Abstract
2,3-Dihydrobenzofuran and coumaranone are readily available in numerous naturally occurring compounds. They mostly exist in plenty of food plants and medicinal plants. Such compounds constitute a series of flavor components and bioactive molecules. Their preparation has been an attractive field of research. In the past few decades, great efforts have been made in the preparation of the 2,3-dihydrobenzofuran structure through both metal-catalyzed and organocatalyzed ways. Visible light-promoted reactions sprang up in the early 21st century and represent a green manner of transformations. Under the irradiation of visible light, radicals could be generated under milder conditions. Thus, visible lightpromoted reactions spread widely in the field of chemical synthesis. In recent years, visible light-promoted preparation of 2,3-dihydrobenzofuran and coumaranone has been developed by different groups, including both intramolecular and intermolecular reactions. The benign reaction conditions allow better functional group-tolerance and lead to diverse structures. Several reviews on the synthesis of 2,3- dihydrobenzofuran have been reported. However, visible light-promoted approaches to such structures have not been well reviewed. Our review will cover the literature that has been reported on the discovery of 2,3- dihydrobenzofuran in food and visible light-promoted preparation of 2,3-dihydrobenzofuran, attempting to summarize the existing methods and provide guidance to the chemists on the present challenges.
Graphical Abstract
[http://dx.doi.org/10.1039/C8NP00072G] [PMID: 30488047]
[http://dx.doi.org/10.1002/hlca.200900180];
(b) Lai, P.X.; Ma, Q.L.; Row, K.H. A new acetophenone derivative and other constituents from Senecio vulgaris. J. Chem. Res., 2010, 34(9), 514-516.
[http://dx.doi.org/10.3184/030823410X12830855365409];
(c) Shang, S.; Long, S. Brugnanin, a new syn-2,3-dihydrobenzofuran neolignan dioate from the mangrove Bruguiera gymnorrhiza. Chem. Nat. Compd., 2008, 44(2), 186-189.
[http://dx.doi.org/10.1007/s10600-008-9010-6];
(d) Duan, J.; Wang, L.; Qian, S.; Su, S.; Tang, Y. A new cytotoxic prenylated dihydrobenzofuran derivative and other chemical constituents from the rhizomes of Atractylodes lancea DC. Arch. Pharm. Res., 2008, 31(8), 965-969.
[http://dx.doi.org/10.1007/s12272-001-1252-z] [PMID: 18787781]
[http://dx.doi.org/10.1021/np700719e] [PMID: 18564877]
[http://dx.doi.org/10.1076/phbi.40.3.221.5832]
[http://dx.doi.org/10.1248/bpb.31.1959] [PMID: 18827363]
[http://dx.doi.org/10.1021/np9002004] [PMID: 19670875];
(b) Kouam, S.F.; Khan, S.N.; Krohn, K.; Ngadjui, B.T.; Kapche, D.G.W.F.; Yapna, D.B.; Zareem, S.; Moustafa, A.M.Y.; Choudhary, M.I. α-glucosidase inhibitory anthranols, kenganthranols A-C, from the stem bark of Harungana madagascariensis. J. Nat. Prod., 2006, 69(2), 229-233.
[http://dx.doi.org/10.1021/np050407n] [PMID: 16499321];
(c) Coy, E.D.; Cuca, L.E.; Sefkow, M. COX, LOX and platelet aggregation inhibitory properties of Lauraceae neolignans. Bioorg. Med. Chem. Lett., 2009, 19(24), 6922-6925.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.069] [PMID: 19880317];
(d) Wakimoto, T.; Miyata, K.; Ohuchi, H.; Asakawa, T.; Nukaya, H.; Suwa, Y.; Kan, T. Enantioselective total synthesis of aperidine. Org. Lett., 2011, 13(10), 2789-2791.
[http://dx.doi.org/10.1021/ol200728w] [PMID: 21513299];
(e) Stoessl, A. The antifungal factors in Barley - isolation and synthesis of hordatine A. Tetrahedron Lett., 1966, 7(25), 2849-2851.
[http://dx.doi.org/10.1016/S0040-4039(01)99872-7];
f) Stoessl, A. The antifungal factors in barley - The constitutions of hordatines A and B. Tetrahedron Lett., 1966, 7(21), 2287-2292.;
g) Kataoka, K.; Shiota, T.; Takeyasu, T.; Minoshima, T.; Watanabe, K.; Tanaka, H.; Mochizuki, T.; Taneda, K.; Ota, M.; Tanabe, H.; Yamaguchi, H. Potent inhibitors of acyl-CoA: Cholesterol acyltransferase. 2. Structure-activity relationships of novel N-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yl)amides. J. Med. Chem., 1996, 39, 1262-1270.
[http://dx.doi.org/10.1271/bbb.63.840] [PMID: 27385567];
(b) Morimoto, M.; Komai, K. Insect antifeedant activity of natural products and the structure-activity relationship of their derivatives. In: Natural Products for Pest Management; , 2006; pp. 182-193.
[http://dx.doi.org/10.1021/bk-2006-0927.ch014]
[http://dx.doi.org/10.1094/CCHEM.2003.80.5.567];
(b) Wu, Y.V.; Wahl, P.K.L.; Vaughn, S.F. Corn gluten meal odorants and volatiles after treatment to improve flavor. Cereal Chem., 2006, 83(3), 228-234.
[http://dx.doi.org/10.1094/CC-83-0228]
[http://dx.doi.org/10.1371/journal.pone.0199422] [PMID: 29975715]
[http://dx.doi.org/10.5650/jos.57.139] [PMID: 18270462];
(b) Zheng, R.; Zhang, H.; Zhao, J.; Lei, M.; Huang, H. Direct and simultaneous determination of representative byproducts in a lignocellulosic hydrolysate of corn stover via gas chromatography–mass spectrometry with a Deans switch. J. Chromatogr. A, 2011, 1218(31), 5319-5327.
[http://dx.doi.org/10.1016/j.chroma.2011.05.099] [PMID: 21722910]
[http://dx.doi.org/10.1016/j.chemosphere.2015.05.084] [PMID: 26058554]
[http://dx.doi.org/10.1002/jsfa.6810] [PMID: 25043621];
(b) Zhou, L.; Yao, G.D.; Lu, L.W.; Song, X.Y.; Lin, B.; Wang, X.B.; Huang, X.X.; Song, S.J. Neolignans from red raspberry (Rubus idaeus L.) exhibit enantioselective neuroprotective effects against H2O2-induced oxidative injury in SH-SY5Y Cells. J. Agric. Food Chem., 2018, 66(43), 11390-11397.
[http://dx.doi.org/10.1021/acs.jafc.8b03725] [PMID: 30346163]
[http://dx.doi.org/10.1021/jf000514h] [PMID: 11052744];
(b) Quinn, B.P.; Bernier, U.R.; Geden, C.J.; Hogsette, J.A.; Carlson, D.A. Analysis of extracted and volatile components in blackstrap molasses feed as candidate house fly attractants. J. Chromatogr. A, 2007, 1139(2), 279-284.
[http://dx.doi.org/10.1016/j.chroma.2006.11.039] [PMID: 17141254]
[http://dx.doi.org/10.1002/jsfa.1934];
(b) Jerković I.; Marijanović Z. Screening of volatile composition of Lavandula hybrida Reverchon II honey using headspace solid-phase microextraction and ultrasonic solvent extraction. Chem. Biodivers., 2006, 3, 1307-1316.
[PMID: 17193245];
(c) Jerković I.; Kuś P.M.; Tuberoso, C.I.G.; Šarolić M. Phytochemical and physical–chemical analysis of Polish willow (Salix spp.) honey: Identification of the marker compounds. Food Chem., 2014, 145, 8-14.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.004] [PMID: 24128442];
(d) Makowicz, E.; Kafarski, P.; Misiak, J.I. Chromatographic fingerprint of the volatile fraction of rare Hedera helix honey and biomarkers identification. Eur. Food Res. Technol., 2018, 244(12), 2169-2179.
[http://dx.doi.org/10.1007/s00217-018-3127-z]
[http://dx.doi.org/10.5713/ajas.2011.11286] [PMID: 25049583]
[http://dx.doi.org/10.1002/jsfa.5673] [PMID: 22641336];
(b) Zhang, Y.; Huang, J.; Liu, X.; Cheng, J.; Chen, Z.; Zhang, Y. The study of analytical identification on main monomer compounds of spoiled grass carp by high-performance liquid chromatography of quadrupole time of flight mass spectrometry. J. Food Process. Preserv., 2017, 41(6), e13248.
[http://dx.doi.org/10.1111/jfpp.13248]
[http://dx.doi.org/10.1016/j.foodres.2013.07.034]
[http://dx.doi.org/10.19026/ajfst.7.1367]
[http://dx.doi.org/10.1016/j.jpba.2018.02.037] [PMID: 29605682]
[http://dx.doi.org/10.1007/s00217-011-1619-1];
(b) Liguori, L.; Albanese, D.; Crescitelli, A.; Di Matteo, M.; Russo, P. Impact of dealcoholization on quality properties in white wine at various alcohol content levels. J. Food Sci. Technol., 2019, 56(8), 3707-3720.
[http://dx.doi.org/10.1007/s13197-019-03839-x] [PMID: 31413398];
(c) Meng, X.; Wu, Q.; Wang, L.; Wang, D.; Chen, L.; Xu, Y. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making. J. Ind. Microbiol. Biotechnol., 2015, 42(12), 1601-1608.
[http://dx.doi.org/10.1007/s10295-015-1647-0] [PMID: 26323612]
[http://dx.doi.org/10.1016/j.meatsci.2013.09.003] [PMID: 24211547]
[http://dx.doi.org/10.3136/fstr.19.1155];
(b) Han, C.Y.; Liu, G.F.; Li, Y.; Huang, Q.; Wang, J.Q. Antimicrobial effects of cinnamon and rhubarb extracts. Appl. Mech. Mater., 2013, 469, 121-125.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.469.121]
[http://dx.doi.org/10.1016/j.foodcont.2014.11.009]
[http://dx.doi.org/10.1111/jfs.12089];
(b) Cho, W.I.; Cheigh, C.I.; Hwang, H.J.; Chung, M.S. Sporicidal activities of various surfactant components against Bacillus subtilis spores. J. Food Prot., 2015, 78(6), 1221-1225.
[http://dx.doi.org/10.4315/0362-028X.JFP-14-401] [PMID: 26038917];
(c) Moon, Y.S.; Kim, L.; Chun, H.; Lee, S.E. 4-Hydroxy-7-methyl-3-phenylcoumarin suppresses aflatoxin biosynthesis via downregulation of aflk expressing versicolorin B synthase in aspergillus flavus. Molecules, 2017, 22(5), 712.
[http://dx.doi.org/10.3390/molecules22050712] [PMID: 28468270]
[http://dx.doi.org/10.1039/C4RA16819D]
[http://dx.doi.org/10.1021/jf204660c] [PMID: 22225005];
(b) Wu, S.; Xu, T.; Akoh, C.C. Effect of roasting on the volatile constituents of Trichosanthes kirilowii seeds. Yao Wu Shi Pin Fen Xi, 2014, 22(3), 310-317.
[PMID: 28911420];
(c) Rayanil, K.; Sutassanawichanna, W.; Suntornwat, O.; Tuntiwachwuttikul, P. A new dihydrobenzofuran lignan and potential α-glucosidase inhibitory activity of isolated compounds from Mitrephora teysmannii. Nat. Prod. Res., 2016, 30(23), 2675-2681.
[http://dx.doi.org/10.1080/14786419.2016.1143830] [PMID: 26857182];
(d) Loizzo, M.R.; Ben Jemia, M.; Senatore, F.; Bruno, M.; Menichini, F.; Tundis, R. Chemistry and functional properties in prevention of neurodegenerative disorders of five Cistus species essential oils. Food Chem. Toxicol., 2013, 59, 586-594.
[http://dx.doi.org/10.1016/j.fct.2013.06.040] [PMID: 23831310];
(e) Ahmad, S.; Ullah, F.; Ayaz, M.; Ahmad, A.; Sadiq, A.; Mohani, S.N.U.H. Nutritional and medicinal aspects of Rumex hastatus D. Don along with in vitro anti-diabetic activity. Int. J. Food Prop., 2019, 22(1), 1733-1748.
[http://dx.doi.org/10.1080/10942912.2019.1666868]
[http://dx.doi.org/10.1016/j.tetlet.2012.02.088]
[http://dx.doi.org/10.1021/acs.orglett.2c02438] [PMID: 35939524]
[http://dx.doi.org/10.1177/1934578X1701200334] [PMID: 30549906]
[http://dx.doi.org/10.1016/j.foodchem.2018.07.133] [PMID: 30174064]
[http://dx.doi.org/10.1016/j.jchromb.2018.09.022] [PMID: 30268004]
[http://dx.doi.org/10.1016/j.dadr.2023.100182] [PMID: 37600151]
[http://dx.doi.org/10.3184/174751911X13096980701749];
(b) Lupattelli, P.; Laurita, T.; D’Orsi, R.; Chiummiento, L.; Funicello, M. Recent advances in synthetic strategies to 2,3-dihydrobenzofurans. Synthesis, 2020, 52(10), 1451-1477.
[http://dx.doi.org/10.1055/s-0039-1690820];
(c) Dapkekar, A.B.; Sreenivasulu, C.; Ravi Kishore, D.; Satyanarayana, G. Recent advances towards the synthesis of dihydrobenzofurans and dihydroisobenzofurans. Asian J. Org. Chem., 2022, 11(5), e202200012.
[http://dx.doi.org/10.1002/ajoc.202200012]
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341];
(b) Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev., 2016, 45(11), 3026-3038.
[http://dx.doi.org/10.1039/C5CS00659G] [PMID: 27094803];
(c) Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582];
(d) Patel, G.; Patel, A.R.; Banerjee, S. Sustainability of visible light-driven organic transformations - A review. Curr. Org. Chem., 2023, 27(3), 166-189.
[http://dx.doi.org/10.2174/1385272827666221229110656];
(e) Holmberg-Douglas, N.; Nicewicz, D.A. Photoredox-catalyzed C-H functionalization reactions. Chem. Rev., 2022, 122(2), 1925-2016.
[http://dx.doi.org/10.1021/acs.chemrev.1c00311] [PMID: 34585909]
[http://dx.doi.org/10.1021/jo00168a008]
[http://dx.doi.org/10.1021/acs.accounts.6b00229] [PMID: 27482835]
[http://dx.doi.org/10.1002/anie.201203599] [PMID: 23124985]
[http://dx.doi.org/10.1038/nchem.1452] [PMID: 23001000]
[http://dx.doi.org/10.31635/ccschem.021.202100995]
[http://dx.doi.org/10.1021/acs.accounts.6b00296] [PMID: 27556932]
[http://dx.doi.org/10.1021/acs.orglett.7b01518] [PMID: 28598630]
[http://dx.doi.org/10.1039/C8RA01787E] [PMID: 35541239]
[http://dx.doi.org/10.1126/science.1258232] [PMID: 25378618]
[http://dx.doi.org/10.1038/s41467-020-14435-5] [PMID: 32015335]
[http://dx.doi.org/10.1021/acs.chemrev.0c01030] [PMID: 33836126];
(b) Zhang, X.; Mei, Y.; Li, Y.; Hu, J.; Huang, D.; Bi, Y. Visible-light-mediated functionalization of aryl diazonium salts. Asian J. Org. Chem., 2021, 10(3), 453-463.
[http://dx.doi.org/10.1002/ajoc.202000636];
(c) Xuan, S.; Wang, X.; Wang, J.; Zhao, B.; Cheng, K.; Qi, C. Research progress on cross-coupling with aryl diazonium salts. Youji Huaxue, 2014, 34(9), 1743-1758.
[http://dx.doi.org/10.6023/cjoc201404004]
[http://dx.doi.org/10.1002/anie.201408837] [PMID: 25504666]
(b) Back, T.G.; Clary, K.N.; Gao, D. Cycloadditions and cyclizations of acetylenic, allenic, and conjugated dienyl sulfones. Chem. Rev., 2010, 110(8), 4498-4553.
[http://dx.doi.org/10.1021/cr1000546] [PMID: 20438124];
(c) Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[http://dx.doi.org/10.1021/ja1081124] [PMID: 21028814];
(b) Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A.L.; Willis, M.C. DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: Utility in sulfonamide and sulfamide preparation. Org. Lett., 2011, 13(18), 4876-4878.
[http://dx.doi.org/10.1021/ol201957n] [PMID: 21866926];
(c) Emmett, E.J.; Taylor, R.C.S.; Nguyen, B.; Rubia, G.A.; Hayter, B.R.; Willis, M.C. Palladium-catalysed aminosulfonylation of aryl-, alkenyl- and heteroaryl halides: Scope of the three-component synthesis of N-aminosulfonamides. Org. Biomol. Chem., 2012, 10(20), 4007-4014.
[http://dx.doi.org/10.1039/c2ob07034k] [PMID: 22407213];
(d) Taylor, R.C.S.; Blakemore, D.C.; Willis, M.C. One-pot three-component sulfone synthesis exploiting palladium-catalysed aryl halide aminosulfonylation. Chem. Sci., 2014, 5(1), 222-228.
[http://dx.doi.org/10.1039/C3SC52332B]
[http://dx.doi.org/10.1039/C9OB01040H] [PMID: 31157346]
[http://dx.doi.org/10.1021/acs.orglett.9b00620] [PMID: 30840466]
[http://dx.doi.org/10.1039/D0CC03591B] [PMID: 32812540]
[http://dx.doi.org/10.1021/acsomega.2c02302] [PMID: 36061680]
[http://dx.doi.org/10.1039/D1QO00099C]
[http://dx.doi.org/10.1016/j.jfluchem.2022.109949]
[http://dx.doi.org/10.1002/anie.201712775] [PMID: 29341489]
[http://dx.doi.org/10.1016/j.tetlet.2019.05.005]
[http://dx.doi.org/10.1246/cl.1984.33]
[http://dx.doi.org/10.1016/S0031-9422(00)97112-7];
(b) Wong, E. Products from enzymic oxidation of 4,2′4′-trihydroxychalcone: Structural reconsiderations. Tetrahedron Lett., 1985, 24, 2631-2634.
[http://dx.doi.org/10.1016/S0031-9422(00)81859-2]
[http://dx.doi.org/10.1016/0031-9422(89)85045-9]
[http://dx.doi.org/10.1016/S0040-4020(01)81970-0]
[http://dx.doi.org/10.1016/S0040-4020(97)00942-3]
[http://dx.doi.org/10.1021/ja9701366];
(b) Yamaguchi, S.; Muro, S.; Kobayashi, M.; Miyazawa, M.; Hirai, Y. Absolute structures of some naturally occurring isopropenyldihydrobenzofurans, remirol, remiridiol, angenomalin, and isoangenomalin. J. Org. Chem., 2003, 68(16), 6274-6278.
[http://dx.doi.org/10.1021/jo034396j] [PMID: 12895061];
(c) Pelly, S.C.; Govender, S.; Fernandes, M.A.; Schmalz, H.G.; de Koning, C.B. Stereoselective syntheses of the 2-Isopropenyl-2,3-dihydrobenzofuran nucleus: Potential chiral building blocks for the syntheses of tremetone, hydroxytremetone, and rotenone. J. Org. Chem., 2007, 72(8), 2857-2864.
[http://dx.doi.org/10.1021/jo062447h] [PMID: 17375958]
[http://dx.doi.org/10.1039/C6DT01653G] [PMID: 27482840]
[http://dx.doi.org/10.1111/php.13689] [PMID: 35977738]
[http://dx.doi.org/10.1002/adsc.202000986]
[http://dx.doi.org/10.1002/slct.201600148]
[http://dx.doi.org/10.1246/cl.1984.1343]
[http://dx.doi.org/10.1246/cl.1985.595]
[http://dx.doi.org/10.1021/jo00242a031]
[http://dx.doi.org/10.1002/cptc.202200136]
[http://dx.doi.org/10.1002/anie.202003359] [PMID: 32281220]
[http://dx.doi.org/10.1002/ejoc.202200148]
[http://dx.doi.org/10.1021/acs.joc.0c00726] [PMID: 32543197]
[http://dx.doi.org/10.1016/j.molstruc.2022.133566]
[http://dx.doi.org/10.1002/anie.201406393] [PMID: 25155300]
[http://dx.doi.org/10.1002/anie.201704690] [PMID: 28636809]
[http://dx.doi.org/10.1039/C9CC00727J] [PMID: 30789618]
[http://dx.doi.org/10.1002/cctc.202001589]
[http://dx.doi.org/10.1002/anie.202007001] [PMID: 32770624];
(b) Wang, F.; Zhang, Z.; Huang, F. Research progress of O-H insertion reaction based on diazo ester. Youji Huaxue, 2021, 41(1), 144-157.
[http://dx.doi.org/10.6023/cjoc202006014]
[http://dx.doi.org/10.1016/j.cclet.2021.03.010]
[http://dx.doi.org/10.1021/acs.orglett.6b03865] [PMID: 28253630]
[http://dx.doi.org/10.1021/acs.joc.0c00457] [PMID: 32223198]
[http://dx.doi.org/10.6023/cjoc202211011]
[http://dx.doi.org/10.1246/bcsj.50.3026]
[http://dx.doi.org/10.1039/C4SC02365J] [PMID: 29560185]
[http://dx.doi.org/10.1002/anie.201510868] [PMID: 26732649]
[http://dx.doi.org/10.1021/acs.orglett.6b03003] [PMID: 27978629]
[http://dx.doi.org/10.1002/anie.201802891] [PMID: 29624849]
[http://dx.doi.org/10.1021/acs.joc.0c02547] [PMID: 33356273]
[http://dx.doi.org/10.1021/jacs.9b12129] [PMID: 31927959]
[http://dx.doi.org/10.1016/j.chempr.2019.06.004]
[http://dx.doi.org/10.1021/acs.orglett.0c02316] [PMID: 32806149]
[http://dx.doi.org/10.1002/anie.201610974] [PMID: 28067443]
[http://dx.doi.org/10.1038/s41467-018-03534-z] [PMID: 29581484]
[http://dx.doi.org/10.1021/jacs.7b06715] [PMID: 28718642]
[http://dx.doi.org/10.1002/anie.201809115] [PMID: 30264919]
[http://dx.doi.org/10.1055/s-0037-1612230]
[http://dx.doi.org/10.1002/anie.202008040] [PMID: 32700458]
[http://dx.doi.org/10.1039/D2GC03000D]
[http://dx.doi.org/10.1021/jacs.2c07170] [PMID: 35984388]
[http://dx.doi.org/10.1021/jacs.2c01735] [PMID: 35315651]
[http://dx.doi.org/10.1002/chem.202201707] [PMID: 35809229]
[http://dx.doi.org/10.1016/0040-4039(90)80200-6]
[http://dx.doi.org/10.1002/anie.201915814] [PMID: 32053279]
[http://dx.doi.org/10.1021/jacs.3c06347] [PMID: 37676728]