Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Visible Light-promoted Preparation of 2,3-Dihydrobenzofurans and Coumaranones

Author(s): Ting-Ting Wu* and Wengui Wang*

Volume 28, Issue 11, 2024

Published on: 24 April, 2024

Page: [830 - 843] Pages: 14

DOI: 10.2174/0113852728252737240327041634

Price: $65

Abstract

2,3-Dihydrobenzofuran and coumaranone are readily available in numerous naturally occurring compounds. They mostly exist in plenty of food plants and medicinal plants. Such compounds constitute a series of flavor components and bioactive molecules. Their preparation has been an attractive field of research. In the past few decades, great efforts have been made in the preparation of the 2,3-dihydrobenzofuran structure through both metal-catalyzed and organocatalyzed ways. Visible light-promoted reactions sprang up in the early 21st century and represent a green manner of transformations. Under the irradiation of visible light, radicals could be generated under milder conditions. Thus, visible lightpromoted reactions spread widely in the field of chemical synthesis. In recent years, visible light-promoted preparation of 2,3-dihydrobenzofuran and coumaranone has been developed by different groups, including both intramolecular and intermolecular reactions. The benign reaction conditions allow better functional group-tolerance and lead to diverse structures. Several reviews on the synthesis of 2,3- dihydrobenzofuran have been reported. However, visible light-promoted approaches to such structures have not been well reviewed. Our review will cover the literature that has been reported on the discovery of 2,3- dihydrobenzofuran in food and visible light-promoted preparation of 2,3-dihydrobenzofuran, attempting to summarize the existing methods and provide guidance to the chemists on the present challenges.

Graphical Abstract

[1]
Chen, Z.; Pitchakuntla, M.; Jia, Y. Synthetic approaches to natural products containing 2,3-dihydrobenzofuran skeleton. Nat. Prod. Rep., 2019, 36(4), 666-690.
[http://dx.doi.org/10.1039/C8NP00072G] [PMID: 30488047]
[2]
(a) Lee, I.S.; Kim, H.J.; Youn, U.J.; Chen, Q.C.; Kim, J.P.; Ha, D.T.; Ngoc, T.M.; Min, B.S.; Lee, S.M.; Jung, H.J.; Na, M.K.; Bae, K.H. Dihydrobenzofuran norlignans from the leaves of Cedrela sinensis A. JUSS. Helv. Chim. Acta, 2010, 93(2), 272-276.
[http://dx.doi.org/10.1002/hlca.200900180];
(b) Lai, P.X.; Ma, Q.L.; Row, K.H. A new acetophenone derivative and other constituents from Senecio vulgaris. J. Chem. Res., 2010, 34(9), 514-516.
[http://dx.doi.org/10.3184/030823410X12830855365409];
(c) Shang, S.; Long, S. Brugnanin, a new syn-2,3-dihydrobenzofuran neolignan dioate from the mangrove Bruguiera gymnorrhiza. Chem. Nat. Compd., 2008, 44(2), 186-189.
[http://dx.doi.org/10.1007/s10600-008-9010-6];
(d) Duan, J.; Wang, L.; Qian, S.; Su, S.; Tang, Y. A new cytotoxic prenylated dihydrobenzofuran derivative and other chemical constituents from the rhizomes of Atractylodes lancea DC. Arch. Pharm. Res., 2008, 31(8), 965-969.
[http://dx.doi.org/10.1007/s12272-001-1252-z] [PMID: 18787781]
[3]
Huang, H.Y.; Ishikawa, T.; Peng, C.F.; Tsai, I.L.; Chen, I.S. Constituents of the root wood of Zanthoxylum wutaiense with antitubercular activity. J. Nat. Prod., 2008, 71(7), 1146-1151.
[http://dx.doi.org/10.1021/np700719e] [PMID: 18564877]
[4]
Zhang, H.; Qiu, S.; Tamez, P.; Tan, G.T.; Aydogmus, Z.; Hung, N.V.; Cuong, N.M.; Angerhofer, C.; Soejarto, D.D.; Pezzuto, J.M.; Fong, H.H.S. Antimalarial agents from plants II. decursivine, a new antimalarial indole alkaloid from Rhaphidophora decursiva. Pharm. Biol., 2002, 40(3), 221-224.
[http://dx.doi.org/10.1076/phbi.40.3.221.5832]
[5]
Saito, M.; Ueo, M.; Kametaka, S.; Saigo, O.; Uchida, S.; Hosaka, H.; Sakamoto, K.; Nakahara, T.; Mori, A.; Ishii, K. Attenuation of cataract progression by A-3922, a dihydrobenzofuran derivative, in streptozotocin-induced diabetic rats. Biol. Pharm. Bull., 2008, 31(10), 1959-1963.
[http://dx.doi.org/10.1248/bpb.31.1959] [PMID: 18827363]
[6]
(a) Ha, D.T.; Ngoc, T.M.; Lee, I.; Lee, Y.M.; Kim, J.S.; Jung, H.; Lee, S.; Na, M.; Bae, K. Inhibitors of aldose reductase and formation of advanced glycation end-products in moutan cortex (Paeonia suffruticosa). J. Nat. Prod., 2009, 72(8), 1465-1470.
[http://dx.doi.org/10.1021/np9002004] [PMID: 19670875];
(b) Kouam, S.F.; Khan, S.N.; Krohn, K.; Ngadjui, B.T.; Kapche, D.G.W.F.; Yapna, D.B.; Zareem, S.; Moustafa, A.M.Y.; Choudhary, M.I. α-glucosidase inhibitory anthranols, kenganthranols A-C, from the stem bark of Harungana madagascariensis. J. Nat. Prod., 2006, 69(2), 229-233.
[http://dx.doi.org/10.1021/np050407n] [PMID: 16499321];
(c) Coy, E.D.; Cuca, L.E.; Sefkow, M. COX, LOX and platelet aggregation inhibitory properties of Lauraceae neolignans. Bioorg. Med. Chem. Lett., 2009, 19(24), 6922-6925.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.069] [PMID: 19880317];
(d) Wakimoto, T.; Miyata, K.; Ohuchi, H.; Asakawa, T.; Nukaya, H.; Suwa, Y.; Kan, T. Enantioselective total synthesis of aperidine. Org. Lett., 2011, 13(10), 2789-2791.
[http://dx.doi.org/10.1021/ol200728w] [PMID: 21513299];
(e) Stoessl, A. The antifungal factors in Barley - isolation and synthesis of hordatine A. Tetrahedron Lett., 1966, 7(25), 2849-2851.
[http://dx.doi.org/10.1016/S0040-4039(01)99872-7];
f) Stoessl, A. The antifungal factors in barley - The constitutions of hordatines A and B. Tetrahedron Lett., 1966, 7(21), 2287-2292.;
g) Kataoka, K.; Shiota, T.; Takeyasu, T.; Minoshima, T.; Watanabe, K.; Tanaka, H.; Mochizuki, T.; Taneda, K.; Ota, M.; Tanabe, H.; Yamaguchi, H. Potent inhibitors of acyl-CoA: Cholesterol acyltransferase. 2. Structure-activity relationships of novel N-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yl)amides. J. Med. Chem., 1996, 39, 1262-1270.
[7]
(a) Morimoto, M.; Urakawa, M.; Fujitaka, T.; Komai, K. Structure-activity relationship for the insect antifeedant activity of benzofuran derivatives. Biosci. Biotechnol. Biochem., 1999, 63(5), 840-846.
[http://dx.doi.org/10.1271/bbb.63.840] [PMID: 27385567];
(b) Morimoto, M.; Komai, K. Insect antifeedant activity of natural products and the structure-activity relationship of their derivatives. In: Natural Products for Pest Management; , 2006; pp. 182-193.
[http://dx.doi.org/10.1021/bk-2006-0927.ch014]
[8]
(a) Wu, Y.V.; Payne-Wahl, K.L.; Vaughn, S.F. Analysis of headspace volatiles of corn gluten meal. Cereal Chem., 2003, 80(5), 567-569.
[http://dx.doi.org/10.1094/CCHEM.2003.80.5.567];
(b) Wu, Y.V.; Wahl, P.K.L.; Vaughn, S.F. Corn gluten meal odorants and volatiles after treatment to improve flavor. Cereal Chem., 2006, 83(3), 228-234.
[http://dx.doi.org/10.1094/CC-83-0228]
[9]
Berhanu, H.; Kiflie, Z.; Miranda, I.; Lourenço, A.; Ferreira, J.; Feleke, S.; Yimam, A.; Pereira, H. Characterization of crop residues from false banana/Ensete ventricosum/in Ethiopia in view of a full-resource valorization. PLoS One, 2018, 13(7), e0199422.
[http://dx.doi.org/10.1371/journal.pone.0199422] [PMID: 29975715]
[10]
(a) Miyazawa, M.; Nagai, S.; Oshima, T. Volatile components of the straw of Oryza sativa L. J. Oleo Sci., 2008, 57(3), 139-143.
[http://dx.doi.org/10.5650/jos.57.139] [PMID: 18270462];
(b) Zheng, R.; Zhang, H.; Zhao, J.; Lei, M.; Huang, H. Direct and simultaneous determination of representative byproducts in a lignocellulosic hydrolysate of corn stover via gas chromatography–mass spectrometry with a Deans switch. J. Chromatogr. A, 2011, 1218(31), 5319-5327.
[http://dx.doi.org/10.1016/j.chroma.2011.05.099] [PMID: 21722910]
[11]
Jeong, C.Y.; Dodla, S.K.; Wang, J.J. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere, 2016, 142, 4-13.
[http://dx.doi.org/10.1016/j.chemosphere.2015.05.084] [PMID: 26058554]
[12]
(a) Krstev, M.T.M. Denić M.S.; Zlatković B.K.; Jovanović S.V.P.; Mitić V.D.; Stojanović G.S.; Radulović N.S. Inferring the origin of rare fruit distillates from compositional data using multivariate statistical analyses and the identification of new flavour constituents. J. Sci. Food Agric., 2015, 95(6), 1217-1235.
[http://dx.doi.org/10.1002/jsfa.6810] [PMID: 25043621];
(b) Zhou, L.; Yao, G.D.; Lu, L.W.; Song, X.Y.; Lin, B.; Wang, X.B.; Huang, X.X.; Song, S.J. Neolignans from red raspberry (Rubus idaeus L.) exhibit enantioselective neuroprotective effects against H2O2-induced oxidative injury in SH-SY5Y Cells. J. Agric. Food Chem., 2018, 66(43), 11390-11397.
[http://dx.doi.org/10.1021/acs.jafc.8b03725] [PMID: 30346163]
[13]
(a) Pihlsgård, P.; Larsson, M.; Leufvén, A.; Lingnert, H. Volatile compounds in the production of liquid beet sugar. J. Agric. Food Chem., 2000, 48(10), 4844-4850.
[http://dx.doi.org/10.1021/jf000514h] [PMID: 11052744];
(b) Quinn, B.P.; Bernier, U.R.; Geden, C.J.; Hogsette, J.A.; Carlson, D.A. Analysis of extracted and volatile components in blackstrap molasses feed as candidate house fly attractants. J. Chromatogr. A, 2007, 1139(2), 279-284.
[http://dx.doi.org/10.1016/j.chroma.2006.11.039] [PMID: 17141254]
[14]
(a) Alissandrakis, E.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Evaluation of four isolation techniques for honey aroma compounds. J. Sci. Food Agric., 2005, 85(1), 91-97.
[http://dx.doi.org/10.1002/jsfa.1934];
(b) Jerković I.; Marijanović Z. Screening of volatile composition of Lavandula hybrida Reverchon II honey using headspace solid-phase microextraction and ultrasonic solvent extraction. Chem. Biodivers., 2006, 3, 1307-1316.
[PMID: 17193245];
(c) Jerković I.; Kuś P.M.; Tuberoso, C.I.G.; Šarolić M. Phytochemical and physical–chemical analysis of Polish willow (Salix spp.) honey: Identification of the marker compounds. Food Chem., 2014, 145, 8-14.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.004] [PMID: 24128442];
(d) Makowicz, E.; Kafarski, P.; Misiak, J.I. Chromatographic fingerprint of the volatile fraction of rare Hedera helix honey and biomarkers identification. Eur. Food Res. Technol., 2018, 244(12), 2169-2179.
[http://dx.doi.org/10.1007/s00217-018-3127-z]
[15]
Ba, H.V.; Ryu, K.S.; Hwang, I. Flavor characteristics of hanwoo beef in comparison with other Korean foods. Asian-Australas. J. Anim. Sci., 2012, 25(3), 435-446.
[http://dx.doi.org/10.5713/ajas.2011.11286] [PMID: 25049583]
[16]
(a) Leduc, F.; Krzewinski, F.; Le Fur, B.; N’Guessan, A.; Malle, P.; Kol, O.; Duflos, G. Differentiation of fresh and frozen/thawed fish, European sea bass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), cod (Gadus morhua) and salmon (Salmo salar), using volatile compounds by SPME/GC/MS. J. Sci. Food Agric., 2012, 92(12), 2560-2568.
[http://dx.doi.org/10.1002/jsfa.5673] [PMID: 22641336];
(b) Zhang, Y.; Huang, J.; Liu, X.; Cheng, J.; Chen, Z.; Zhang, Y. The study of analytical identification on main monomer compounds of spoiled grass carp by high-performance liquid chromatography of quadrupole time of flight mass spectrometry. J. Food Process. Preserv., 2017, 41(6), e13248.
[http://dx.doi.org/10.1111/jfpp.13248]
[17]
Piccino, S.; Boulanger, R.; Descroix, F.; Shum Cheong Sing, A. Aromatic composition and potent odorants of the “specialty coffee” brew “Bourbon Pointu” correlated to its three trade classifications. Food Res. Int., 2014, 61, 264-271.
[http://dx.doi.org/10.1016/j.foodres.2013.07.034]
[18]
Zhou, J.S.; Lv, S.D.; Lian, M.; Wang, C.; Meng, Q.X. Comparison of the volatile compounds among different production regions of green tea using simultaneous distillation extraction coupled with gas chromatography-mass spectrometry. Adv. J. Food Sci. Technol., 2015, 7(8), 607-613.
[http://dx.doi.org/10.19026/ajfst.7.1367]
[19]
Zhou, J.; Yi, H.; Zhao, Z.X.; Shang, X.Y.; Zhu, M.J.; Kuang, G.J.; Zhu, C.C.; Zhang, L. Simultaneous qualitative and quantitative evaluation of Ilex kudingcha C. J. tseng by using UPLC and UHPLC-qTOF-MS/MS. J. Pharm. Biomed. Anal., 2018, 155, 15-26.
[http://dx.doi.org/10.1016/j.jpba.2018.02.037] [PMID: 29605682]
[20]
(a) Cejudo-Bastante, M.J.; Pérez-Coello, M.S.; Pérez-Juan, P.M.; Gutiérrez, H.I. Effects of hyper-oxygenation and storage of Macabeo and Airén white wines on their phenolic and volatile composition. Eur. Food Res. Technol., 2012, 234(1), 87-99.
[http://dx.doi.org/10.1007/s00217-011-1619-1];
(b) Liguori, L.; Albanese, D.; Crescitelli, A.; Di Matteo, M.; Russo, P. Impact of dealcoholization on quality properties in white wine at various alcohol content levels. J. Food Sci. Technol., 2019, 56(8), 3707-3720.
[http://dx.doi.org/10.1007/s13197-019-03839-x] [PMID: 31413398];
(c) Meng, X.; Wu, Q.; Wang, L.; Wang, D.; Chen, L.; Xu, Y. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making. J. Ind. Microbiol. Biotechnol., 2015, 42(12), 1601-1608.
[http://dx.doi.org/10.1007/s10295-015-1647-0] [PMID: 26323612]
[21]
Han, C.; Wang, J.; Li, Y.; Lu, F.; Cui, Y. Antimicrobial-coated polypropylene films with polyvinyl alcohol in packaging of fresh beef. Meat Sci., 2014, 96(2), 901-907.
[http://dx.doi.org/10.1016/j.meatsci.2013.09.003] [PMID: 24211547]
[22]
(a) Han, C.; Wang, J.; Li, Y.; Cui, Y. In vitro antimicrobial activity and effect on E. coli integrity of cinnamon essential oil and rhubarb ethanol extract. Food Sci. Technol. Res., 2013, 19(6), 1155-1163.
[http://dx.doi.org/10.3136/fstr.19.1155];
(b) Han, C.Y.; Liu, G.F.; Li, Y.; Huang, Q.; Wang, J.Q. Antimicrobial effects of cinnamon and rhubarb extracts. Appl. Mech. Mater., 2013, 469, 121-125.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.469.121]
[23]
Li, R.; Hu, H.B.; Li, X.F.; Zhang, P.; Xu, Y.K.; Yang, J.J.; Wang, Y.F. Essential oils composition and bioactivities of two species leaves used as packaging materials in Xishuangbanna, China. Food Control, 2015, 51, 9-14.
[http://dx.doi.org/10.1016/j.foodcont.2014.11.009]
[24]
(a) Bajpai, V.K.; Sharma, A.; Moon, B.; Baek, K.H. Chemical composition analysis and antibacterial mode of action of Taxus cuspidata leaf essential oil against foodborne pathogens. J. Food Saf., 2014, 34(1), 9-20. For examples, see:
[http://dx.doi.org/10.1111/jfs.12089];
(b) Cho, W.I.; Cheigh, C.I.; Hwang, H.J.; Chung, M.S. Sporicidal activities of various surfactant components against Bacillus subtilis spores. J. Food Prot., 2015, 78(6), 1221-1225.
[http://dx.doi.org/10.4315/0362-028X.JFP-14-401] [PMID: 26038917];
(c) Moon, Y.S.; Kim, L.; Chun, H.; Lee, S.E. 4-Hydroxy-7-methyl-3-phenylcoumarin suppresses aflatoxin biosynthesis via downregulation of aflk expressing versicolorin B synthase in aspergillus flavus. Molecules, 2017, 22(5), 712.
[http://dx.doi.org/10.3390/molecules22050712] [PMID: 28468270]
[25]
Zhao, G.; Yao, Y.; Hao, G.; Fang, D.; Yin, B.; Cao, X.; Chen, W. Gene regulation in Aspergillus oryzae promotes hyphal growth and flavor formation in soy sauce koji. RSC Advances, 2015, 5(31), 24224-24230.
[http://dx.doi.org/10.1039/C4RA16819D]
[26]
(a) Yang, Y.; Liu, Z.; Feng, Z.; Jiang, J.; Zhang, P. Lignans from the root of Rhodiola crenulata. J. Agric. Food Chem., 2012, 60(4), 964-972.
[http://dx.doi.org/10.1021/jf204660c] [PMID: 22225005];
(b) Wu, S.; Xu, T.; Akoh, C.C. Effect of roasting on the volatile constituents of Trichosanthes kirilowii seeds. Yao Wu Shi Pin Fen Xi, 2014, 22(3), 310-317.
[PMID: 28911420];
(c) Rayanil, K.; Sutassanawichanna, W.; Suntornwat, O.; Tuntiwachwuttikul, P. A new dihydrobenzofuran lignan and potential α-glucosidase inhibitory activity of isolated compounds from Mitrephora teysmannii. Nat. Prod. Res., 2016, 30(23), 2675-2681.
[http://dx.doi.org/10.1080/14786419.2016.1143830] [PMID: 26857182];
(d) Loizzo, M.R.; Ben Jemia, M.; Senatore, F.; Bruno, M.; Menichini, F.; Tundis, R. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem. Toxicol., 2013, 59, 586-594.
[http://dx.doi.org/10.1016/j.fct.2013.06.040] [PMID: 23831310];
(e) Ahmad, S.; Ullah, F.; Ayaz, M.; Ahmad, A.; Sadiq, A.; Mohani, S.N.U.H. Nutritional and medicinal aspects of Rumex hastatus D. Don along with in vitro anti-diabetic activity. Int. J. Food Prop., 2019, 22(1), 1733-1748.
[http://dx.doi.org/10.1080/10942912.2019.1666868]
[27]
Asai, T.; Luo, D.; Obara, Y.; Taniguchi, T.; Monde, K.; Yamashita, K.; Oshima, Y. Dihydrobenzofurans as cannabinoid receptor ligands from Cordyceps annullata, an entomopathogenic fungus cultivated in the presence of an HDAC inhibitor. Tetrahedron Lett., 2012, 53(17), 2239-2243.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.088]
[28]
Xiang, P.; Kemmerich, B.; Yang, L.; Li, S.M. Biosynthesis of annullatin D in Penicillium roqueforti implies oxidative lactonization between two hydroxyl groups catalyzed by a BBE-like enzyme. Org. Lett., 2022, 24(32), 6072-6077.
[http://dx.doi.org/10.1021/acs.orglett.2c02438] [PMID: 35939524]
[29]
Amin, H.I.M.; Amin, A.A.; Tosi, S.; Mellerio, G.G.; Hussain, F.H.S.; Picco, A.M.; Vidari, G. Chemical composition and antifungal activity of essential oils from flowers, leaves, rhizomes, and bulbs of the wild Iraqi Kurdish plant Iris Persica. Nat. Prod. Commun., 2017, 12(3), 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200334] [PMID: 30549906]
[30]
Lukić I.; Carlin, S.; Horvat, I.; Vrhovsek, U. Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical origin. Food Chem., 2019, 270, 403-414.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.133] [PMID: 30174064]
[31]
Elmassry, M.M.; Kormod, L.; Labib, R.M.; Farag, M.A. Metabolome based volatiles mapping of roasted umbelliferous fruits aroma via HS-SPME GC/MS and peroxide levels analyses. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1099, 117-126.
[http://dx.doi.org/10.1016/j.jchromb.2018.09.022] [PMID: 30268004]
[32]
Hill, R.D.; Shetty, R.A.; Sumien, N.; Forster, M.J.; Gatch, M.B. Locomotor and discriminative stimulus effects of three benzofuran compounds in comparison to abused psychostimulants. Drug Alcohol Depend. Rep., 2023, 8, 100182.
[http://dx.doi.org/10.1016/j.dadr.2023.100182] [PMID: 37600151]
[33]
(a) Sheppard, T.D. Strategies for the synthesis of 2,3-dihydrobenzofurans. J. Chem. Res., 2011, 35(7), 377-385.
[http://dx.doi.org/10.3184/174751911X13096980701749];
(b) Lupattelli, P.; Laurita, T.; D’Orsi, R.; Chiummiento, L.; Funicello, M. Recent advances in synthetic strategies to 2,3-dihydrobenzofurans. Synthesis, 2020, 52(10), 1451-1477.
[http://dx.doi.org/10.1055/s-0039-1690820];
(c) Dapkekar, A.B.; Sreenivasulu, C.; Ravi Kishore, D.; Satyanarayana, G. Recent advances towards the synthesis of dihydrobenzofurans and dihydroisobenzofurans. Asian J. Org. Chem., 2022, 11(5), e202200012.
[http://dx.doi.org/10.1002/ajoc.202200012]
[34]
(a) Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: Applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341];
(b) Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev., 2016, 45(11), 3026-3038.
[http://dx.doi.org/10.1039/C5CS00659G] [PMID: 27094803];
(c) Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582];
(d) Patel, G.; Patel, A.R.; Banerjee, S. Sustainability of visible light-driven organic transformations - A review. Curr. Org. Chem., 2023, 27(3), 166-189.
[http://dx.doi.org/10.2174/1385272827666221229110656];
(e) Holmberg-Douglas, N.; Nicewicz, D.A. Photoredox-catalyzed C-H functionalization reactions. Chem. Rev., 2022, 122(2), 1925-2016.
[http://dx.doi.org/10.1021/acs.chemrev.1c00311] [PMID: 34585909]
[35]
Schultz, A.G.; Napier, J.J.; Ravichandran, R. Synthetic applications of heteroatom-directed photoarylation. Benzo[b]furan ring construction. J. Org. Chem., 1983, 48(20), 3408-3412.
[http://dx.doi.org/10.1021/jo00168a008]
[36]
Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res., 2016, 49(8), 1566-1577.
[http://dx.doi.org/10.1021/acs.accounts.6b00229] [PMID: 27482835]
[37]
Kim, H.; Lee, C. Visible-light-induced photocatalytic reductive transformations of organohalides. Angew. Chem. Int. Ed., 2012, 51(49), 12303-12306.
[http://dx.doi.org/10.1002/anie.201203599] [PMID: 23124985]
[38]
Nguyen, J.D.; D’Amato, E.M.; Narayanam, J.M.R.; Stephenson, C.R.J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem., 2012, 4(10), 854-859.
[http://dx.doi.org/10.1038/nchem.1452] [PMID: 23001000]
[39]
Gao, Y.; Wang, H.; Chi, Z.; Yang, L.; Zhou, C.; Li, G. Spirocyclizative remote arylcarboxylation of nonactivated arenes with CO2 via visible-light induced reductive dearomatization. CCS Chemistry, 2022, 4(5), 1565-1576.
[http://dx.doi.org/10.31635/ccschem.021.202100995]
[40]
Reiser, O. Shining light on copper: Unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc. Chem. Res., 2016, 49(9), 1990-1996.
[http://dx.doi.org/10.1021/acs.accounts.6b00296] [PMID: 27556932]
[41]
Michelet, B.; Deldaele, C.; Kajouj, S.; Moucheron, C.; Evano, G. A general copper catalyst for photoredox transformations of organic halides. Org. Lett., 2017, 19(13), 3576-3579.
[http://dx.doi.org/10.1021/acs.orglett.7b01518] [PMID: 28598630]
[42]
Caiuby, C.A.D.; Ali, A.; Santana, V.T. de S Lucas, F.W.; Santos, M.S.; Corrêa, A.G.; Nascimento, O.R.; Jiang, H.; Paixão, M.W. Intramolecular radical cyclization approach to access highly substituted indolines and 2,3-dihydrobenzofurans under visible-light. RSC Advances, 2018, 8(23), 12879-12886.
[http://dx.doi.org/10.1039/C8RA01787E] [PMID: 35541239]
[43]
Ghosh, I.; Ghosh, T.; Bardagi, J.I.; König, B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 2014, 346(6210), 725-728.
[http://dx.doi.org/10.1126/science.1258232] [PMID: 25378618]
[44]
Wang, M.; Li, M.; Yang, S.; Xue, X.S.; Wu, X.; Zhu, C. Radical-mediated C-C cleavage of unstrained cycloketones and DFT study for unusual regioselectivity. Nat. Commun., 2020, 11(1), 672.
[http://dx.doi.org/10.1038/s41467-020-14435-5] [PMID: 32015335]
[45]
(a) Mo, F.; Qiu, D.; Zhang, L.; Wang, J. Recent development of aryl diazonium chemistry for the derivatization of aromatic compounds. Chem. Rev., 2021, 121(10), 5741-5829.
[http://dx.doi.org/10.1021/acs.chemrev.0c01030] [PMID: 33836126];
(b) Zhang, X.; Mei, Y.; Li, Y.; Hu, J.; Huang, D.; Bi, Y. Visible-light-mediated functionalization of aryl diazonium salts. Asian J. Org. Chem., 2021, 10(3), 453-463.
[http://dx.doi.org/10.1002/ajoc.202000636];
(c) Xuan, S.; Wang, X.; Wang, J.; Zhao, B.; Cheng, K.; Qi, C. Research progress on cross-coupling with aryl diazonium salts. Youji Huaxue, 2014, 34(9), 1743-1758.
[http://dx.doi.org/10.6023/cjoc201404004]
[46]
Guo, W.; Lu, L.Q.; Wang, Y.; Wang, Y.N.; Chen, J.R.; Xiao, W.J. Metal-Free, room-temperature, radical alkoxycarbonylation of aryldiazonium salts through visible-light photoredox catalysis. Angew. Chem. Int. Ed., 2015, 54(7), 2265-2269.
[http://dx.doi.org/10.1002/anie.201408837] [PMID: 25504666]
[47]
(a) Acton, Q.A. Sulfones-Advances in Research and Application; Scholarly Editions: Atlanta, 2013. ;
(b) Back, T.G.; Clary, K.N.; Gao, D. Cycloadditions and cyclizations of acetylenic, allenic, and conjugated dienyl sulfones. Chem. Rev., 2010, 110(8), 4498-4553.
[http://dx.doi.org/10.1021/cr1000546] [PMID: 20438124];
(c) Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[48]
(a) Nguyen, B.; Emmett, E.J.; Willis, M.C. Palladium-catalyzed aminosulfonylation of aryl halides. J. Am. Chem. Soc., 2010, 132(46), 16372-16373.
[http://dx.doi.org/10.1021/ja1081124] [PMID: 21028814];
(b) Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A.L.; Willis, M.C. DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: Utility in sulfonamide and sulfamide preparation. Org. Lett., 2011, 13(18), 4876-4878.
[http://dx.doi.org/10.1021/ol201957n] [PMID: 21866926];
(c) Emmett, E.J.; Taylor, R.C.S.; Nguyen, B.; Rubia, G.A.; Hayter, B.R.; Willis, M.C. Palladium-catalysed aminosulfonylation of aryl-, alkenyl- and heteroaryl halides: Scope of the three-component synthesis of N-aminosulfonamides. Org. Biomol. Chem., 2012, 10(20), 4007-4014.
[http://dx.doi.org/10.1039/c2ob07034k] [PMID: 22407213];
(d) Taylor, R.C.S.; Blakemore, D.C.; Willis, M.C. One-pot three-component sulfone synthesis exploiting palladium-catalysed aryl halide aminosulfonylation. Chem. Sci., 2014, 5(1), 222-228.
[http://dx.doi.org/10.1039/C3SC52332B]
[49]
Nair, A.M.; Kumar, S.; Halder, I.; Volla, C.M.R. Visible-light mediated sulfonylation of thiols via insertion of sulfur dioxide. Org. Biomol. Chem., 2019, 17(24), 5897-5901.
[http://dx.doi.org/10.1039/C9OB01040H] [PMID: 31157346]
[50]
Zong, Y.; Lang, Y.; Yang, M.; Li, X.; Fan, X.; Wu, J. Synthesis of β-sulfonyl amides through a multicomponent reaction with the insertion of sulfur dioxide under visible light irradiation. Org. Lett., 2019, 21(6), 1935-1938.
[http://dx.doi.org/10.1021/acs.orglett.9b00620] [PMID: 30840466]
[51]
He, F.S.; Yao, Y.; Xie, W.; Wu, J. Photoredox-catalyzed sulfonylation of difluoroenoxysilanes with the insertion of sulfur dioxide. Chem. Commun., 2020, 56(66), 9469-9472.
[http://dx.doi.org/10.1039/D0CC03591B] [PMID: 32812540]
[52]
Upreti, G.C.; Singh, T.; Ranjan, S.; Gupta, R.K.; Singh, A. Visible-light-mediated three-component cascade sulfonylative annulation. ACS Omega, 2022, 7(34), 29728-29733.
[http://dx.doi.org/10.1021/acsomega.2c02302] [PMID: 36061680]
[53]
Zheng, M.; Gao, K.; Zhang, Y.; Lu, H. Visible-light photoredox-catalyzed aryl radical in situ SO2-capture reactions. Org. Chem. Front., 2021, 8(8), 1830-1835.
[http://dx.doi.org/10.1039/D1QO00099C]
[54]
Wang, W.; Gao, S.; Ding, Z.; Zhu, W.; Xing, S.; Zhao, S.; Shao, X.; Wang, S. Visible light-promoted carbodi(tri)fluoromethylthiolation of alkenes. J. Fluor. Chem., 2022, 254, 109949.
[http://dx.doi.org/10.1016/j.jfluchem.2022.109949]
[55]
Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Palladium-catalyzed atom-transfer radical cyclization at remote unactivated C(sp3)−H sites: Hydrogen-atom transfer of hybrid vinyl palladium radical intermediates. Angew. Chem. Int. Ed., 2018, 57(10), 2712-2715.
[http://dx.doi.org/10.1002/anie.201712775] [PMID: 29341489]
[56]
Yamada, S.; Oshima, Y.; Fujita, Y.; Tsuzuki, S. The tetraalkylammonium-accelerated Norrish-Yang photocyclization of 2-substituted acetophenones. Tetrahedron Lett., 2019, 60(23), 1543-1546.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.005]
[57]
Izawa, Y.; Watoh, Y.; Tomioka, H. Effect of structure on photoalcoholysis of aromatic α-haloketones. Chem. Lett., 1984, 13(1), 33-36.
[http://dx.doi.org/10.1246/cl.1984.33]
[58]
(a) Wong, E.; Wilson, J.M. Products of the peroxidase-catalysed oxidation of 4,2′4′-trihydroxychalcone. Phytochemistry, 1976, 15(9), 1325-1332.
[http://dx.doi.org/10.1016/S0031-9422(00)97112-7];
(b) Wong, E. Products from enzymic oxidation of 4,2′4′-trihydroxychalcone: Structural reconsiderations. Tetrahedron Lett., 1985, 24, 2631-2634.
[59]
Wong, E. Photooxygenation of 4,2′4′-trihydroxychalcone: Identity with products from enzymic oxidation. Phytochemistry, 1987, 26, 1544-1545.
[http://dx.doi.org/10.1016/S0031-9422(00)81859-2]
[60]
Wong, E. Oxygenation of 4-hydroxychalcones catalysed by peroxidase and by light. Phytochemistry, 1989, 28(1), 235-238.
[http://dx.doi.org/10.1016/0031-9422(89)85045-9]
[61]
Chawla, M.H.; Kumar Sharma, S. Regioselective synthesis of 2-arylidene coumaran-3-ones by dye-sensitized photooxygenation of 2-hydroxyphenyl-styrylketones in the presence of sodium dodecyl sulphate. Tetrahedron, 1990, 46(5), 1611-1624.
[http://dx.doi.org/10.1016/S0040-4020(01)81970-0]
[62]
Jiménez, M.; Miranda, M.A.; Tormos, R. Photocyclization of 2-cinnamylphenols via excited state proton transfer (ESPT) involving the lowest-lying styrenic singlet. Tetrahedron, 1997, 53(43), 14729-14736.
[http://dx.doi.org/10.1016/S0040-4020(97)00942-3]
[63]
(a) Uozumi, Y.; Kato, K.; Hayashi, T. Catalytic asymmetric Wacker-type cyclization. J. Am. Chem. Soc., 1997, 119(21), 5063-5064.
[http://dx.doi.org/10.1021/ja9701366];
(b) Yamaguchi, S.; Muro, S.; Kobayashi, M.; Miyazawa, M.; Hirai, Y. Absolute structures of some naturally occurring isopropenyldihydrobenzofurans, remirol, remiridiol, angenomalin, and isoangenomalin. J. Org. Chem., 2003, 68(16), 6274-6278.
[http://dx.doi.org/10.1021/jo034396j] [PMID: 12895061];
(c) Pelly, S.C.; Govender, S.; Fernandes, M.A.; Schmalz, H.G.; de Koning, C.B. Stereoselective syntheses of the 2-Isopropenyl-2,3-dihydrobenzofuran nucleus: Potential chiral building blocks for the syntheses of tremetone, hydroxytremetone, and rotenone. J. Org. Chem., 2007, 72(8), 2857-2864.
[http://dx.doi.org/10.1021/jo062447h] [PMID: 17375958]
[64]
Liu, X.; Wang, Z.; Fu, X. Light induced catalytic intramolecular hydrofunctionalization of allylphenols mediated by porphyrin rhodium(III) complexes. Dalton Trans., 2016, 45(34), 13308-13310.
[http://dx.doi.org/10.1039/C6DT01653G] [PMID: 27482840]
[65]
Jabeen, S.; Ghosh, G.; Lapoot, L.; Durantini, A.M.; Greer, A. Sensitized photooxidation of ortho-prenyl phenol: biomimetic dihydrobenzofuran synthesis and total 1O2 quenching. Photochem. Photobiol., 2023, 99(2), 637-641.
[http://dx.doi.org/10.1111/php.13689] [PMID: 35977738]
[66]
Tian, W.F.; Zhu, Y.; He, Y.Q.; Wang, M.; Song, X.R.; Bai, J.; Xiao, Q. Hydroxyl assisted, photoredox/Cobalt co-catalyzedsemi-hydrogenation and tandem cyclization of o-alkynylphenols for access to 2,3-dihydrobenzofurans. Adv. Synth. Catal., 2021, 363(3), 730-736.
[http://dx.doi.org/10.1002/adsc.202000986]
[67]
Rodikova, Y.A.; Zhizhina, E.G.; Pai, Z.P. Alkyl-1,4-benzoquinones - from synthesis to application. ChemistrySelect, 2016, 1(10), 2113-2128.
[http://dx.doi.org/10.1002/slct.201600148]
[68]
Maruyama, K.; Iwamoto, H.; Soga, O.; Takuwa, A. Photochemical reaction of 2-alkenoyl-3,5-dimethyl-1,4-benzoquinones with alcohol. Chem. Lett., 1984, 13(8), 1343-1346.
[http://dx.doi.org/10.1246/cl.1984.1343]
[69]
Maruyama, K.; Iwamoto, H.; Soga, O.; Takuwa, A.; Osuka, A. Photochemical reaction of 2-alkenoyl-1, 4-quinones. Formation of chromone derivatives. Chem. Lett., 1985, 14(5), 595-598.
[http://dx.doi.org/10.1246/cl.1985.595]
[70]
Iwamoto, H. Photoinduced reductive addition reactions of 2-alkenoyl-1,4-benzoquinones with alcohols. J. Org. Chem., 1988, 53(7), 1507-1515.
[http://dx.doi.org/10.1021/jo00242a031]
[71]
Hyeon Ka, C.; Seul Lee, D.; Jin Cho, E. Solvent-dependent photochemistry for diverse and selective C-H functionalization of 2-tert-butyl-1,4-benzoquinones. ChemPhotoChem, 2022, 6(10), e202200136.
[http://dx.doi.org/10.1002/cptc.202200136]
[72]
Yang, L.; Lu, H.H.; Lai, C.H.; Li, G.; Zhang, W.; Cao, R.; Liu, F.; Wang, C.; Xiao, J.; Xue, D. Light-promoted Nickel catalysis: Etherification of aryl electrophiles with alcohols catalyzed by a NiII-aryl complex. Angew. Chem. Int. Ed., 2020, 59(31), 12714-12719.
[http://dx.doi.org/10.1002/anie.202003359] [PMID: 32281220]
[73]
Bhuyan, S.; Gogoi, A.; Basumatary, J.; Roy, G.B. Visible‐light‐promoted metal‐free photocatalytic direct aromatic C−H oxygenation. Eur. J. Org. Chem., 2022, 2022(16), e202200148.
[http://dx.doi.org/10.1002/ejoc.202200148]
[74]
Brahmachari, G.; Karmakar, I. Visible light-induced and singlet oxygen-mediated photochemical conversion of 4-hydroxy-α-benzopyrones to 2-hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamides/carboxylates using rose bengal as a photosensitizer. J. Org. Chem., 2020, 85(14), 8851-8864.
[http://dx.doi.org/10.1021/acs.joc.0c00726] [PMID: 32543197]
[75]
Yadav, T.; Vishwkarma, A.K.; Brahmachari, G.; Karmakar, I.; Yadav, P.; Kumar, S.; Mahapatra, C.; Chowdhury, J.; Kumar, R.; Pandey, G.N.; Tripathi, P.K.; Pathak, A. Structural confirmation and spectroscopic signature of N-Allyl-2 hydroxy-5-methyl-3-oxo-2, 3-dihydrobenzofuran-2-carboxamide and its monohydrate cluster. J. Mol. Struct., 2022, 1267, 133566.
[http://dx.doi.org/10.1016/j.molstruc.2022.133566]
[76]
Blum, T.R.; Zhu, Y.; Nordeen, S.A.; Yoon, T.P. Photocatalytic synthesis of dihydrobenzofurans by oxidative [3+2] cycloaddition of phenols. Angew. Chem. Int. Ed., 2014, 53(41), 11056-11059.
[http://dx.doi.org/10.1002/anie.201406393] [PMID: 25155300]
[77]
Liu, Y.Y.; Yu, X.Y.; Chen, J.R.; Qiao, M.M.; Qi, X.; Shi, D.Q.; Xiao, W.J. Visible-light-driven aza-ortho-quinone methide generation for the synthesis of indoles in a multicomponent reaction. Angew. Chem. Int. Ed., 2017, 56(32), 9527-9531.
[http://dx.doi.org/10.1002/anie.201704690] [PMID: 28636809]
[78]
Zhou, F.; Cheng, Y.; Liu, X.P.; Chen, J.R.; Xiao, W.J. A visible light photoredox catalyzed carbon radical-mediated generation of ortho-quinone methides for 2,3-dihydrobenzofuran synthesis. Chem. Commun., 2019, 55(21), 3117-3120.
[http://dx.doi.org/10.1039/C9CC00727J] [PMID: 30789618]
[79]
Yuan, F.; Yan, D.M.; Gao, P.P.; Shi, D.Q.; Xiao, W.J.; Chen, J.R. Photoredox-catalyzed multicomponent cyclization of 2-vinyl phenols, N-alkoxypyridinium salts, and sulfur ylides for synthesis of dihydrobenzofurans. ChemCatChem, 2021, 13(2), 543-547.
[http://dx.doi.org/10.1002/cctc.202001589]
[80]
(a) Bergstrom, B.D.; Nickerson, L.A.; Shaw, J.T.; Souza, L.W. Transition metal catalyzed insertion reactions with donor/donor carbenes. Angew. Chem. Int. Ed., 2021, 60(13), 6864-6878. For selected reviews, see:
[http://dx.doi.org/10.1002/anie.202007001] [PMID: 32770624];
(b) Wang, F.; Zhang, Z.; Huang, F. Research progress of O-H insertion reaction based on diazo ester. Youji Huaxue, 2021, 41(1), 144-157.
[http://dx.doi.org/10.6023/cjoc202006014]
[81]
Zhou, S.; Cai, B.; Hu, C.; Cheng, X.; Li, L.; Xuan, J. Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2,3-dihydrobenzofuran derivatives. Chin. Chem. Lett., 2021, 32(8), 2577-2581.
[http://dx.doi.org/10.1016/j.cclet.2021.03.010]
[82]
Liao, J.; Fan, L.; Guo, W.; Zhang, Z.; Li, J.; Zhu, C.; Ren, Y.; Wu, W.; Jiang, H. Palladium-catalyzed fluoroalkylative cyclization of olefins. Org. Lett., 2017, 19(5), 1008-1011.
[http://dx.doi.org/10.1021/acs.orglett.6b03865] [PMID: 28253630]
[83]
Liao, J.; Ouyang, L.; Lai, Y.; Luo, R. Photoredox-catalyzed oxy-/aminofluoroalkylative cyclization of alkenes. J. Org. Chem., 2020, 85(8), 5590-5597.
[http://dx.doi.org/10.1021/acs.joc.0c00457] [PMID: 32223198]
[84]
Ji, X.; Fu, R.; Wang, S.; Hao, W.; Jiang, B. Visible-light-driven photocatalytic Kharasch reaction of phenol/arylamine-linked 1,6-enynes with perhalogenated methane. Youji Huaxue, 2022, 42(12), 4282-4291.
[http://dx.doi.org/10.6023/cjoc202211011]
[85]
Matsumoto, M.; Dobashi, S.; Kondo, K. The sensitized photooxygenation of 2-vinylbenzofurans. Bull. Chem. Soc. Jpn., 1977, 50(11), 3026-3028.
[http://dx.doi.org/10.1246/bcsj.50.3026]
[86]
Brachet, E.; Ghosh, T.; Ghosh, I.; König, B. Visible light C–H amidation of heteroarenes with benzoyl azides. Chem. Sci., 2015, 6(2), 987-992.
[http://dx.doi.org/10.1039/C4SC02365J] [PMID: 29560185]
[87]
Scholz, S.O.; Farney, E.P.; Kim, S.; Bates, D.M.; Yoon, T.P. Spin-selective generation of triplet nitrenes: Olefin aziridination through visible-light photosensitization of azidoformates. Angew. Chem. Int. Ed., 2016, 55(6), 2239-2242.
[http://dx.doi.org/10.1002/anie.201510868] [PMID: 26732649]
[88]
Sakamoto, R.; Inada, T.; Sakurai, S.; Maruoka, K. [2+2] Photocycloadditions between the carbon−nitrogen double bonds of imines and carbon-carbon double bonds. Org. Lett., 2016, 18(24), 6252-6255.
[http://dx.doi.org/10.1021/acs.orglett.6b03003] [PMID: 27978629]
[89]
Hu, N.; Jung, H.; Zheng, Y.; Lee, J.; Zhang, L.; Ullah, Z.; Xie, X.; Harms, K.; Baik, M.H.; Meggers, E. Catalytic asymmetric dearomatization by visible-light-activated [2+2] photocycloaddition. Angew. Chem. Int. Ed., 2018, 57(21), 6242-6246.
[http://dx.doi.org/10.1002/anie.201802891] [PMID: 29624849]
[90]
Oderinde, M.S.; Ramirez, A.; Dhar, T.G.M.; Cornelius, L.A.M.; Jorge, C.; Aulakh, D.; Sandhu, B.; Pawluczyk, J.; Sarjeant, A.A.; Meanwell, N.A.; Mathur, A.; Kempson, J. Photocatalytic dearomative intermolecular [2 + 2] cycloaddition of heterocycles for building molecular complexity. J. Org. Chem., 2021, 86(2), 1730-1747.
[http://dx.doi.org/10.1021/acs.joc.0c02547] [PMID: 33356273]
[91]
Oderinde, M.S.; Mao, E.; Ramirez, A.; Pawluczyk, J.; Jorge, C.; Cornelius, L.A.M.; Kempson, J.; Vetrichelvan, M.; Pitchai, M.; Gupta, A.; Gupta, A.K.; Meanwell, N.A.; Mathur, A.; Dhar, T.G.M. Synthesis of cyclobutane-fused tetracyclic scaffolds via visible-light photocatalysis for building molecular complexity. J. Am. Chem. Soc., 2020, 142(6), 3094-3103.
[http://dx.doi.org/10.1021/jacs.9b12129] [PMID: 31927959]
[92]
Strieth-Kalthoff, F.; Henkel, C.; Teders, M.; Kahnt, A.; Knolle, W.; Suárez, G.A.; Dirian, K.; Alex, W.; Bergander, K.; Daniliuc, C.G.; Abel, B.; Guldi, D.M.; Glorius, F. Discovery of unforeseen energy-transfer-based transformations using a combined screening approach. Chem, 2019, 5(8), 2183-2194.
[http://dx.doi.org/10.1016/j.chempr.2019.06.004]
[93]
Rykaczewski, K.A.; Schindler, C.S. Visible-light-enabled Paternò-Büchi reaction via triplet energy transfer for the synthesis of oxetanes. Org. Lett., 2020, 22(16), 6516-6519.
[http://dx.doi.org/10.1021/acs.orglett.0c02316] [PMID: 32806149]
[94]
Alpers, D.; Gallhof, M.; Witt, J.; Hoffmann, F.; Brasholz, M. A photoredox-induced stereoselective dearomative radical (4+2)-cyclization/1,4-addition cascade for the synthesis of highly functionalized hexahydro-1H-carbazoles. Angew. Chem. Int. Ed., 2017, 56(5), 1402-1406.
[http://dx.doi.org/10.1002/anie.201610974] [PMID: 28067443]
[95]
Zhang, G.; Lin, Y.; Luo, X.; Hu, X.; Chen, C.; Lei, A. Oxidative [4+2] annulation of styrenes with alkynes under external-oxidant-free conditions. Nat. Commun., 2018, 9(1), 1225.
[http://dx.doi.org/10.1038/s41467-018-03534-z] [PMID: 29581484]
[96]
Margrey, K.A.; McManus, J.B.; Bonazzi, S.; Zecri, F.; Nicewicz, D.A. Predictive model for site-selective aryl and heteroaryl C−H functionalization via organic photoredox catalysis. J. Am. Chem. Soc., 2017, 139(32), 11288-11299.
[http://dx.doi.org/10.1021/jacs.7b06715] [PMID: 28718642]
[97]
Miura, T.; Funakoshi, Y.; Nakahashi, J.; Moriyama, D.; Murakami, M. Synthesis of elongated esters from alkenes. Angew. Chem. Int. Ed., 2018, 57(47), 15455-15459.
[http://dx.doi.org/10.1002/anie.201809115] [PMID: 30264919]
[98]
Miura, T.; Moriyama, D.; Funakoshi, Y.; Murakami, M. Photoinduced 1,2-hydro(cyanomethylation) of alkenes with a cyanomethylphosphonium ylide. Synlett, 2019, 30(4), 511-514.
[http://dx.doi.org/10.1055/s-0037-1612230]
[99]
Meng, Q.Y.; Döben, N.; Studer, A. Cooperative NHC and photoredox catalysis for the synthesis of β-trifluoromethylated alkyl aryl ketones. Angew. Chem. Int. Ed., 2020, 59(45), 19956-19960.
[http://dx.doi.org/10.1002/anie.202008040] [PMID: 32700458]
[100]
Yi, Y.; Fan, Z.; Xi, C. Photoredox-catalyzed intermolecular dearomative trifluoromethylcarboxylation of indoles and heteroanalogues with CO2 and fluorinated radical precursors. Green Chem., 2022, 24(20), 7894-7899.
[http://dx.doi.org/10.1039/D2GC03000D]
[101]
Majhi, J.; Dhungana, R.K.; Rentería-Gómez, Á.; Sharique, M.; Li, L.; Dong, W.; Gutierrez, O.; Molander, G.A. Metal-free photochemical imino-alkylation of alkenes with bifunctional oxime esters. J. Am. Chem. Soc., 2022, 144(34), 15871-15878.
[http://dx.doi.org/10.1021/jacs.2c07170] [PMID: 35984388]
[102]
Yu, X.; Meng, Q.Y.; Daniliuc, C.G.; Studer, A. Aroyl fluorides as bifunctional reagents for dearomatizing fluoroaroylation of benzofurans. J. Am. Chem. Soc., 2022, 144(16), 7072-7079.
[http://dx.doi.org/10.1021/jacs.2c01735] [PMID: 35315651]
[103]
Varlet, T.; Bouchet, D.; Van Elslande, E.; Masson, G. Decatungstate-photocatalyzed dearomative hydroacylation of indoles: Direct synthesis of 2-acylindolines. Chemistry, 2022, 28(56), e202201707.
[http://dx.doi.org/10.1002/chem.202201707] [PMID: 35809229]
[104]
Adam, W.; Kades, E.; Wang, X. Photooxygenation of 3- and 2-silyloxybenzofurans: Rearrangement of dioxetanes via α-silylperoxy ketones to ketoester cleavage products. Tetrahedron Lett., 1990, 31(16), 2259-2262.
[http://dx.doi.org/10.1016/0040-4039(90)80200-6]
[105]
Spinnato, D.; Chaput, S.B.; Goti, G.; Ošeka, M.; Melchiorre, P. A photochemical organocatalytic strategy for the α-alkylation of ketones by using radicals. Angew. Chem. Int. Ed., 2020, 59(24), 9485-9490.
[http://dx.doi.org/10.1002/anie.201915814] [PMID: 32053279]
[106]
Edgecomb, J.M.; Alektiar, S.N.; Cowper, N.G.W.; Sowin, J.A.; Wickens, Z.K. Ketyl radical coupling enabled by polycyclic aromatic hydrocarbon electrophotocatalysts. J. Am. Chem. Soc., 2023, 145(37), 20169-20175.
[http://dx.doi.org/10.1021/jacs.3c06347] [PMID: 37676728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy