.; Kuttikkattu, A.; La Vecchia, C.; Lallukka, T.; Larijani, B.; Larsson, A.O.; Latief, K.; Lawal, B.K.; Le, T.T.T.; Le, T.T.B.; Lee, S.W.H.; Lee, M.; Lee, W-C.; Lee, P.H.; Lee, S.; Lee, S.W.; Legesse, S.M.; Lenzi, J.; Li, Y.; Li, M-C.; Lim, S.S.; Lim, L-L.; Liu, X.; Liu, C.; Lo, C-H.; Lopes, G.; Lorkowski, S.; Lozano, R.; Lucchetti, G.; Maghazachi, A.A.; Mahasha, P.W.; Mahjoub, S.; Mahmoud, M.A.; Mahmoudi, R.; Mahmoudimanesh, M.; Mai, A.T.; Majeed, A.; Majma Sanaye, P.; Makris, K.C.; Malhotra, K.; Malik, A.A.; Malik, I.; Mallhi, T.H.; Malta, D.C.; Mamun, A.A.; Mansouri, B.; Marateb, H.R.; Mardi, P.; Martini, S.; Martorell, M.; Marzo, R.R.; Masoudi, R.; Masoudi, S.; Mathews, E.; Maugeri, A.; Mazzaglia, G.; Mekonnen, T.; Meshkat, M.; Mestrovic, T.; Miao Jonasson, J.; Miazgowski, T.; Michalek, I.M.; Minh, L.H.N.; Mini, G.K.; Miranda, J.J.; Mirfakhraie, R.; Mirrakhimov, E.M.; Mirza-Aghazadeh-Attari, M.; Misganaw, A.; Misgina, K.H.; Mishra, M.; Moazen, B.; Mohamed, N.S.; Mohammadi, E.; Mohammadi, M.; Mohammadian-Hafshejani, A.; Mohammadshahi, M.; Mohseni, A.; Mojiri-forushani, H.; Mokdad, A.H.; Momtazmanesh, S.; Monasta, L.; Moniruzzaman, M.; Mons, U.; Montazeri, F.; Moodi Ghalibaf, A.A.; Moradi, Y.; Moradi, M.; Moradi Sarabi, M.; Morovatdar, N.; Morrison, S.D.; Morze, J.; Mossialos, E.; Mostafavi, E.; Mueller, U.O.; Mulita, F.; Mulita, A.; Murillo-Zamora, E.; Musa, K.I.; Mwita, J.C.; Nagaraju, S.P.; Naghavi, M.; Nainu, F.; Nair, T.S.; Najmuldeen, H.H.R.; Nangia, V.; Nargus, S.; Naser, A.Y.; Nassereldine, H.; Natto, Z.S.; Nauman, J.; Nayak, B.P.; Ndejjo, R.; Negash, H.; Negoi, R.I.; Nguyen, H.T.H.; Nguyen, D.H.; Nguyen, P.T.; Nguyen, V.T.; Nguyen, H.Q.; Niazi, R.K.; Nigatu, Y.T.; Ningrum, D.N.A.; Nizam, M.A.; Nnyanzi, L.A.; Noreen, M.; Noubiap, J.J.; Nzoputam, O.J.; Nzoputam, C.I.; Oancea, B.; Odogwu, N.M.; Odukoya, O.O.; Ojha, V.A.; Okati-Aliabad, H.; Okekunle, A.P.; Okonji, O.C.; Okwute, P.G.; Olufadewa, I.I.; Onwujekwe, O.E.; Ordak, M.; Ortiz, A.; Osuagwu, U.L.; Oulhaj, A.; Owolabi, M.O.; Padron-Monedero, A.; Padubidri, J.R.; Palladino, R.; Panagiotakos, D.; Panda-Jonas, S.; Pandey, A.; Pandey, A.; Perumal, P.S.R.; Stoian, P.A.M.; Pardhan, S.; Parekh, T.; Parekh, U.; Pasovic, M.; Patel, J.; Patel, J.R.; Paudel, U.; Pepito, V.C.F.; Pereira, M.; Perico, N.; Perna, S.; Petcu, I-R.; Rocha, P.F.E.; Podder, V.; Postma, M.J.; Pourali, G.; Pourtaheri, N.; Prates, E.J.S.; Qadir, M.M.F.; Qattea, I.; Raee, P.; Rafique, I.; Rahimi, M.; Rahimifard, M.; Movaghar, R.V.; Rahman, M.O.; Rahman, M.A.; Rahman, M.H.U.; Rahman, M.; Rahman, M.M.; Rahmani, M.; Rahmani, S.; Rahmanian, V.; Rahmawaty, S.; Rahnavard, N.; Rajbhandari, B.; Ram, P.; Ramazanu, S.; Rana, J.; Rancic, N.; Ranjha, M.M.A.N.; Rao, C.R.; Rapaka, D.; Rasali, D.P.; Rashedi, S.; Rashedi, V.; Rashid, A.M.; Rashidi, M-M.; Ratan, Z.A.; Rawaf, S.; Rawal, L.; Redwan, E.M.M.; Remuzzi, G.; Rengasamy, K.R.R.; Renzaho, A.M.N.; Reyes, L.F.; Rezaei, N.; Rezaei, N.; Rezaeian, M.; Rezazadeh, H.; Riahi, S.M.; Rias, Y.A.; Riaz, M.; Ribeiro, D.; Rodrigues, M.; Rodriguez, J.A.B.; Roever, L.; Rohloff, P.; Roshandel, G.; Roustazadeh, A.; Rwegerera, G.M.; Saad, A.M.A.; Saber-Ayad, M.M.; Sabour, S.; Sabzmakan, L.; Saddik, B.; Sadeghi, E.; Saeed, U.; Moghaddam, S.S.; Safi, S.; Safi, S.Z.; Saghazadeh, A.; Askari, S.S.N.; Askari, S.S.F.; Sahebkar, A.; Sahoo, S.S.; Sahoo, H.; Rahman, S.U.K.M.; Sajid, M.R.; Salahi, S.; Salahi, S.; Saleh, M.A.; Salehi, M.A.; Salomon, J.A.; Sanabria, J.; Sanjeev, R.K.; Sanmarchi, F.; Milicevic, S.M.M.; Sarasmita, M.A.; Sargazi, S.; Sathian, B.; Sathish, T.; Sawhney, M.; Schlaich, M.P.; Schmidt, M.I.; Schuermans, A.; Seidu, A-A.; Kumar, S.N.; Sepanlou, S.G.; Sethi, Y.; Seylani, A.; Shabany, M.; Shafaghat, T.; Shafeghat, M.; Shafie, M.; Shah, N.S.; Shahid, S.; Shaikh, M.A.; Shanawaz, M.; Shannawaz, M.; Sharfaei, S.; Shashamo, B.B.; Shiri, R.; Shittu, A.; Shivakumar, K.M.; Shivalli, S.; Shobeiri, P.; Shokri, F.; Shuval, K.; Sibhat, M.M.; Silva, L.M.L.R.; Simpson, C.R.; Singh, J.A.; Singh, P.; Singh, S.; Siraj, M.S.; Skryabina, A.A.; Sohag, A.A.M.; Soleimani, H.; Solikhah, S.; Zangbar, S.M.S.; Somayaji, R.; Sorensen, R.J.D.; Starodubova, A.V.; Sujata, S.; Suleman, M.; Sun, J.; Sundström, J.; Seisdedos, T.R.; Tabatabaei, S.M.; Tabatabaeizadeh, S-A.; Tabish, M.; Taheri, M.; Taheri, E.; Taki, E.; Tamuzi, J.J.L.L.; Tan, K-K.; Tat, N.Y.; Taye, B.T.; Temesgen, W.A.; Temsah, M-H.; Tesler, R.; Thangaraju, P.; Thankappan, K.R.; Thapa, R.; Tharwat, S.; Thomas, N.; Ticoalu, J.H.V.; Tiyuri, A.; Tonelli, M.; Palone, T.M.R.; Trico, D.; Trihandini, I.; Tripathy, J.P.; Tromans, S.J.; Tsegay, G.M.; Tualeka, A.R.; Tufa, D.G.; Tyrovolas, S.; Ullah, S.; Upadhyay, E.; Vahabi, S.M.; Vaithinathan, A.G.; Valizadeh, R.; van Daalen, K.R.; Vart, P.; Varthya, S.B.; Vasankari, T.J.; Vaziri, S.; Verma, M.; Verras, G-I.; Vo, D.C.; Wagaye, B.; Waheed, Y.; Wang, Z.; Wang, Y.; Wang, C.; Wang, F.; Wassie, G.T.; Wei, M.Y.W.; Weldemariam, A.H.; Westerman, R.; Wickramasinghe, N.D.; Wu, Y.F.; Wulandari, R.D.W.I.; Xia, J.; Xiao, H.; Xu, S.; Xu, X.; Yada, D.Y.; Yang, L.; Yatsuya, H.; Yesiltepe, M.; Yi, S.; Yohannis, H.K.; Yonemoto, N.; You, Y.; Zaman, S.B.; Zamora, N.; Zare, I.; Zarea, K.; Zarrintan, A.; Zastrozhin, M.S.; Zeru, N.G.; Zhang, Z-J.; Zhong, C.; Zhou, J.; Zielińska, M.; Zikarg, Y.T.; Zodpey, S.; Zoladl, M.; Zou, Z.; Zumla, A.; Zuniga, Y.M.H.; Magliano, D.J.; Murray, C.J.L.; Hay, S.I.; Vos, T. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021. Lancet, 2023, 402(10397), 203-234.
[http://dx.doi.org/10.1016/S0140-6736(23)01301-6] [PMID: 37356446]
[34]
Viberti, G.; Kahn, S.E.; Greene, D.A.; Herman, W.H.; Zinman, B.; Holman, R.R.; Haffner, S.M.; Levy, D.; Lachin, J.M.; Berry, R.A.; Heise, M.A.; Jones, N.P.; Freed, M.I. A diabetes outcome progression trial (ADOPT): An international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care, 2002, 25(10), 1737-1743.
[http://dx.doi.org/10.2337/diacare.25.10.1737] [PMID: 12351470]
[35]
Charbonnel, B.; Dormandy, J.; Erdmann, E.; Benedetti, M.M.; Skene, A. The prospective pioglitazone clinical trial in macrovascular events (proactive): Can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care, 2004, 27(7), 1647-1653.
[http://dx.doi.org/10.2337/diacare.27.7.1647] [PMID: 15220241]
[36]
Bachmakov, I.; Glaeser, H.; Fromm, M.F.; König, J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: Focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes, 2008, 57(6), 1463-1469.
[http://dx.doi.org/10.2337/db07-1515] [PMID: 18314419]
[37]
Choi, M.K.; Jin, Q.R.; Ahn, S.H.; Bae, M.A.; Song, I.S. Sitagliptin attenuates metformin-mediated AMPK phosphorylation through inhibition of organic cation transporters. Xenobiotica, 2010, 40(12), 817-825.
[http://dx.doi.org/10.3109/00498254.2010.520349] [PMID: 20863201]
[38]
Stage, T.B.; Brøsen, K.; Christensen, M.M.H. A comprehensive review of drug–drug interactions with metformin. Clin. Pharmacokinet., 2015, 54(8), 811-824.
[http://dx.doi.org/10.1007/s40262-015-0270-6] [PMID: 25943187]
[39]
Cho, S.K.; Kim, C.O.; Park, E.S.; Chung, J.Y. Verapamil decreases the glucose‐lowering effect of metformin in healthy volunteers. Br. J. Clin. Pharmacol., 2014, 78(6), 1426-1432.
[http://dx.doi.org/10.1111/bcp.12476] [PMID: 25060604]
[40]
Garber, A.J.; Duncan, T.G.; Goodman, A.M.; Mills, D.J.; Rohlf, J.L. Efficacy of metformin in type II diabetes: Results of a double-blind, placebo-controlled, dose-response trial. Am. J. Med., 1997, 103(6), 491-497.
[http://dx.doi.org/10.1016/S0002-9343(97)00254-4] [PMID: 9428832]
[41]
Malin, S.K.; Kashyap, S.R. Effects of metformin on weight loss. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(5), 323-329.
[http://dx.doi.org/10.1097/MED.0000000000000095] [PMID: 25105996]
[42]
Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; Stoddard, H.B.M.; Temprosa, M.; Kahn, S.E.; Nathan, D.M. Metformin for diabetes prevention: Insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia, 2017, 60(9), 1601-1611.
[http://dx.doi.org/10.1007/s00125-017-4361-9] [PMID: 28770322]
[43]
Jali, M.V.; Kambar, S.; Jali, S.M.; Pawar, N.; Nalawade, P. Prevalence of thyroid dysfunction among type 2 diabetes mellitus patients. Diabetes Metab. Syndr., 2017, 11(S1), S105-S108.
[http://dx.doi.org/10.1016/j.dsx.2016.12.017] [PMID: 28057505]
[44]
Han, C.; He, X.; Xia, X.; Li, Y.; Shi, X.; Shan, Z.; Teng, W. Subclinical hypothyroidism and type 2 diabetes: A systematic review and meta-analysis. PLoS One, 2015, 10(8), e0135233.
[http://dx.doi.org/10.1371/journal.pone.0135233] [PMID: 26270348]
[45]
Krysiak, R.; Okopien, B. The effect of metformin on the hypothalamic–pituitary–thyroid axis in women with polycystic ovary syndrome and subclinical hypothyroidism. J. Clin. Pharmacol., 2015, 55(1), 45-49.
[http://dx.doi.org/10.1002/jcph.373] [PMID: 25079765]
[46]
Bogachus, L.D.; Turcotte, L.P. Genetic downregulation of AMPK-α isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells. Am. J. Physiol. Cell Physiol., 2010, 299(6), C1549-C1561.
[http://dx.doi.org/10.1152/ajpcell.00279.2010] [PMID: 20844250]
[47]
Khan, N.F.; Harrison, S.E.; Rose, P.W. Validity of diagnostic coding within the General Practice Research Database: A systematic review. Br. J. Gen. Pract., 2010, 60(572), e128-e136.
[http://dx.doi.org/10.3399/bjgp10X483562] [PMID: 20202356]
[48]
Cappelli, C.; Rotondi, M.; Pirola, I.; Agosti, B.; Gandossi, E.; Valentini, U.; De Martino, E.; Cimino, A.; Chiovato, L.; Rosei, A.E.; Castellano, M. TSH-lowering effect of metformin in type 2 diabetic patients: differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care, 2009, 32(9), 1589-1590.
[http://dx.doi.org/10.2337/dc09-0273] [PMID: 19502536]
[49]
Severo, D.M.; Andrade, S.T.; Junior, C.V.; Naujorks, A.A.; Gus, M.; Schaan, B.D. Metformin effect on TSH in subclinical hypothyroidism: Randomized, double-blind, placebo-controlled clinical trial. Endocrine, 2018, 59(1), 66-71.
[http://dx.doi.org/10.1007/s12020-017-1462-7] [PMID: 29080044]
[50]
Cappelli, C.; Rotondi, M.; Pirola, I.; Agosti, B.; Formenti, A.; Zarra, E.; Valentini, U.; Leporati, P.; Chiovato, L.; Castellano, M. Thyreotropin levels in diabetic patients on metformin treatment. Eur. J. Endocrinol., 2012, 167(2), 261-265.
[http://dx.doi.org/10.1530/EJE-12-0225] [PMID: 22645202]
[51]
Rajput, R.; Saini, M.; Rajput, M.; Shankar, V. Effects of metformin on thyroid function in patients of subclinical hypothyreoidism. J. Endocrinol. Metab., 2013, 3(4–5), 105-110.
[http://dx.doi.org/10.4021/jem188w]
[52]
Dimic, D.; Golubovic, M.V.; Radenkovic, S.; Radojkovic, D.; Pesic, M. The effect of metformin on TSH levels in euthyroid and hypothyroid newly diagnosed diabetes mellitus type 2 patients. Bratisl. Med. J., 2016, 117(8), 433-435.
[http://dx.doi.org/10.4149/BLL_2016_084] [PMID: 27546693]
[53]
Jia, X.; Zhai, T.; Zhang, J. Metformin reduces autoimmune antibody levels in patients with Hashimoto’s thyroiditis: A systematic review and meta-analysis. Autoimmunity, 2020, 53(6), 353-361.
[http://dx.doi.org/10.1080/08916934.2020.1789969] [PMID: 32741222]
[54]
Wang, H.; Li, T.; Chen, S.; Gu, Y.; Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof‐of‐concept trial of metformin. Arthritis Rheumatol., 2015, 67(12), 3190-3200.
[http://dx.doi.org/10.1002/art.39296] [PMID: 26245802]
[55]
Diaz, A.; Romero, M.; Vazquez, T.; Lechner, S.; Blomberg, B.B.; Frasca, D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes. Vaccine, 2017, 35(20), 2694-2700.
[http://dx.doi.org/10.1016/j.vaccine.2017.03.078] [PMID: 28392139]
[56]
Lee, S.Y.; Moon, S.J.; Kim, E.K.; Seo, H.B.; Yang, E.J.; Son, H.J.; Kim, J.K.; Min, J.K.; Park, S.H.; Cho, M.L. Metformin suppresses systemic autoimmunity in roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J. Immunol., 2017, 198(7), 2661-2670.
[http://dx.doi.org/10.4049/jimmunol.1403088] [PMID: 28242651]
[57]
Díez, J.J.; Iglesias, P. Relationship between serum thyrotropin concentrations and metformin therapy in euthyroid patients with type 2 diabetes. Clin. Endocrinol., 2013, 78(4), 505-511.
[http://dx.doi.org/10.1111/j.1365-2265.2012.04468.x] [PMID: 22686474]
[58]
Fournier, J.P.; Yin, H.; Yu, O.H.Y.; Azoulay, L. Metformin and low levels of thyroid-stimulating hormone in patients with type 2 diabetes mellitus. CMAJ, 2014, 186(15), 1138-1145.
[http://dx.doi.org/10.1503/cmaj.140688] [PMID: 25246411]
[59]
Haroon, S.M.; Khan, K.; Maqsood, M.; Iqbal, S.; Aleem, M.; Khan, T.U. Exploring the effect of metformin to lower thyroid-stimulating hormone in euthyroid and hypothyroid type-2 diabetic patients. Cureus, 2021, 13(2), e13283.
[http://dx.doi.org/10.7759/cureus.13283] [PMID: 33728216]
[60]
Rezzónico, J.; Rezzónico, M.; Pusiol, E.; Pitoia, F.; Niepomniszcze, H. Metformin treatment for small benign thyroid nodules in patients with insulin resistance. Metab. Syndr. Relat. Disord., 2011, 9(1), 69-75.
[http://dx.doi.org/10.1089/met.2010.0026] [PMID: 21128816]
[61]
Sui, M.; Yu, Y.; Zhang, H.; Di, H.; Liu, C.; Fan, Y. Efficacy of metformin for benign thyroid nodules in subjects with insulin resistance: A systematic review and meta-analysis. Front. Endocrinol., 2018, 9, 494.
[http://dx.doi.org/10.3389/fendo.2018.00494] [PMID: 30233494]
[62]
Morteza Taghavi, S.; Rokni, H.; Fatemi, S. Metformin decreases thyrotropin in overweight women with polycystic ovarian syndrome and hypothyroidism. Diab. Vasc. Dis. Res., 2011, 8(1), 47-48.
[http://dx.doi.org/10.1177/1479164110391917] [PMID: 21262871]
[63]
Blanc, E.; Ponce, C.; Brodschi, D.; Nepote, A.; Barreto, A.; Schnitman, M.; Fossati, P.; Salgado, P.; Cejas, C.; Faingold, C.; Musso, C.; Brenta, G. Association between worse metabolic control and increased thyroid volume and nodular disease in elderly adults with metabolic syndrome. Metab. Syndr. Relat. Disord., 2015, 13(5), 221-226.
[http://dx.doi.org/10.1089/met.2014.0158] [PMID: 25789844]
[64]
Rezzonico, J.; Rezzonico, M.; Pusiol, E.; Pitoia, F.; Niepomniszcze, H. Introducing the thyroid gland as another victim of the insulin resistance syndrome. Thyroid, 2008, 18(4), 461-464.
[http://dx.doi.org/10.1089/thy.2007.0223] [PMID: 18346005]
[65]
Kouidhi, S.; Berhouma, R.; Ammar, M.; Rouissi, K.; Jarboui, S.; Froidevaux, C.M.S.; Seugnet, I.; Abid, H.; Bchir, F.; Demeneix, B.; Guissouma, H.; Elgaaied, A.B. Relationship of thyroid function with obesity and type 2 diabetes in euthyroid Tunisian subjects. Endocr. Res., 2013, 38(1), 15-23.
[http://dx.doi.org/10.3109/07435800.2012.699987] [PMID: 22746188]
[66]
Isidro, M.L.; Penín, M.A.; Nemiña, R.; Cordido, F. Metformin reduces thyrotropin levels in obese, diabetic women with primary hypothyroidism on thyroxine replacement therapy. Endocr. J., 2007, 32(1), 79-82.
[http://dx.doi.org/10.1007/s12020-007-9012-3] [PMID: 17992605]
[67]
Răcătăianu, N.; Bolboacă, S.D.; Tăut, S.A.V.; Mârza, S.; Moga, D.; Valea, A.; Ghervan, C. The effect of metformin treatment in obese insulin-resistant patients with euthyroid goiter. Acta Clin. Belg., 2018, 73(5), 1-7.
[http://dx.doi.org/10.1080/17843286.2018.1439273] [PMID: 29452573]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy