Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Nomogram to Predict 90-Day All-Cause Mortality in Acute Ischemic Stroke Patients after Endovascular Thrombectomy

In Press, (this is not the final "Version of Record"). Available online 25 April, 2024
Author(s): Shiya Zhang, Shuai Yu, Xiaocui Wang, Zhiliang Guo, Jie Hou, Huaishun Wang, Zhichao Huang, Guodong Xiao* and Shoujiang You*
Published on: 25 April, 2024

DOI: 10.2174/0115672026311086240415050048

Price: $95

Abstract

Objective: Although Endovascular Thrombectomy (EVT) significantly improves the prognosis of Acute Ischemic Stroke (AIS) patients with large vessel occlusion, the mortality rate remains higher. This study aimed to construct and validate a nomogram for predicting 90-day all-cause mortality in AIS patients with large vessel occlusion and who have undergone EVT.

Methods: AIS patients with large vessel occlusion in the anterior circulation who underwent EVT from May 2017 to December 2022 were included. 430 patients were randomly split into a training group (N=302) and a test group (N=128) for the construction and validation of our nomogram. In the training group, multivariate logistic regression analysis was performed to determine the predictors of 90-day all-cause mortality. The C-index, calibration plots, and decision curve analysis were applied to evaluate the nomogram performance.

Results: Multivariate logistic regression analysis revealed neurological deterioration during hospitalization, age, baseline National Institutes of Health Stroke Scale (NIHSS) score, occlusive vessel location, malignant brain edema, and Neutrophil-to-lymphocyte Ratio (NLR) as the independent predictors of 90-day all-cause mortality (all p ≤ 0.039). The C-index of the training and test groups was 0.891 (95%CI 0.848-0.934) and 0.916 (95% CI: 0.865-0.937), respectively, showing the nomogram to be well distinguished. The Hosmer-Lemeshow goodness-of-fit test revealed the p-values for both the internal and external verification datasets to be greater than 0.5.

Conclusion: Our nomogram has incorporated relevant clinical and imaging features, including neurological deterioration, age, baseline NIHSS score, occlusive vessel location, malignant brain edema, and NLR ratio, to provide an accurate and reliable prediction of 90-day all-cause mortality in AIS patients undergoing EVT.

[1]
Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723-31.
[http://dx.doi.org/10.1016/S0140-6736(16)00163-X] [PMID: 26898852]
[2]
Berkhemer OA, Fransen PSS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372(1): 11-20.
[http://dx.doi.org/10.1056/NEJMoa1411587] [PMID: 25517348]
[3]
Correction to: Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2019; 50(12): e440-1.
[http://dx.doi.org/10.1161/STR.0000000000000215] [PMID: 31765293]
[4]
Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018; 378(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1706442] [PMID: 29129157]
[5]
Atchley TJ, Estevez-Ordonez D, Laskay NMB, Tabibian BE, Harrigan MR. Endovascular thrombectomy for the treatment of large ischemic stroke: A systematic review and meta-analysis of randomized control trials. Neurosurgery 2024; 94(1): 29-37.
[http://dx.doi.org/10.1227/neu.0000000000002610] [PMID: 37493372]
[6]
Yang P, Zhang Y, Zhang L, et al. Endovascular thrombectomy with or without intravenous alteplase in acute stroke. N Engl J Med 2020; 382(21): 1981-93.
[http://dx.doi.org/10.1056/NEJMoa2001123] [PMID: 32374959]
[7]
Zi W, Qiu Z, Li F, et al. Effect of endovascular treatment alone vs intravenous alteplase plus endovascular treatment on functional independence in patients with acute ischemic stroke. JAMA 2021; 325(3): 234-43.
[http://dx.doi.org/10.1001/jama.2020.23523] [PMID: 33464335]
[8]
Sluis WM, Hinsenveld WH, Goldhoorn RJB, et al. Timing and causes of death after endovascular thrombectomy in patients with acute ischemic stroke. Eur Stroke J 2023; 8(1): 215-23.
[http://dx.doi.org/10.1177/23969873221143210] [PMID: 37021180]
[9]
Taussky P, Agnoletto G, Grandhi R, et al. Prediction of death after endovascular thrombectomy in the extended window: A secondary analysis of DEFUSE 3 “. J Neurointerv Surg 2021; 13(9): 805-8.
[http://dx.doi.org/10.1136/neurintsurg-2020-016548] [PMID: 33077580]
[10]
Zhang X, Yuan K, Wang H, et al. Nomogram to predict mortality of endovascular thrombectomy for ischemic stroke despite successful recanalization. J Am Heart Assoc 2020; 9(3): e014899.
[http://dx.doi.org/10.1161/JAHA.119.014899] [PMID: 31973604]
[11]
Pu M, Chen J, Chen Z, et al. Predictors and outcome of malignant cerebral edema after successful reperfusion in anterior circulation stroke. J Stroke Cerebrovasc Dis 2023; 32(6): 107139.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2023.107139] [PMID: 37105014]
[12]
Zhang M, Xing P, Tang J, et al. Predictors and outcome of early neurological deterioration after endovascular thrombectomy: A secondary analysis of the DIRECT-MT trial. J Neurointerv Surg 2023; 15(e1): e9-e16.
[http://dx.doi.org/10.1136/neurintsurg-2022-018976] [PMID: 35688618]
[13]
Kim JM, Bae JH, Park KY, et al. Incidence and mechanism of early neurological deterioration after endovascular thrombectomy. J Neurol 2019; 266(3): 609-15.
[http://dx.doi.org/10.1007/s00415-018-09173-0] [PMID: 30631916]
[14]
Sarraj A, Hassan AE, Abraham MG, et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med 2023; 388(14): 1259-71.
[http://dx.doi.org/10.1056/NEJMoa2214403] [PMID: 36762865]
[15]
Saleem Y, Nogueira RG, Rodrigues GM, et al. Acute neurological deterioration in large vessel occlusions and mild symptoms managed medically. Stroke 2020; 51(5): 1428-34.
[http://dx.doi.org/10.1161/STROKEAHA.119.027011] [PMID: 32295503]
[16]
Liu P, Liu S, Feng N, Wang Y, Gao Y, Wu J. Association between neurological deterioration and outcomes in patients with stroke. Ann Transl Med 2020; 8(1): 4.
[http://dx.doi.org/10.21037/atm.2019.12.36] [PMID: 32055595]
[17]
Tsivgoulis G, Katsanos AH, Schellinger PD, et al. Successful reperfusion with intravenous thrombolysis preceding mechanical thrombectomy in large-vessel occlusions. Stroke 2018; 49(1): 232-5.
[http://dx.doi.org/10.1161/STROKEAHA.117.019261] [PMID: 29212743]
[18]
Barber PA, Demchuk AM, Zhang J, Buchan AM. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 2000; 355(9216): 1670-4.
[http://dx.doi.org/10.1016/S0140-6736(00)02237-6] [PMID: 10905241]
[19]
Mokin M, Primiani CT, Siddiqui AH, Turk AS. ASPECTS (Alberta Stroke Program Early CT Score) measurement using hounsfield unit values when selecting patients for stroke thrombectomy. Stroke 2017; 48(6): 1574-9.
[http://dx.doi.org/10.1161/STROKEAHA.117.016745] [PMID: 28487329]
[20]
Jiang Q, Yu S, Dong X, et al. Predictors and dynamic nomogram to determine the individual risk of malignant brain edema after endovascular thrombectomy in acute ischemic stroke. J Clin Neurol 2022; 18(3): 298-307.
[http://dx.doi.org/10.3988/jcn.2022.18.3.298] [PMID: 35196752]
[21]
Du M, Huang X, Li S, et al. A nomogram model to predict malignant cerebral edema in ischemic stroke patients treated with endovascular thrombectomy: An observational study. Neuropsychiatr Dis Treat 2020; 16: 2913-20.
[http://dx.doi.org/10.2147/NDT.S279303] [PMID: 33293816]
[22]
Waltimo T, Haapaniemi E, Surakka IL, et al. Post‐thrombolytic blood pressure and symptomatic intracerebral hemorrhage. Eur J Neurol 2016; 23(12): 1757-62.
[http://dx.doi.org/10.1111/ene.13118] [PMID: 27529662]
[23]
Tian B, Tian X, Shi Z, et al. Clinical and imaging indicators of hemorrhagic transformation in acute ischemic stroke after endovascular thrombectomy. Stroke 2022; 53(5): 1674-81.
[http://dx.doi.org/10.1161/STROKEAHA.121.035425] [PMID: 34872341]
[24]
Rangaraju S, Aghaebrahim A, Streib C, et al. Pittsburgh response to endovascular therapy (PRE) score: Optimizing patient selection for endovascular therapy for large vessel occlusion strokes. J Neurointerv Surg 2015; 7(11): 783-8.
[http://dx.doi.org/10.1136/neurintsurg-2014-011351] [PMID: 25320054]
[25]
Sarraj A, Albright K, Barreto AD, et al. Optimizing prediction scores for poor outcome after intra-arterial therapy in anterior circulation acute ischemic stroke. Stroke 2013; 44(12): 3324-30.
[http://dx.doi.org/10.1161/STROKEAHA.113.001050] [PMID: 23929748]
[26]
Li H, Ye S, Wu YL, et al. Predicting mortality in acute ischaemic stroke treated with mechanical thrombectomy: Analysis of a multicentre prospective registry. BMJ Open 2021; 11(4): e043415.
[http://dx.doi.org/10.1136/bmjopen-2020-043415] [PMID: 33795300]
[27]
Berkhemer OA, Jansen IGH, Beumer D, et al. Collateral status on baseline computed tomographic angiography and intra-arterial treatment effect in patients with proximal anterior circulation stroke. Stroke 2016; 47(3): 768-76.
[http://dx.doi.org/10.1161/STROKEAHA.115.011788] [PMID: 26903582]
[28]
Wiegers EJA, Mulder MJHL, Jansen IGH, et al. Clinical and imaging determinants of collateral status in patients with acute ischemic stroke in MR CLEAN trial and registry. Stroke 2020; 51(5): 1493-502.
[http://dx.doi.org/10.1161/STROKEAHA.119.027483] [PMID: 32279619]
[29]
Leng X, Lan L, Liu L, Leung TW, Wong KS. Good collateral circulation predicts favorable outcomes in intravenous thrombolysis: A systematic review and meta‐analysis. Eur J Neurol 2016; 23(12): 1738-49.
[http://dx.doi.org/10.1111/ene.13111] [PMID: 27478977]
[30]
Anadani M, Finitsis S, Clarençon F, et al. Collateral status reperfusion and outcomes after endovascular therapy: Insight from the endovascular treatment in ischemic stroke (ETIS) registry. J Neurointerv Surg 2021; 14(6)
[http://dx.doi.org/10.1136/neurintsurg-2021-017553] [PMID: 34140288]
[31]
Lin L, Yang J, Chen C, et al. Association of collateral status and ischemic core growth in patients with acute ischemic stroke. Neurology 2021; 96(2): e161-70.
[http://dx.doi.org/10.1212/WNL.0000000000011258] [PMID: 33262233]
[32]
Girot JB, Richard S, Gariel F, et al. Predictors of unexplained early neurological deterioration after endovascular treatment for acute ischemic stroke. Stroke 2020; 51(10): 2943-50.
[http://dx.doi.org/10.1161/STROKEAHA.120.029494] [PMID: 32921260]
[33]
Huang X, Chen C, Wang H, et al. The ACORNS grading scale: A novel tool for the prediction of malignant brain edema after endovascular thrombectomy. J Neurointerv Surg 2022; 15(e2)
[http://dx.doi.org/10.1136/jnis-2022-019404] [PMID: 36207112]
[34]
Ji Y, Xu X, Wu K, et al. Prognosis of ischemic stroke patients undergoing endovascular thrombectomy is influenced by systemic inflammatory index through malignant brain edema. Clin Interv Aging 2022; 17: 1001-12.
[http://dx.doi.org/10.2147/CIA.S365553] [PMID: 35814350]
[35]
Brooks SD, Spears C, Cummings C, et al. Admission neutrophil–lymphocyte ratio predicts 90 day outcome after endovascular stroke therapy. J Neurointerv Surg 2014; 6(8): 578-83.
[http://dx.doi.org/10.1136/neurintsurg-2013-010780] [PMID: 24122003]
[36]
Xu J, Chen XY, Wang HY, et al. Hemodynamic predictors of early neurological deterioration and clinical outcome after endovascular treatment in large artery occlusion. Heliyon 2024; 10(3): e24746.
[http://dx.doi.org/10.1016/j.heliyon.2024.e24746] [PMID: 38318012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy