Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Inhibitory Role of L-theanine, a Structural Analogue of Glutamate, against GluR5 Kainate Receptor and its Prospective Utility against Excitotoxicity

Author(s): Satarupa Deb* and Anupom Borah

Volume 24, Issue 3, 2024

Published on: 22 April, 2024

Page: [317 - 327] Pages: 11

DOI: 10.2174/0118715249299461240415131729

Price: $65

Abstract

Background: Overactivation of receptors that respond to excitatory neurotransmitters can result in various harmful outcomes, such as the inability to properly modulate calcium levels, generation of free radicals, initiation of the mitochondrial permeability transition, and subsequent secondary damage caused by excitotoxicity. A non-proteinogenic amino acid of tea, L-theanine, is structurally related to glutamate, the major stimulatory neurotransmitter in the brain. Previous reports have emphasised its ability to bind with glutamate receptors.

Objective: An in-depth understanding of the binding compatibility between ionotropic glutamate receptors and L-theanine is a compelling necessity.

Methods: In this molecular docking study, the antagonistic effect of L-theanine and its possible therapeutic benefit in GluR5 kainate receptor inhibition has been evaluated and compared to the familiar AMPA and kainite receptor antagonists, cyanoquinoxaline (CNQX) and dinitroquinoxaline (DNQX), using Molegro Virtual Docker 7.0.0.

Results: The capacity of L-theanine to cohere with the GluR5 receptor was revealed to be higher than that of glutamate, although it could not surpass the high binding tendency of competitive antagonists CNQX and DNQX. Nonetheless, the drug-likeness score and the blood-brain barrier traversing potential of L-theanine were higher than CNQX and DNQX.

Conclusion: The study provides an inference to the advantage of L-theanine, which can be a safe and effective alternative natural therapy for rescuing neuronal death due to excitotoxicity.

Graphical Abstract

[1]
Dong, X.; Wang, Y.; Qin, Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[2]
Binvignat, O.; Olloquequi, J. Excitotoxicity as a target against neurodegenerative processes. Curr. Pharm. Des., 2020, 26(12), 1251-1262.
[http://dx.doi.org/10.2174/1381612826666200113162641] [PMID: 31931694]
[3]
Choi, D.W. Excitotoxicity: Still hammering the ischemic brain in 2020. Front. Neurosci., 2020, 14, 579953.
[http://dx.doi.org/10.3389/fnins.2020.579953] [PMID: 33192266]
[4]
Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch., 2010, 460(2), 525-542.
[http://dx.doi.org/10.1007/s00424-010-0809-1] [PMID: 20229265]
[5]
Choi, D.W. Excitotoxic cell death. J. Neurobiol., 1992, 23(9), 1261-1276.
[http://dx.doi.org/10.1002/neu.480230915] [PMID: 1361523]
[6]
Moreira, A.A.; Gomes, J.I.; Pina, C.C.; Savchak, O.K.; Ribeiro, G.J.; Rei, N.; Pinto, S.; Morais, T.P.; Martins, R.S.; Ribeiro, F.F.; Sebastião, A.M.; Crunelli, V.; Vaz, S.H. Going the extra (synaptic) mile: Excitotoxicity as the road toward neurodegenerative diseases. Front. Cell. Neurosci., 2020, 14, 90.
[http://dx.doi.org/10.3389/fncel.2020.00090] [PMID: 32390802]
[7]
Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164.
[http://dx.doi.org/10.1016/j.jphs.2020.07.011] [PMID: 32807662]
[8]
Verma, M.; Lizama, B.N.; Chu, C.T. Excitotoxicity, calcium and mitochondria: A triad in synaptic neurodegeneration. Transl. Neurodegener., 2022, 11(1), 3.
[http://dx.doi.org/10.1186/s40035-021-00278-7] [PMID: 35078537]
[9]
Lewerenz, J.; Maher, P. Chronic glutamate toxicity in neurodegenerative diseases-What is the evidence? Front. Neurosci., 2015, 9, 469.
[http://dx.doi.org/10.3389/fnins.2015.00469] [PMID: 26733784]
[10]
Haroon, E.; Miller, A.H.; Sanacora, G. Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology, 2017, 42(1), 193-215.
[http://dx.doi.org/10.1038/npp.2016.199] [PMID: 27629368]
[11]
Olajide, O.A.; Sarker, S.D. Alzheimer’s disease: Natural products as inhibitors of neuroinflammation. Inflammopharmacology, 2020, 28(6), 1439-1455.
[http://dx.doi.org/10.1007/s10787-020-00751-1] [PMID: 32930914]
[12]
Liang, Z.; Currais, A.; Castell, S.D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: Emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107749] [PMID: 33227325]
[13]
Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective natural products for Alzheimer’s Disease. Cells, 2021, 10(6), 1309.
[http://dx.doi.org/10.3390/cells10061309]
[14]
Chaurasiya, N.; Leon, F.; Muhammad, I.; Tekwani, B. Natural products inhibitors of monoamine oxidases—potential new drug leads for neuroprotection, neurological disorders, and neuroblastoma. Molecules, 2022, 27(13), 4297.
[http://dx.doi.org/10.3390/molecules27134297] [PMID: 35807542]
[15]
Nie, J.; Liu, C.; Yu, C.; Guo, Y.; Pei, P.; Yang, L.; Chen, Y.; Du, H.; Zhu, K.; Schmidt, D.; Avery, D.; Chen, J.; Chen, Z.; Lv, J.; Li, L. Independent and joint associations of tea consumption and smoking with parkinson’s disease risk in chinese adults. J. Parkinsons Dis., 2022, 12(5), 1693-1702.
[http://dx.doi.org/10.3233/JPD-223148] [PMID: 35527564]
[16]
Malar, D.S.; Prasanth, M.I.; Brimson, J.M.; Sharika, R.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. Neuroprotective properties of green tea (Camellia sinensis) in Parkinson’s Disease: A review. Molecules, 2020, 25(17), 3926.
[http://dx.doi.org/10.3390/molecules25173926] [PMID: 32867388]
[17]
Afzal, O.; Dalhat, M.H.; Altamimi, A.S.A.; Rasool, R.; Alzarea, S.I.; Almalki, W.H.; Murtaza, B.N.; Iftikhar, S.; Nadeem, S.; Nadeem, M.S.; Kazmi, I. Green tea catechins attenuate neurodegenerative diseases and cognitive deficits. Molecules, 2022, 27(21), 7604.
[http://dx.doi.org/10.3390/molecules27217604] [PMID: 36364431]
[18]
Vuong, Q.V.; Bowyer, M.C.; Roach, P.D. L-Theanine: Properties, synthesis and isolation from tea. J. Sci. Food Agric., 2011, 91(11), 1931-1939.
[http://dx.doi.org/10.1002/jsfa.4373] [PMID: 21735448]
[19]
Jang, H.S.; Jung, J.Y.; Jang, I.S.; Jang, K.H.; Kim, S.H.; Ha, J.H.; Suk, K.; Lee, M.G. L-theanine partially counteracts caffeine-induced sleep disturbances in rats. Pharmacol. Biochem. Behav., 2012, 101(2), 217-221.
[http://dx.doi.org/10.1016/j.pbb.2012.01.011] [PMID: 22285321]
[20]
Zukhurova, M.; Prosvirnina, M.; Daineko, A.; Simanenkova, A.; Petrishchev, N.; Sonin, D.; Galagudza, M.; Shamtsyan, M.; Juneja, L.R.; Vlasov, T. L-theanine administration results in neuroprotection and prevents glutamate receptor agonist-mediated injury in the rat model of cerebral ischemia-reperfusion. Phytother. Res., 2013, 27(9), 1282-1287.
[http://dx.doi.org/10.1002/ptr.4868] [PMID: 23097345]
[21]
Amin, M.; Khikmawati, N.H.; Suryadi, I.F.; Amin, I.F.; Yayoi, K.; Wibowo, A.H.; Maulina, D.; Rachman, I. Chemical interaction analysis of L-Theanine compounds from Camellia sinensis L. with kainate glutamate receptors and their toxicity effect as anti autism candidates based on in silico. AIP Conf. Proc., 2020, 2237, 020072.
[http://dx.doi.org/10.1063/5.0008500]
[22]
Deb, S.; Dutta, A.; Phukan, B.C.; Manivasagam, T.; Thenmozhi, J.A.; Bhattacharya, P.; Paul, R.; Borah, A. Neuroprotective attributes of L-theanine, a bioactive amino acid of tea, and its potential role in Parkinson’s disease therapeutics. Neurochem. Int., 2019, 129, 104478.
[http://dx.doi.org/10.1016/j.neuint.2019.104478] [PMID: 31145971]
[23]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[24]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[25]
Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res., 2018, 46(W1), W374-W379.
[http://dx.doi.org/10.1093/nar/gky380] [PMID: 29750256]
[26]
Mazumder, M.K.; Paul, R.; Borah, A. β-phenethylamine--A phenylalanine derivative in brain--contributes to oxidative stress by inhibiting mitochondrial complexes and DT-diaphorase: An in silico study. CNS Neurosci. Ther., 2013, 19(8), 596-602.
[http://dx.doi.org/10.1111/cns.12113] [PMID: 23638910]
[27]
Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Comput. Struct. Biotechnol. J., 2019, 17, 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006] [PMID: 30867893]
[28]
Ambrogini, P.; Torquato, P.; Bartolini, D.; Albertini, M.C.; Lattanzi, D.; Di Palma, M.; Marinelli, R.; Betti, M.; Minelli, A.; Cuppini, R.; Galli, F. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1098-1112.
[http://dx.doi.org/10.1016/j.bbadis.2019.01.026] [PMID: 30703511]
[29]
Shinozaki, H.; Ishida, M. Theanine as a glutamate antagonist at a crayfish neuromuscular junction. Brain Res., 1978, 151(1), 215-219.
[http://dx.doi.org/10.1016/0006-8993(78)90967-8] [PMID: 679005]
[30]
Ashihara, H. Occurrence, biosynthesis and metabolism of theanine (γ-Glutamyl-L-ethylamide) in plants: A comprehensive review. Nat. Prod. Commun., 2015, 10(5), 803-810.
[31]
Johnson, K.; Conn, P.; Niswender, C. Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2009, 8(6), 475-491.
[http://dx.doi.org/10.2174/187152709789824606] [PMID: 19702565]
[32]
Kakuda, T.; Hinoi, E.; Abe, A.; Nozawa, A.; Ogura, M.; Yoneda, Y. Theanine, an ingredient of green tea, inhibits [ 3 H]glutamine transport in neurons and astroglia in rat brain. J. Neurosci. Res., 2008, 86(8), 1846-1856.
[http://dx.doi.org/10.1002/jnr.21637] [PMID: 18293419]
[33]
Aras, M.A.; Hartnett, K.A.; Aizenman, E. Assessment of cell viability in primary neuronal cultures. Curr. Protoc. Neurosci., 2008.
[http://dx.doi.org/10.1002/0471142301.ns0718s44]
[34]
Kandy, S.K.; Nimonkar, M.M.; Dash, S.S.; Mehta, B.; Markandeya, Y.S. Astaxanthin protection against neuronal excitotoxicity via glutamate receptor inhibition and improvement of mitochondrial function. Mar. Drugs, 2022, 20(10), 645.
[http://dx.doi.org/10.3390/md20100645] [PMID: 36286468]
[35]
Neves, D.; Salazar, I.L.; Almeida, R.D.; Silva, R.M. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci., 2023, 328, 121814.
[http://dx.doi.org/10.1016/j.lfs.2023.121814] [PMID: 37236602]
[36]
Zheng, X.Y.; Zhang, H.L.; Luo, Q.; Zhu, J. Kainic acid-induced neurodegenerative model: Potentials and limitations. J. Biomed. Biotechnol., 2011, 2011, 1-10.
[http://dx.doi.org/10.1155/2011/457079] [PMID: 21127706]
[37]
Mesplès, B.; Plaisant, F.; Fontaine, R.H.; Gressens, P. Pathophysiology of neonatal brain lesions: Lessons from animal models of excitotoxicity. Acta Paediatr., 2005, 94(2), 185-190.
[http://dx.doi.org/10.1111/j.1651-2227.2005.tb01888.x] [PMID: 15981752]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy