Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Nanotechnology: Current Developments, Applications and Patents for Non-invasive Topical Cosmetics and Dermatological Therapeutic Delivery

Author(s): Prashant Kumar*, Alpana Mahor, Varsha Chaudhary and Shalini Sharma

Volume 14, Issue 3, 2024

Published on: 24 April, 2024

Page: [179 - 197] Pages: 19

DOI: 10.2174/0122103031285090240418091630

Price: $65

Abstract

Nanotechnology exhibits the advancement in the field of invention, by improving the potency of the formulation through the delivery of inventive solutions. To resolve several limita-tions related to conventional formulations, nanotechnology applications are increasing in the cosmetics and dermatological area. Cosmetic and dermatological preparations are considered a thriving branch of the body care arena and their usage has increased dramatically through the past years. Scientists are designing innovative delivery mechanisms and emerging innovations that are presently being utilized in the development of cosmetics. Inventive nanocarriers such as nio-somes, liposomes, microemulsions, nanoemulsions, solid-lipid nanoparticles, nanospheres, and nanostructured (lipid) carriers have substituted the use of traditional drug delivery. These innova-tive nanocarriers have the convenience of better skin permeation, sustained and controlled drug delivery, precise location, higher stability, and greater incorporated capability. Since the usage of cosmetics has increased, the usual delivery system has been substituted by modern delivery ap-proaches. The introduction of newer advancements and novel drug delivery systems make cos-metics and cosmeceuticals more popular with increased market share. This review article on nan-otechnology employed in cosmetics and dermatology emphasizes the numerous innovative nanocarriers designed for cosmetic and dermatologic drug delivery, their negative and positive aspects, and their toxicity.

Next »
[1]
Pawar, K.R.; Babu, R.J. Lipid materials for topical and transdermal delivery of nanoemulsions. Crit. Rev. Ther. Drug Carrier Syst., 2014, 31(5), 429-458.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014010663] [PMID: 25271559]
[2]
Yukuyama, M.N.; Ghisleni, D.D.M.; Pinto, T.J.A.; Bou-Chacra, N.A. Nanoemulsion: Process selection and application in cosmetics – A review. Int. J. Cosmet. Sci., 2016, 38(1), 13-24.
[http://dx.doi.org/10.1111/ics.12260] [PMID: 26171789]
[3]
Mihranyan, A.; Ferraz, N.; Strømme, M. Current status and future prospects of nanotechnology in cosmetics. Prog. Mater. Sci., 2012, 57(5), 875-910.
[http://dx.doi.org/10.1016/j.pmatsci.2011.10.001]
[4]
Gupchup, G.V.; Zatz, J. Target delivery to pilosebaceous structures. Cosmet Toilet, 1997, 112, 79-88.
[5]
Abraham, M.H.; Chadha, H.S.; Mitchell, R.C. The factors that influence skin permeation of solutes. J. Pharm. Pharmacol., 2011, 47(1), 8-16.
[http://dx.doi.org/10.1111/j.2042-7158.1995.tb05725.x]
[6]
Cevc, G.; Blume, G.; Schätzlein, A.; Gebauer, D.; Paul, A. The skin: A pathway for systemic treatment with patches and lipid-based agent carriers. Adv. Drug Deliv. Rev., 1996, 18(3), 349-378.
[http://dx.doi.org/10.1016/0169-409X(95)00091-K]
[7]
Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci., 2001, 14(2), 101-114.
[http://dx.doi.org/10.1016/S0928-0987(01)00167-1 ] [PMID: 11500256]
[8]
Logothetidis, S. Nanomedicine and Nanobiotechnology, 1st ed; Springer, 2012, pp. 1-26.
[http://dx.doi.org/10.1007/978-3-642-24181-9]
[9]
Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm., 2018, 2018, 1-19.
[http://dx.doi.org/10.1155/2018/3420204] [PMID: 29785318]
[10]
Hougeir, F.G.; Kircik, L. A review of delivery systems in cosmetics. Dermatol. Ther., 2012, 25(3), 234-237.
[http://dx.doi.org/10.1111/j.1529-8019.2012.01501.x ] [PMID: 22913440]
[11]
Singh, R.; Tiwari, S.; Tawaniya, J. Review on nanotechnology with several aspects. Int J Res Computer Eng Electron., 2013, 2(3), 1-8.
[12]
Soni, V.; Chandel, S.; Jain, P.; Asati, S. Role of liposomal drug delivery system in cosmetics. In: Nanobiomaterials in Galenic Formulations and Cosmetics; William Andrew Publishing, 2016; 10, pp. 93-120.
[13]
Yeh, M.I.; Huang, H.C.; Liaw, J.H.; Huang, M.C.; Huang, K.F.; Hsu, F.L. Dermal delivery by niosomes of black tea extract as a sunscreen agent. Int. J. Dermatol., 2013, 52(2), 239-245.
[http://dx.doi.org/10.1111/j.1365-4632.2012.05587.x ] [PMID: 22913389]
[14]
Rosset, V.; Ahmed, N.; Zaanoun, I.; Stella, B.; Fessi, H.; Elaissari, A. Elaboration of argan oil nanocapsules containing naproxen for cosmetic and transdermal local application. J. Colloid Sci. Biotechnol., 2012, 1(2), 218-224.
[http://dx.doi.org/10.1166/jcsb.2012.1023]
[15]
Souto, E.B.; Müller, R.H. Cosmetic features and applications of lipid nanoparticles (SLN®, NLC®). Int. J. Cosmet. Sci., 2008, 30(3), 157-165.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00433.x ] [PMID: 18452432]
[16]
Mu, L.; Sprando, R.L. Application of nanotechnology in cosmetics. Pharm. Res., 2010, 27(8), 1746-1749.
[http://dx.doi.org/10.1007/s11095-010-0139-1] [PMID: 20407919]
[17]
Lu, P.J.; Huang, S.C.; Chen, Y.P.; Chiueh, L.C.; Shih, D.Y. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. Yao Wu Shi Pin Fen Xi, 2015, 23(3), 587-594.
[PMID: 28911719]
[18]
Nasir, A. The future of nanotechnology in dermatology. US Dermatology, 2008, 3, 9-13.
[19]
Nasir, A. Nanotechnology and dermatology: Part I-potential of nanotechnology. Clin. Dermatol., 2010, 28(4), 458-466.
[http://dx.doi.org/10.1016/j.clindermatol.2009.06.005 ] [PMID: 20620764]
[20]
Saraceno, R.; Chiricozzi, A.; Gabellini, M.; Chimenti, S. Emerging applications of nanomedicine in dermatology. Skin Res. Technol., 2013, 19(1), e13-e19.
[http://dx.doi.org/10.1111/j.1600-0846.2011.00601.x ] [PMID: 22175818]
[21]
Papakostas, D.; Rancan, F.; Sterry, W.; Blume-Peytavi, U.; Vogt, A. Nanoparticles in dermatology. Arch. Dermatol. Res., 2011, 303(8), 533-550.
[http://dx.doi.org/10.1007/s00403-011-1163-7] [PMID: 21837474]
[22]
Jung, S.; Otberg, N.; Thiede, G.; Richter, H.; Sterry, W.; Panzner, S.; Lademann, J. Innovative liposomes as a transfollicular drug delivery system: Penetration into porcine hair follicles. J. Invest. Dermatol., 2006, 126(8), 1728-1732.
[http://dx.doi.org/10.1038/sj.jid.5700323] [PMID: 16645589]
[23]
Mahe, B.; Vogt, A.; Liard, C.; Duffy, D.; Abadie, V.; Bonduelle, O.; Boissonnas, A.; Sterry, W.; Verrier, B.; Blume-Peytavi, U.; Combadiere, B. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J. Invest. Dermatol., 2009, 129(5), 1156-1164.
[http://dx.doi.org/10.1038/jid.2008.356] [PMID: 19052565]
[24]
Chirico, F.; Fumelli, C.; Marconi, A.; Tinari, A.; Straface, E.; Malorni, W.; Pellicciari, R.; Pincelli, C. Carboxyfullerenes localize within mitochondria and prevent the UVB‐induced intrinsic apoptotic pathway. Exp. Dermatol., 2007, 16(5), 429-436.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00545.x ] [PMID: 17437486]
[25]
Kato, S.; Taira, H.; Aoshima, H.; Saitoh, Y.; Miwa, N. Clinical evaluation of fullerene-C60 dissolved in squalane for anti-wrinkle cosmetics. J. Nanosci. Nanotechnol., 2010, 10(10), 6769-6774.
[http://dx.doi.org/10.1166/jnn.2010.3053] [PMID: 21137794]
[26]
Villalonga-Barber, C.; Micha-Screttas, M.; Steele, B.; Georgopoulos, A.; Demetzos, C. Dendrimers as biopharmaceuticals: Synthesis and properties. Curr. Top. Med. Chem., 2008, 8(14), 1294-1309.
[http://dx.doi.org/10.2174/156802608785849012] [PMID: 18855710]
[27]
Venuganti, V.V.K.; Perumal, O.P. Poly(amidoamine) dendrimers as skin penetration enhancers: Influence of charge, generation, and concentration. J. Pharm. Sci., 2009, 98(7), 2345-2356.
[http://dx.doi.org/10.1002/jps.21603] [PMID: 18937369]
[28]
Kristl, J.; Teskač, K.; Grabnar, P.A. Current view on nanosized solid lipid carriers for drug delivery to the skin. J. Biomed. Nanotechnol., 2010, 6(5), 529-542.
[http://dx.doi.org/10.1166/jbn.2010.1150] [PMID: 21329046]
[29]
Saupe, A.; Wissing, S.A.; Lenk, A.; Schmidt, C.; Müller, R.H. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) -- structural investigations on two different carrier systems. Biomed. Mater. Eng., 2005, 15(5), 393-402.
[PMID: 16179760]
[30]
Schäferkorting, M.; Mehnert, W.; Korting, H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 2007, 59(6), 427-443.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[31]
Walther, C.; Meyer, K.; Rennert, R.; Neundorf, I. Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug. Chem., 2008, 19(12), 2346-2356.
[http://dx.doi.org/10.1021/bc800172q] [PMID: 18991369]
[32]
Zhou, M.; Nakatani, E.; Gronenberg, L.S.; Tokimoto, T.; Wirth, M.J.; Hruby, V.J.; Roberts, A.; Lynch, R.M.; Ghosh, I. Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconjug. Chem., 2007, 18(2), 323-332.
[http://dx.doi.org/10.1021/bc0601929] [PMID: 17373766]
[33]
Tripura, P.; Anushree, H. Novel delivery systems: Current trend in cosmetic industry. Eur. J. Pharm. Med. Res., 2017, 4(8), 617-627.
[34]
Arora, N.; Agarwal, S.; Murthy, R.S.R. Latest technology advances in cosmeceuticals. Int. J. Pharm. Sci. Drug Res., 2012, 4(3), 168-182.
[35]
Hope, M.J.; Kitson, C.N. Liposomes. Dermatol. Clin., 1993, 11(1), 143-154.
[http://dx.doi.org/10.1016/S0733-8635(18)30291-2] [PMID: 8435909]
[36]
Bhupendra, G.; Prajapati, K.N.; Manan, M.; Rakesh, P.P. Topical liposomes in drug delivery: A review. Int. J. Pavement Res. Technol., 2012, 4(1), 39-44.
[37]
Tasleem, A.; Nuzhatun, N.; Syed, S.A.; Sheikh, S.; Raheel, M.; Muzafar, R.S. Therapeutic and diagnostic applications of nanotechnology in dermatology and cosmetics. J Nanomed Biother Discovery, 2015, 5(3), 1-10.
[38]
Egbaria, K.; Weiner, N. Liposomes as a topical drug delivery system. Adv. Drug Deliv. Rev., 1990, 5(3), 287-300.
[http://dx.doi.org/10.1016/0169-409X(90)90021-J]
[39]
Rieger, M.M. Skin lipids and their importance to cosmetic science. Cosmet Toilet, 1987, 102, 36-49.
[40]
Blume, G.; Teichmuller, E. New evidence of the penetration of actives by liposomal carrier system; Cosmetics & Toiletries Manufacture Worldwide, 1997, pp. 135-139.
[41]
Ghyczy, M.; Nissen, H.P.; Biltz, H. The treatment of acne vulgaris by phosphatidylcholine from soybeans, with a high content of linoleic acid. J Appl Cosmetol, 1996, 14(4), 137-145.
[42]
Kuotsu, K.; Karim, K.M.; Mandal, A.S.; Biswas, N.; Guha, A.; Chatterjee, S.; Behera, M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res., 2010, 1(4), 374-380.
[http://dx.doi.org/10.4103/0110-5558.76435] [PMID: 22247876]
[43]
Duarah, S.; Pujari, K.; Durai, R.D.; Narayanan, V.H.B. Nanotechnology-based cosmeceuticals: A review. Int J App Pharm, 2016, 8(1), 8-12.
[44]
Gandhi, A.; Sen, S.O.; Paul, A. Current trends in niosome as vesicular drug delivery system. Asian J Pharm Life Sci, 2012, 2(2), 339-352.
[45]
Chandu, V.P.; Arunachalam, A.; Jeganath, S.; Yamini, K.; Tarangini, K. Niosomes: A novel drug delivery system. Int. J. Novel Trends Pharm. Sci., 2012, 2(1), 2277-2282.
[46]
Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm. Sin. B, 2011, 1(4), 208-219.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[47]
Biswa, S.; Murthy, P.N.; Sahu, J.; Amir, F. Vesicles of nonionic surfactants (niosomes) and drug delivery potential. Int J Pharm Sci Nanotechnol, 2008, 1(1), 1-8.
[48]
Sudheer, P.; Kaushik, K. Review on niosomes - A novel approach for drug targeting. J. Pharm. Res., 2015, 14(1), 20-25.
[http://dx.doi.org/10.18579/jpcrkc/2015/14/1/78376]
[49]
Dilip, K.; Surendra, T.; Suresh, K.N.; Roohi, K. Nanostructured lipid carrier (NLC) a modern approach for topical delivery: A review. World J. Pharm. Pharm. Sci., 2013, 2(3), 921-938.
[50]
Shailesh, L.; Snehal, R.P.; Ashwini, P.; Manoj, S.; Arvind, B. Nanostructured lipid carriers in stability improvement for cosmetic nanoparticles. Int. J. Pharm. Pharm. Res., 2016, 6(1), 168-180.
[51]
Purohit, D.K.; Nandgude, T.D.; Poddar, S.S. Nano-lipid carriers for topical application: Current scenario. Asian J. Pharm., 2016, 9(5), 544-553.
[52]
Westesen, K.; Bunjes, H.; Koch, M.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release, 1997, 48(2-3), 223-236.
[http://dx.doi.org/10.1016/S0168-3659(97)00046-1]
[53]
Puri, D.; Bhandari, A.; Sharma, P.; Choudhary, D. Lipid nanoparticles (SLN, NLC): A novel approach for cosmetic and dermal pharmaceutical. J. Glob. Pharma Technol., 2010, 2(9), 1-15.
[54]
Bangale, M.S.; Mitkare, S.S.; Gattani, S.G.; Sakarkar, D.M. Recent nanotechnological aspects in cosmetics and dermatological preparations. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 149-165.
[55]
Mohamed, H.H.; Omaima, N.G. Rice bran solid lipid nanoparticles: Preparation and characterization, 2nd ed; Universal Research Publication, 2011, p. 1.
[56]
Kaur, I.; Agrawal, R. Nanotechnology: A new paradigm in cosmeceuticals. Recent Pat. Drug Deliv. Formul., 2007, 1(2), 171-182.
[http://dx.doi.org/10.2174/187221107780831888] [PMID: 19075884]
[57]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[58]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[59]
Patidar, A.; Devendra, S.T.; Peeyush, K.; Jhageshwar, V. A review on novel lipid-based nanocarriers. Int. J. Pharm. Pharm. Sci., 2010, 2(4), 234-257.
[60]
Song, C.; Liu, S. A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E. Int. J. Biol. Macromol., 2005, 36(1-2), 116-119.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.05.003] [PMID: 16005509]
[61]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(1)(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[62]
Hassan, H.; Omaima, N. Rice bran solid lipid nanoparticles: Preparation and characterization. Int J Res Drug Deliv, 2011, 1(2), 6-9.
[63]
López-García, R.; Ganem-Rondero, A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Occlusive effect and penetration enhancement ability. JCDSA, 2015, 5(2), 62-72.
[http://dx.doi.org/10.4236/jcdsa.2015.52008]
[64]
Shah, P.; Bhalodia, D.; Shelat, P. Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy, 2010, 1(1), 24-32.
[http://dx.doi.org/10.4103/0975-8453.59509]
[65]
Ronak, P.P.; Jay, R.J. An overview on nanoemulsion: A novel approach. Int. J. Pharm. Sci. Res., 2012, 3(12), 4640-4650.
[66]
Ozgun, S. Nanoemulsions in cosmetics. Nanomaterials and Nanotechnology Project Report, 2013, 1, 3-5.
[67]
Fruchon, S.; Poupot, R. Pro-inflammatory versus anti-inflammatory effects of dendrimers: The two faces of immunomodulatory nanoparticles. Nanomaterials, 2017, 7(9), 251.
[http://dx.doi.org/10.3390/nano7090251] [PMID: 28862693]
[68]
Klajnert, B.; Bryszewska, M. Dendrimers: Properties and applications. Acta Biochim. Pol., 2001, 48(1), 199-208.
[http://dx.doi.org/10.18388/abp.2001_5127] [PMID: 11440170]
[69]
Rai, A.K.; Tiwari, R.; Maurya, P.; Yadav, P. Dendrimers: A potential carrier for targeted drug delivery system. Pharm Biol Eval, 2016, 3(3), 275-287.
[70]
Yapar, E.A.; Inal, O. Nanomaterials and cosmetics. J Pharm Istanbul Univ, 2012, 42(1), 43-70.
[71]
Singh, A.; Garg, G.; Sharma, P.K. Nanospheres: A novel approach for targeted drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2010, 5(3), 84-88.
[72]
Mamo, B. Literature review on biodegradable nanospheres for oral and targeted drug delivery. Asian J. Biomed. Pharm. Sci., 2015, 5(51), 01-12.
[http://dx.doi.org/10.15272/ajbps.v5i51.761]
[73]
Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007, 2.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[74]
Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J., 2016, 24(4), 413-428.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[75]
Kim, S.H.; Shum, H.C.; Kim, J.W.; Cho, J.C.; Weitz, D.A. Multiple polymersomes for programmed release of multiple components. J. Am. Chem. Soc., 2011, 133(38), 15165-15171.
[http://dx.doi.org/10.1021/ja205687k] [PMID: 21838246]
[76]
Discher, D.E.; Eisenberg, A. Polymer vesicles. Science, 2002, 297(5583), 967-973.
[http://dx.doi.org/10.1126/science.1074972] [PMID: 12169723]
[77]
Bermudez, H.; Brannan, A.K.; Hammer, D.A.; Bates, F.S.; Discher, D.E. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules, 2002, 35(21), 8203-8208.
[http://dx.doi.org/10.1021/ma020669l]
[78]
Zhang, X.Y.; Zhang, P.Y. Polymersomes in nanomedicine - A review. Curr. Mol. Pharmacol., 2017, 13(2), 124-129.
[79]
Son, E.D.; Min, D.J.; Chang, H.K.; Choi, H.J.; Cho, S.A.; Kim, J.H.; Lee, T.R. Cosmetic composition for improving skin elasticity. U.S patent 20130171274A1, 2013.
[80]
Yeong, G; Hansun, J; Yeon, GS A cosmetic compositions for skin cell activation containing peptide polymersome. K.R. patent 101659314B1, 2009.
[81]
Lata, K.; Arvind, K.J.; Laxmana, N.; Rajan, S. Gold nanoparticles: Preparation, characterization and its stability in buffer. J. Nanotechnol. Appl., 2014, 17(1), 1-10.
[82]
Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[83]
Verma, H.N.; Singh, P.; Chavan, R.M. Gold nanoparticle: Synthesis and characterization. Vet. World, 2014, 7(2), 72-77.
[http://dx.doi.org/10.14202/vetworld.2014.72-77]
[84]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[85]
Thakor, A.S.; Jokerst, J.; Zavaleta, C.; Massoud, T.F.; Gambhir, S.S. Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett., 2011, 11(10), 4029-4036.
[http://dx.doi.org/10.1021/nl202559p] [PMID: 21846107]
[86]
Ibrahim, K.S. Carbon nanotubes-properties and applications: A review. Carbon letters, 2013, 14(3), 131-144.
[http://dx.doi.org/10.5714/CL.2013.14.3.131]
[87]
Kaushik, B.K.; Majumder, M.K. Carbon nanotube: Properties and applications SpringerBriefs. Appl Sci Technol, 2015, 1, 17-37.
[88]
Hirlekar, R.; Yamagar, M.; Garse, H.; Mohit, V.; Kadam, V. Carbon nanotubes and its applications: A review. Asian J. Pharm. Clin. Res., 2009, 2(4), 17-27.
[89]
Zhang, M.; Li, J. Carbon nanotube in different shapes. Mater. Today, 2009, 12(6), 12-18.
[http://dx.doi.org/10.1016/S1369-7021(09)70176-2]
[90]
Huang, X; Kobos, RK; Xu, G Hair coloring and cosmetic compositions comprising carbon nanotubes. W.O patent 2006052276A2, 2006.
[91]
Huang, X; Kobos, RK Peptide-based carbon nanotube hair colorants and their use in hair colorant and cosmetic compositions. W.O patent 2005117537A3, 2005.
[92]
Tilekar, K.; Khade, P.; Kakade, S.; Kotwal, S.; Patil, R. Cubosomes-a drug delivery system. Int. J. Pharm. Chem. Biol. Sci., 2014, 4(4), 812-824.
[93]
Bhosale, R.R.; Osmani, R.A.; Harkare, B.; Ghodake, P.P. Cubosomes: The inimitable nanoparticulate drug carriers. Sch Acad J Pharm, 2013, 2(6), 481-486.
[94]
Thadanki, M.; Kumari, P.S.; Prabha, K.S. Overview of cubosomes: A nanoparticle. Int. J. Res. Pharm. Chem., 2011, 1(3), 535-541.
[95]
Ravi Kumar, M.N.V.; Kumar, N. Polymeric controlled drug-delivery systems: Perspective issues and opportunities. Drug Dev. Ind. Pharm., 2001, 27(1), 1-30.
[http://dx.doi.org/10.1081/DDC-100000124] [PMID: 11247530]
[96]
Embil, K.; Nacht, S. The microsponge® delivery system (MDS): A topical delivery system with reduced irritancy incorporating multiple triggering mechanisms for the release of actives. J. Microencapsul., 1996, 13(5), 575-588.
[http://dx.doi.org/10.3109/02652049609026042] [PMID: 8864994]
[97]
Rogers, K. Controlled release technology and delivery systems. Cosmet Toilet, 1999, 114, 53-60.
[98]
Nacht, S. Encapsulation and other topical delivery systems: A review of the state-of-the-art for controlled topical delivery. Cosmet Toilet, 1995, 110, 25-30.
[99]
Tran, M.A.; Watts, R.J.; Robertson, G.P. Use of liposomes as drug delivery vehicles for treatment of melanoma. Pigment Cell Melanoma Res., 2009, 22(4), 388-399.
[http://dx.doi.org/10.1111/j.1755-148X.2009.00581.x ] [PMID: 19493316]
[100]
Toll, R.; Jacobi, U.; Richter, H.; Lademann, J.; Schaefer, H.; Blume-Peytavi, U. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J. Invest. Dermatol., 2004, 123(1), 168-176.
[http://dx.doi.org/10.1111/j.0022-202X.2004.22717.x ] [PMID: 15191557]
[101]
Rolland, A.; Wagner, N.; Chatelus, A.; Shroot, B.; Schaefer, H. Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm. Res., 1993, 10(12), 1738-1744.
[http://dx.doi.org/10.1023/A:1018922114398] [PMID: 8302759]
[102]
Jenning, V.; Gysler, A.; Schäfer-Korting, M.; Gohla, S.H. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm., 2000, 49(3), 211-218.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2 ] [PMID: 10799811]
[103]
Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm. Res., 2004, 21(10), 1818-1825.
[http://dx.doi.org/10.1023/B:PHAM.0000045235.86197.ef] [PMID: 15553228]
[104]
Wang, S.Q.; Tooley, I.R. Photoprotection in the era of nanotechnology. Semin. Cutan. Med. Surg., 2011, 30(4), 210-213.
[http://dx.doi.org/10.1016/j.sder.2011.07.006] [PMID: 22123418]
[105]
Schilling, K.; Bradford, B.; Castelli, D.; Dufour, E.; Nash, J.F.; Pape, W.; Schulte, S.; Tooley, I.; van den Bosch, J.; Schellauf, F. Human safety review of “nano” titanium dioxide and zinc oxide. Photochem. Photobiol. Sci., 2010, 9(4), 495-509.
[http://dx.doi.org/10.1039/b9pp00180h] [PMID: 20354643]
[106]
Tan, M.H.; Commens, C.A.; Burnett, L.; Snitch, P.J. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas. J. Dermatol., 1996, 37(4), 185-187.
[http://dx.doi.org/10.1111/j.1440-0960.1996.tb01050.x ] [PMID: 8961584]
[107]
Dussert, A.S.; Gooris, E.; Hemmerle, J. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int. J. Cosmet. Sci., 1997, 19(3), 119-129.
[http://dx.doi.org/10.1111/j.1467-2494.1997.tb00175.x ] [PMID: 18507639]
[108]
Lademann, J.; Weigmann, H.J.; Rickmeyer, C.; Barthelmes, H.; Schaefer, H.; Mueller, G.; Sterry, W. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol. Physiol., 1999, 12(5), 247-256.
[http://dx.doi.org/10.1159/000066249] [PMID: 10461093]
[109]
Schulz, J.; Hohenberg, H.; Pflücker, F.; Gärtner, E.; Will, T.; Pfeiffer, S.; Wepf, R.; Wendel, V.; Gers-Barlag, H.; Wittern, K.P. Distribution of sunscreens on skin. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S157-S163.
[http://dx.doi.org/10.1016/S0169-409X(02)00120-5 ] [PMID: 12460721]
[110]
Gontier, E.; Ynsa, M.D.; Bíró, T.; Hunyadi, J.; Kiss, B.; Gáspár, K.; Pinheiro, T.; Silva, J.N.; Filipe, P.; Stachura, J.; Dabros, W.; Reinert, T.; Butz, T.; Moretto, P.; Surlève-Bazeille, J.E. Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology, 2008, 2(4), 218-231.
[http://dx.doi.org/10.1080/17435390802538508]
[111]
Cross, S.E.; Innes, B.; Roberts, M.S.; Tsuzuki, T.; Robertson, T.A.; McCormick, P. Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol., 2007, 20(3), 148-154.
[http://dx.doi.org/10.1159/000098701] [PMID: 17230054]
[112]
Mavon, A.; Miquel, C.; Lejeune, O.; Payre, B.; Moretto, P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol. Physiol., 2007, 20(1), 10-20.
[http://dx.doi.org/10.1159/000096167] [PMID: 17035717]
[113]
Pinheiro, T.; Pallon, J.; Alves, L.C.; Veríssimo, A.; Filipe, P.; Silva, J.N.; Silva, R. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nucl. Instrum. Methods Phys. Res. B, 2007, 260(1), 119-123.
[http://dx.doi.org/10.1016/j.nimb.2007.02.014]
[114]
Zvyagin, A.V.; Zhao, X.; Gierden, A.; Sanchez, W.; Ross, J.A.; Roberts, M.S. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J. Biomed. Opt., 2008, 13(6), 064031.
[http://dx.doi.org/10.1117/1.3041492] [PMID: 19123677]
[115]
Sadrieh, N.; Wokovich, A.M.; Gopee, N.V.; Zheng, J.; Haines, D.; Parmiter, D.; Siitonen, P.H.; Cozart, C.R.; Patri, A.K.; McNeil, S.E.; Howard, P.C.; Doub, W.H.; Buhse, L.F. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol. Sci., 2010, 115(1), 156-166.
[http://dx.doi.org/10.1093/toxsci/kfq041] [PMID: 20156837]
[116]
Filipe, P.; Silva, J.N.; Silva, R.; Cirne de Castro, J.L.; Marques Gomes, M.; Alves, L.C.; Santus, R.; Pinheiro, T. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol. Physiol., 2009, 22(5), 266-275.
[http://dx.doi.org/10.1159/000235554] [PMID: 19690452]
[117]
Durand, L.; Habran, N.; Henschel, V.; Amighi, K. In vitro evaluation of the cutaneous penetration of sprayable sunscreen emulsions with high concentrations of UV filters. Int. J. Cosmet. Sci., 2009, 31(4), 279-292.
[http://dx.doi.org/10.1111/j.1468-2494.2009.00498.x ] [PMID: 19496837]
[118]
Johnston, H.J.; Hutchison, G.R.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. Identification of the mechanisms that drive the toxicity of TiO2 particulates: The contribution of physicochemical characteristics. Part. Fibre Toxicol., 2009, 6(1), 33.
[http://dx.doi.org/10.1186/1743-8977-6-33] [PMID: 20017923]
[119]
Hirakawa, K.; Mori, M.; Yoshida, M.; Oikawa, S.; Kawanishi, S. Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic. Res., 2004, 38(5), 439-447.
[http://dx.doi.org/10.1080/1071576042000206487] [PMID: 15293551]
[120]
Wamer, W.G.; Yin, J.J.; Wei, R.R. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic. Biol. Med., 1997, 23(6), 851-858.
[http://dx.doi.org/10.1016/S0891-5849(97)00068-3] [PMID: 9378364]
[121]
Nakagawa, Y.; Wakuri, S.; Sakamoto, K.; Tanaka, N. The photogenotoxicity of titanium dioxide particles. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1997, 394(1-3), 125-132.
[http://dx.doi.org/10.1016/S1383-5718(97)00126-5] [PMID: 9434851]
[122]
Hidaka, H.; Kobayashi, H.; Koike, T.; Sato, T.; Serpone, N. DNA damage photoinduced by cosmetic pigments and sunscreen agents under solar exposure and artificial UV illumination. J. Oleo Sci., 2006, 55(5), 249-261.
[http://dx.doi.org/10.5650/jos.55.249]
[123]
Morganti, P. Use and potential of nanotechnology in cosmetic dermatology. Clin. Cosmet. Investig. Dermatol., 2010, 3, 5-13.
[http://dx.doi.org/10.2147/CCID.S4506] [PMID: 21437055]
[124]
Souto, E.B.; Müller, R.H. Challenging cosmetics-solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). In: Science and application of skin delivery systems. Coral Stream: Allured Publ. Co; Wiechers, J.W., Ed.; , 2008; pp. 227-250.
[125]
Abramovits, W.; Granowski, P.; Arrazola, P. Applications of nanomedicine in dermatology: use of nanoparticles in various therapies and imaging. J. Cosmet. Dermatol., 2010, 9(2), 154-159.
[http://dx.doi.org/10.1111/j.1473-2165.2010.00492.x ] [PMID: 20618563]
[126]
Vinetsky, Y.; Magdassi, S. Microcapsules in cosmetics. In: Novel Cosmetic Delivery Systems; Magdassi, S.; Touitou, E., Eds.; Marcel Dekker Inc: New York, 1999; pp. 295-313.
[127]
Muzzarelli, R.A.A. Chitin and its derivatives: New trends of applied research. Carbohydr. Polym., 1983, 3(1), 53-75.
[http://dx.doi.org/10.1016/0144-8617(83)90012-7]
[128]
Percot, A.; Viton, C.; Domard, A. Optimization of chitin extraction from shrimp shells. Biomacromolecules, 2003, 4(1), 12-18.
[http://dx.doi.org/10.1021/bm025602k] [PMID: 12523840]
[129]
Muzzarelli, R.A.A.; Mattioli-Belmonte, M.; Pugnaloni, A.; Biagini, G. Biochemistry, histology and clinical uses of chitins and chitosans in wound healing. In: Chitin and chitinases; Birkhaüser Verlag: Swizterland, 1999.
[http://dx.doi.org/10.1007/978-3-0348-8757-1_18]
[130]
Muzzarelli, R.A.A.; Muzzarelli, C. Chitin nanofibrils. In: Chitin and chitosan: research opportunities and challenges. Contai: SSM International Publication; Dutta, P.K., Ed.; , 2005; pp. 129-146.
[131]
Mattioli-Belmonte, M.; Zizzi, A.; Lucarini, G.; Giantomassi, F.; Biagini, G.; Tucci, G.; Orlando, F.; Provinciali, M.; Carezzi, F.; Morganti, P. Chitin nanofibrils linked to chitosan glycolate as spray, gel and gauze preparations for wound repair. J. Bioact. Compat. Polym., 2007, 22(5), 525-538.
[http://dx.doi.org/10.1177/0883911507082157]
[132]
Mezzana, P. Clinical efficacy of a new chitin nanofibrils-based gel in wound healing. Acta Chir. Plast., 2008, 50(3), 81-84.
[PMID: 19263641]
[133]
Lademann, J.; Richter, H.; Golz, K.; Zastrow, L.; Sterry, W.; Patzelt, A. Influence of microparticles on the homogeneity of distribution of topically applied substances. Skin Pharmacol. Physiol., 2008, 21(5), 274-282.
[http://dx.doi.org/10.1159/000148043] [PMID: 18663341]
[134]
de Fine Olivarius, F.; Hansen, A.B.; Karlsmark, T.; Wolf, H.C. Water protective effect of barrier creams and moisturizing creams: A new in vivo test method. Contact Dermat., 1996, 35(4), 219-225.
[http://dx.doi.org/10.1111/j.1600-0536.1996.tb02361.x ] [PMID: 8957641]
[135]
Santos Maia, C.; Mehnert, W.; Schaller, M.; Korting, H.C.; Gysler, A.; Haberland, A.; Schäfer-korting, M. Drug targeting by solid lipid nanoparticles for dermal use. J. Drug Target., 2002, 10(6), 489-495.
[http://dx.doi.org/10.1080/1061186021000038364] [PMID: 12575739]
[136]
Chen, H.; Chang, X.; Du, D.; Liu, W.; Liu, J.; Weng, T.; Yang, Y.; Xu, H.; Yang, X. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J. Control. Release, 2006, 110(2), 296-306.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.052] [PMID: 16325954]
[137]
Erdogan, M.; Wright, J.R., Jr; McAlister, V.C. Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: Experimental studies in a murine model. Br. J. Dermatol., 2002, 146(6), 964-967.
[http://dx.doi.org/10.1046/j.1365-2133.2002.04800.x ] [PMID: 12072063]
[138]
Egbaria, K.; Ramachandran, C.; Weiner, N. Topical application of liposomally entrapped cyclosporin evaluated by in vitro diffusion studies with human skin. Skin Pharmacol. Physiol., 1991, 4(1), 21-28.
[http://dx.doi.org/10.1159/000210920] [PMID: 2064787]
[139]
Ali, M.F.; Salah, M.; Rafea, M.; Saleh, N. Liposomal methotrexate hydrogel for treatment of localized psoriasis: Preparation, characterization and laser targeting. Med. Sci. Monit., 2008, 14(12), PI66-PI74.
[PMID: 19043379]
[140]
Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2008, 70(2), 633-640.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.008] [PMID: 18577447]
[141]
Saraswat, A.; Agarwal, R.; Katare, O.P.; Kaur, I.; Kumar, B. A randomized, double‐blind, vehicle‐controlled study of a novel liposomal dithranol formulation in psoriasis. J. Dermatolog. Treat., 2007, 18(1), 40-45.
[http://dx.doi.org/10.1080/09546630601028729] [PMID: 17365266]
[142]
Lboutounne, H.; Chaulet, J.F.; Ploton, C.; Falson, F.; Pirot, F. Sustained ex vivo skin antiseptic activity of chlorhexidine in poly(ϵ-caprolactone) nanocapsule encapsulated form and as a digluconate. J. Control. Release, 2002, 82(2-3), 319-334.
[http://dx.doi.org/10.1016/S0168-3659(02)00142-6 ] [PMID: 12175746]
[143]
Lboutounne, H.; Faivre, V.; Falson, F.; Pirot, F. Characterization of transport of chlorhexidine-loaded nanocapsules through hairless and wistar rat skin. Skin Pharmacol. Physiol., 2004, 17(4), 176-182.
[http://dx.doi.org/10.1159/000078820] [PMID: 15258448]
[144]
Harbarth, S.; Pittet, D.; Grady, L.; Zawacki, A.; Potter-Bynoe, G.; Samore, M.H.; Goldmann, D.A. Interventional study to evaluate the impact of an alcohol-based hand gel in improving hand hygiene compliance. Pediatr. Infect. Dis. J., 2002, 21(6), 489-495.
[http://dx.doi.org/10.1097/00006454-200206000-00002 ] [PMID: 12182370]
[145]
Nhung, D.; Freydiere, A.; Constant, H.; Falson, F.; Pirot, F. Sustained antibacterial effect of a hand rub gel incorporating chlorhexdine-loaded nanocapsules (Nanochlorex®). Int. J. Pharm., 2007, 334(1-2), 166-172.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.017] [PMID: 17113253]
[146]
Tsuang, Y.H.; Sun, J.S.; Huang, Y.C.; Lu, C.H.; Chang, W.H.S.; Wang, C.C. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif. Organs, 2008, 32(2), 167-174.
[http://dx.doi.org/10.1111/j.1525-1594.2007.00530.x ] [PMID: 18269355]
[147]
Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett., 2008, 176(1), 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.004] [PMID: 18022772]
[148]
Pitsillides, C.M.; Joe, E.K.; Wei, X.; Anderson, R.R.; Lin, C.P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J., 2003, 84(6), 4023-4032.
[http://dx.doi.org/10.1016/S0006-3495(03)75128-5 ] [PMID: 12770906]
[149]
Dickerson, E.B.; Dreaden, E.C.; Huang, X.; El-Sayed, I.H.; Chu, H.; Pushpanketh, S.; McDonald, J.F.; El-Sayed, M.A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett., 2008, 269(1), 57-66.
[http://dx.doi.org/10.1016/j.canlet.2008.04.026] [PMID: 18541363]
[150]
Antonio, J.R.; Antônio, C.R.; Cardeal, I.L.S.; Ballavenuto, J.M.A.; Oliveira, J.R. Nanotechnology in Dermatology. An. Bras. Dermatol., 2014, 89(1), 126-136.
[http://dx.doi.org/10.1590/abd1806-4841.20142228 ] [PMID: 24626657]
[151]
Elsayed, I.; Huang, X.; Elsayed, M. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett., 2006, 239(1), 129-135.
[http://dx.doi.org/10.1016/j.canlet.2005.07.035] [PMID: 16198049]
[152]
Lu, W.; Xiong, C.; Zhang, G.; Huang, Q.; Zhang, R.; Zhang, J.Z.; Li, C. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin. Cancer Res., 2009, 15(3), 876-886.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1480 ] [PMID: 19188158]
[153]
Henderson, B.W.; Dougherty, T.J. How does photodynamic therapy work? Photochem. Photobiol., 1992, 55(1), 145-157.
[http://dx.doi.org/10.1111/j.1751-1097.1992.tb04222.x ] [PMID: 1603846]
[154]
Chatterjee, D.K.; Fong, L.S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev., 2008, 60(15), 1627-1637.
[http://dx.doi.org/10.1016/j.addr.2008.08.003] [PMID: 18930086]
[155]
Rancan, F.; Helmreich, M.; Mölich, A.; Ermilov, E.A.; Jux, N.; Röder, B.; Hirsch, A.; Böhm, F. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconjug. Chem., 2007, 18(4), 1078-1086.
[http://dx.doi.org/10.1021/bc0603337] [PMID: 17550226]
[156]
Khdair, A. Di Chen; Patil, Y.; Ma, L.; Dou, Q.P.; Shekhar, M.P.V.; Panyam, J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J. Control. Release, 2010, 141(2), 137-144.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.004] [PMID: 19751777]
[157]
Taglietti, M.; Hawkins, C.N.; Rao, J. Novel topical drug delivery systems and their potential use in acne vulgaris. Skin Therapy Lett., 2008, 13(5), 6-8.
[PMID: 18648713]
[158]
Patel, V.B.; Misra, A.; Marfatia, Y.S. Topical liposomal gel of tretinoin for the treatment of acne: Research and clinical implications. Pharm. Dev. Technol., 2000, 5(4), 455-464.
[http://dx.doi.org/10.1081/PDT-100102029] [PMID: 11109245]
[159]
Queille-Roussel, C.; Poncet, M.; Mesaros, S.; Clucas, A.; Baker, M.; Soloff, A.M. Comparison of the cumulative irritation potential of adapalene gel and cream with that of erythromycin/tretinoin solution and gel and erythromycin/isotretinoin gel. Clin. Ther., 2001, 23(2), 205-212.
[http://dx.doi.org/10.1016/S0149-2918(01)80003-5 ] [PMID: 11293554]
[160]
Castro, G.A.; Coelho, A.L.L.R.; Oliveira, C.A.; Mahecha, G.A.B.; Oréfice, R.L.; Ferreira, L.A.M. Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int. J. Pharm., 2009, 381(1), 77-83.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.025] [PMID: 19647057]
[161]
Castro, G.A.; Oliveira, C.A.; Mahecha, G.A.B.; Ferreira, L.A.M. Comedolytic effect and reduced skin irritation of a new formulation of all-trans retinoic acid-loaded solid lipid nanoparticles for topical treatment of acne. Arch. Dermatol. Res., 2011, 303(7), 513-520.
[http://dx.doi.org/10.1007/s00403-011-1130-3] [PMID: 21298279]
[162]
Bernard, E.; Dubois, J.L.; Wepierre, J. Importance of sebaceous glands in cutaneous penetration of an antiandrogen: Target effect of liposomes. J. Pharm. Sci., 1997, 86(5), 573-578.
[http://dx.doi.org/10.1021/js960394l] [PMID: 9145381]
[163]
Münster, U.; Nakamura, C.; Haberland, A.; Jores, K.; Mehnert, W.; Rummel, S.; Schaller, M.; Korting, H.C.; Zouboulis, ChC.; Blume-Peytavi, U.; Schäfer-Korting, M. RU 58841-myristate--prodrug development for topical treatment of acne and androgenetic alopecia. Pharmazie, 2005, 60(1), 8-12.
[PMID: 15700772]
[164]
Bikowski, J.; Del Rosso, J.Q. Benzoyl peroxide microsphere cream as monotherapy and combination treatment of acne. J. Drugs Dermatol., 2008, 7(6), 590-595.
[PMID: 18561594]
[165]
Tsujimoto, H.; Hara, K.; Tsukada, Y.; Huang, C.C.; Kawashima, Y.; Arakaki, M.; Okayasu, H.; Mimura, H.; Miwa, N. Evaluation of the permeability of hair growing ingredient encapsulated PLGA nanospheres to hair follicles and their hair growing effects. Bioorg. Med. Chem. Lett., 2007, 17(17), 4771-4777.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.057] [PMID: 17658251]
[166]
Shim, J.; Seokkang, H.; Park, W.; Han, S.; Kim, J.; Chang, I. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J. Control. Release, 2004, 97(3), 477-484.
[http://dx.doi.org/10.1016/S0168-3659(04)00167-1 ] [PMID: 15212879]
[167]
Jain, B.; Singh, B.; Katare, O.P.; Vyas, S.P. Development and characterization of minoxidil-loaded liposomal system for delivery to pilosebaceous units. J. Liposome Res., 2010, 20(2), 105-114.
[http://dx.doi.org/10.3109/08982100903161449] [PMID: 19698000]
[168]
Kumar, R.; Singh, B.; Bakshi, G.; Katare, O.P. Development of liposomal systems of finasteride for topical applications: Design, characterization, and in vitro evaluation. Pharm. Dev. Technol., 2007, 12(6), 591-601.
[http://dx.doi.org/10.1080/10837450701481181] [PMID: 18161632]
[169]
Vogt, A.; Combadiere, B.; Hadam, S.; Stieler, K.M.; Lademann, J.; Schaefer, H.; Autran, B.; Sterry, W.; Blume-Peytavi, U. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J. Invest. Dermatol., 2006, 126(6), 1316-1322.
[http://dx.doi.org/10.1038/sj.jid.5700226] [PMID: 16614727]
[170]
Nakamura, M.; Jo, J.; Tabata, Y.; Ishikawa, O. Controlled delivery of T-box21 small interfering RNA ameliorates autoimmune alopecia (Alopecia Areata) in a C3H/HeJ mouse model. Am. J. Pathol., 2008, 172(3), 650-658.
[http://dx.doi.org/10.2353/ajpath.2008.061249] [PMID: 18245811]
[171]
Ahmed, N.; Fessi, H.; Elaissari, A. Theranostic applications of nanoparticles in cancer. Drug Discov. Today, 2012, 17(17-18), 928-934.
[http://dx.doi.org/10.1016/j.drudis.2012.03.010] [PMID: 22484464]
[172]
Persidis, A. Cancer multidrug resistance. Nat. Biotechnol., 1999, 17(1), 94-95.
[http://dx.doi.org/10.1038/5289] [PMID: 9920278]
[173]
Parveen, S.; Sahoo, S.K. Nanomedicine. Clin. Pharmacokinet., 2006, 45(10), 965-988.
[http://dx.doi.org/10.2165/00003088-200645100-00002 ] [PMID: 16984211]
[174]
Sahoo, S.K.; Parveen, S.; Panda, J.J. The present and future of nanotechnology in human health care. Nanomedicine, 2007, 3(1), 20-31.
[http://dx.doi.org/10.1016/j.nano.2006.11.008] [PMID: 17379166]
[175]
Boye, J.; Elter, T.; Engert, A. An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann. Oncol., 2003, 14(4), 520-535.
[http://dx.doi.org/10.1093/annonc/mdg175] [PMID: 12649096]
[176]
Plosker, G.L.; Figgitt, D.P. Rituximab. Drugs, 2003, 63(8), 803-843.
[http://dx.doi.org/10.2165/00003495-200363080-00005 ] [PMID: 12662126]
[177]
Coiffier, B.; Lepage, E.; Brière, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; Reyes, F.; Lederlin, P.; Gisselbrecht, C. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med., 2002, 346(4), 235-242.
[http://dx.doi.org/10.1056/NEJMoa011795] [PMID: 11807147]
[178]
Elder, D. Tumor progression, early diagnosis and prognosis of melanoma. Acta Oncol., 1999, 38(5), 535-548.
[http://dx.doi.org/10.1080/028418699431113] [PMID: 10427941]
[179]
Garbe, C.; Eigentler, T.K. Diagnosis and treatment of cutaneous melanoma: State of the art 2006. Melanoma Res., 2007, 17(2), 117-127.
[http://dx.doi.org/10.1097/CMR.0b013e328042bb36 ] [PMID: 17496787]
[180]
Guerry, D.I.V.; Synnestvedt, M.; Elder, D.E.; Schultz, D. Lessons from tumor progression: The invasive radial growth phase of melanoma is common, incapable of metastasis, and indolent. J. Invest. Dermatol., 1993, 100(3), S342-S345.
[http://dx.doi.org/10.1038/jid.1993.60] [PMID: 8440920]
[181]
Wang, M.D.; Shin, D.M.; Simons, J.W.; Nie, S. Nanotechnology for targeted cancer therapy. Expert Rev. Anticancer Ther., 2007, 7(6), 833-837.
[http://dx.doi.org/10.1586/14737140.7.6.833] [PMID: 17555393]
[182]
Mouritsen, JC; Nørregaard-Sarup, J; Østergaard, PR Compositions and methods for treating hair follicle related disorders. K.R patent 20230004648A, 2023.
[183]
Andrews, M; Morse, T; Rak, M; Bateman, M Microparticles of cellulose nanocrystals with pigment nanoparticles bound thereto and method of production thereof. C.A patent 3124455C, 2022.
[184]
Andong, C; Zhong, K; Hujita, I; Shi, Z; Takeshima, Y. Nanobubble-containing cosmetic. W.O patent 2021144889A1, 2021.
[185]
Ricardo, N; Araujo, T Composition, preparation process and use of nanocosmetic based on carnáuba wax and quercetin with hydrating, antioxidant and photoprotective action. B.R patent 102015012999B1, 2020.
[186]
Jun, Z; Tao, CW; Yi, ZX; Yao, ZJ; Hong, JC Preparation method of photothermal and photodynamic cooperative therapeutic agent. C.N patent 110559439A, 2019.
[187]
Ricardo, N; Maia, D; Coelho, E; Almeida, R; Moura, C; Silva, A; Araujo, T; Louchard, B; Matos, L; Ribeiro, M Dermatological and cosmetic preparations containing anacardic acid encapsulated in solid lipid nanoparticles and/or nanostructured lipid nanocarrier. B.R patent 102018004137A2, 2019.
[188]
Sedic, F. Skin cleanser. U.S patent 10028884B2, 2018.
[189]
Meledandri, C; Schwass, D; Cotton, G; Duncan, W Antimicrobial gel containing silver nanoparticles. W.O patent 2017061878A1 2017.
[190]
Liu, H.; Zhang, B. Compounds encapsulated nanoparticles and nanoemulsions preparation and use thereof. U.S patent 20160120794A1, 2016.
[191]
Maitra, P.; Brown, S.; Glynn, J.; Rothouse, J.; Brahms, J.; Fair, M. Gel technology suitable for use in cosmetic compositions. U.S patent 20160038384A1, 2016.
[192]
Jeong, S.; Son, J.; Jang, S.; Kim, Y.; Cheon, J. Cosmetic composition containing retinol stabilized by porous polymer beads and nanoemulsion. U.S patent 8980293B2, 2015.
[193]
Harris, T.; Kim, A. Hair removal with coated metal nanoparticles. U.S patent 20140371656A1, 2014.
[194]
Korenevski, A; Szabo, E; Dutcher, J; Stukalov, O Monodisperse glycogen and phytoglycogen nanoparticles and use thereof as additives in cosmetics, pharmaceuticals, and food products. W.O patent 2014172785A1, 2014.
[195]
Benita, S.; Nasser, T.; Karra, N.; Badihi, A. Nanoparticles based on poly (lactic glycolic) acid for cosmetic applications. U.S patent 20130266625A1, 2013.
[196]
Green, J. Semi-permanent mascara and method of applying. U.S patent 20130068242A1, 2013.
[197]
Turley, E. Topically administered, skin-penetrating glycosaminoglycan formulations suitable for use in cosmetic and pharmaceutical applications. U.S patent 20130059769A1, 2013.
[198]
Sachweh, B.; Koban, W.; Wohlleben, W.; Peukert, W.; Taylor, R.; Distaso, M. Metal oxide nanocomposites for UV protection. U.S patent 20130022655A1, 2013.
[199]
Takakura, T. Oil-in-water type emulsion sunscreen cosmetic composition. U.S patent 20130011348A1, 2013.
[200]
Takeda, K.; Suzuki, K.; Ishihara, A.; Kubo-Irie, M.; Fujimoto, R.; Tabata, M.; Oshio, S.; Nihei, Y.; Ihara, T.; Sugamata, M. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J. Health Sci., 2009, 55(1), 95-102.
[http://dx.doi.org/10.1248/jhs.55.95]
[201]
Dunford, R.; Salinaro, A.; Cai, L.; Serpone, N.; Horikoshi, S.; Hidaka, H.; Knowland, J. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett., 1997, 418(1-2), 87-90.
[http://dx.doi.org/10.1016/S0014-5793(97)01356-2] [PMID: 9414101]
[202]
Arora, S.; Rajwade, J.M.; Paknikar, K.M. Nanotoxicology and in vitro studies: The need of the hour. Toxicol. Appl. Pharmacol., 2012, 258(2), 151-165.
[http://dx.doi.org/10.1016/j.taap.2011.11.010] [PMID: 22178382]
[203]
de Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[204]
Poon, V.K.M.; Burd, A. In vitro cytotoxity of silver: Implication for clinical wound care. Burns, 2004, 30(2), 140-147.
[http://dx.doi.org/10.1016/j.burns.2003.09.030] [PMID: 15019121]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy