Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

1,3,4-Oxadiazole Scaffold in Antidiabetic Drug Discovery: An Overview

Author(s): Ojasvi Gupta, Gita Chawla* and Tathagata Pradhan

Volume 24, Issue 20, 2024

Published on: 19 April, 2024

Page: [1800 - 1821] Pages: 22

DOI: 10.2174/0113895575298181240410041029

Price: $65

Abstract

Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. With the increasing number of cases of diabetes and drug-resistant diabetes, there is an urgent need to develop new potent molecules capable of combating this cruel disease. Medicinal chemistry concerns the discovery, development, identification, and interpretation of the mode of action of biologically active compounds at the molecular level. Oxadiazole-based derivatives have come up as a potential option for antidiabetic drug research. Oxadiazole is a five-membered heterocyclic organic compound containing two nitrogen atoms and one oxygen atom in its ring. Oxadiazole hybrids have shown the ability to improve glucose tolerance, enhance insulin sensitivity, and reduce fasting blood glucose levels. The mechanisms underlying the antidiabetic effects of oxadiazole involve the modulation of molecular targets such as peroxisome proliferator-activated receptor gamma (PPARγ), α-glucosidase, α-amylase and GSK-3β which regulate glucose metabolism and insulin secretion. The present review article describes the chemical structure and properties of oxadiazoles and highlights the antidiabetic activity through action on different targets. The SAR for the oxadiazole hybrids has been discussed in this article, which will pave the way for the design and development of new 1,3,4-oxadiazole derivatives as promising antidiabetic agents in the future. We expect that this article will provide comprehensive knowledge and current innovation on oxadiazole derivatives with antidiabetic potential and will fulfil the needs of the scientific community in designing and developing efficacious antidiabetic agents.

[1]
Ma, C.X.; Ma, X.N.; Guan, C.H.; Li, Y.D.; Mauricio, D.; Fu, S.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol., 2022, 21(1), 74.
[http://dx.doi.org/10.1186/s12933-022-01516-6] [PMID: 35568946]
[2]
Pradhan, T.; Gupta, O.; Kumar, V. Sristi; Chawla, G. A comprehensive review on the antidiabetic attributes of thiazolidine‐4‐ones: Synthetic strategies and structure–activity relationships. Arch. Pharm. (Weinheim), 2023, 356(2), 2200452.
[http://dx.doi.org/10.1002/ardp.202200452] [PMID: 36378997]
[3]
Tattersall, R.B.; Matthews, D.R. The history of diabetes mellitus.Textbook of Diabetes; Wiley: Hoboken, New Jersey, 2010, pp. 1-23.
[4]
Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from yesterday, today, and future trends. Popul. Health Manag., 2017, 20(1), 6-12.
[http://dx.doi.org/10.1089/pop.2015.0181] [PMID: 27124621]
[5]
Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol., 2022, 18(9), 525-539.
[http://dx.doi.org/10.1038/s41574-022-00690-7] [PMID: 35668219]
[6]
IDF Diabetes Atlas. Diabetes around the world in 2021. 2021 Available From: https://diabetesatlas.org/
[7]
Kumar, D.; Sharma, S.; Kalra, S.; Singh, G.; Monga, V.; Kumar, B. Medicinal perspective of Indole derivatives: Recent developments and structure-activity relationship studies. Curr. Drug Targets, 2020, 21(9), 864-891.
[http://dx.doi.org/10.2174/18735592MTA1FMTE62] [PMID: 32156235]
[8]
Tokhirovna, E.G. Risk factors for developing type 2 diabetes mellitus. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 2024, 36(5), 64-69.
[9]
Roshanravan, N.; Askari, S.F.; Fazelian, S.; Ayati, M.H.; Namazi, N. The roles of quercetin in diabetes mellitus and related metabolic disorders; Special focus on the modulation of gut microbiota: A comprehensive review. Crit. Rev. Food Sci. Nutr., 2023, 63(17), 2990-3003.
[http://dx.doi.org/10.1080/10408398.2021.1983765] [PMID: 34620011]
[10]
Lebovitz, H.E. Thiazolidinediones: The forgotten diabetes medications. Curr. Diab. Rep., 2019, 19(12), 151.
[http://dx.doi.org/10.1007/s11892-019-1270-y] [PMID: 31776781]
[11]
Bancks, M.P.; Chen, H.; Balasubramanyam, A.; Bertoni, A.G.; Espeland, M.A.; Kahn, S.E.; Pilla, S.; Vaughan, E.; Wagenknecht, L.E.; Group, L.A.R. Type 2 diabetes subgroups, risk for complications, and differential effects due to an intensive lifestyle intervention. Diabetes Care, 2021, 44(5), 1203-1210.
[http://dx.doi.org/10.2337/dc20-2372] [PMID: 33707304]
[12]
Balaji, R.; Duraisamy, R.; Kumar, M. Complications of diabetes mellitus: A review. Drug Invent. Today, 2019, 12(1), 98-103.
[13]
Ansaripour, A.; Abbasi, B. Type 2 diabetes as a prominent global health issue: A narrative review. Islamic Azad Uni. Sci. Res. Branch, 2022, 5(1), 37-44.
[14]
Mohajan, D.; Mohajan, H.K. Basic concepts of diabetics mellitus for the welfare of general patients. Stud. Soc. Sci. Human., 2023, 2(6), 23-31.
[http://dx.doi.org/10.56397/SSSH.2023.06.03]
[15]
Grunberger, G. Should side effects influence the selection of antidiabetic therapies in type 2 diabetes? Curr. Diab. Rep., 2017, 17(4), 21.
[http://dx.doi.org/10.1007/s11892-017-0853-8] [PMID: 28293908]
[16]
Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother., 2020, 131, 110708.
[http://dx.doi.org/10.1016/j.biopha.2020.110708] [PMID: 32927252]
[17]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[18]
Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 diabetes mellitus: A review of multi-target drugs. Molecules, 2020, 25(8), 1987.
[http://dx.doi.org/10.3390/molecules25081987] [PMID: 32340373]
[19]
Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol., 2021, 17(3), 150-161.
[http://dx.doi.org/10.1038/s41574-020-00443-4] [PMID: 33293704]
[20]
Somani, R.R.; Shirodkar, P.Y. Oxadiazole: A biologically important heterocycle. Der Pharma Chem., 2009, 1(1), 130-140.
[21]
Dowarah, J.; Singh, V.P. Anti-diabetic drugs recent approaches and advancements. Bioorg. Med. Chem., 2020, 28(5), 115263.
[http://dx.doi.org/10.1016/j.bmc.2019.115263] [PMID: 32008883]
[22]
Davidson, M.A.; Mattison, D.R.; Azoulay, L.; Krewski, D. Thiazolidinedione drugs in the treatment of type 2 diabetes mellitus: Past, present and future. Crit. Rev. Toxicol., 2018, 48(1), 52-108.
[http://dx.doi.org/10.1080/10408444.2017.1351420] [PMID: 28816105]
[23]
Chawla, G.; Pradhan, T.; Gupta, O. An insight into the combat strategies for the treatment of type 2 diabetes mellitus. Mini Rev. Med. Chem., 2023.
[PMID: 37198989]
[24]
Mumtaz, S.; Rashid, A.; Akram, M.; Laila, U.; Iftikhar, M.; Anwar, H.; Zainab, R.; Khalil, M.T.; Jafari-Sales, A.; Elbossaty, W.F. Exploration of novel therapeutic strategies for the treatment of diabetes mellitus Sust. Agri, Food. Environ. Res., 2025, 13, 13.
[25]
Gonzalez, D.E.; Foresto, R.D.; Ribeiro, A.B. SGLT-2 inhibitors in diabetes: A focus on renoprotection. Rev. Assoc. Med. Bras., 2020, 66(66)(Suppl. 1), s17-s24.
[http://dx.doi.org/10.1590/1806-9282.66.s1.17] [PMID: 31939531]
[26]
Velmurugan, D.; Pachaiappan, R.; Ramakrishnan, C. Recent trends in drug design and discovery. Curr. Top. Med. Chem., 2020, 20(19), 1761-1770.
[http://dx.doi.org/10.2174/1568026620666200622150003] [PMID: 32568020]
[27]
Pathania, S.; Narang, R.K.; Rawal, R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem., 2019, 180, 486-508.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.043] [PMID: 31330449]
[28]
Camci, M.; Karali, N. Bioisosterism: 1,2,4‐Oxadiazole Rings. ChemMedChem, 2023, 18(9), e202200638.
[http://dx.doi.org/10.1002/cmdc.202200638] [PMID: 36772857]
[29]
Ruan, B.F.; Guo, Q.L.; Li, Q.S.; Li, L.Z.; Deora, G.S.; Zhou, B.G. A review of the biological activities of heterocyclic compounds comprising oxadiazole moieties. Curr. Top. Med. Chem., 2022, 22(7), 578-599.
[http://dx.doi.org/10.2174/1568026622666220202123651] [PMID: 35114924]
[30]
Zhang, H.Z.; Zhao, Z.L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[31]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830.
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[32]
Biernacki, K.; Daśko, M.; Ciupak, O.; Kubiński, K.; Rachon, J.; Demkowicz, S. Novel 1, 2, 4-oxadiazole derivatives in drug discovery. Pharmaceuticals (Basel), 2020, 13(6), 111.
[http://dx.doi.org/10.3390/ph13060111] [PMID: 32485996]
[33]
Neissari, N.; Shahedi, M.; Habibi, Z.; Yousefi, M.; Minai-Tehrani, A.; Yazdi Samadi, F.; Brask, J.; Bavandi, H.; Mohammadi, M. Biocatalytic synthesis of oxadiazole thioethers and evaluation of their antitumor activity. Org. Biomol. Chem., 2023, 21(23), 4846-4853.
[http://dx.doi.org/10.1039/D2OB02307E] [PMID: 37249163]
[34]
Glomb, T.; Świątek, P. Antimicrobial activity of 1, 3, 4-oxadiazole derivatives. Int. J. Mol. Sci., 2021, 22(13), 6979.
[http://dx.doi.org/10.3390/ijms22136979] [PMID: 34209520]
[35]
Zabiulla; Nagesh Khadri, M.J.; Bushra Begum, A.; Sunil, M.K.; Khanum, S.A. Synthesis, docking and biological evaluation of thiadiazole and oxadiazole derivatives as antimicrobial and antioxidant agents. Results Chem, 2020, 2, 100045.
[http://dx.doi.org/10.1016/j.rechem.2020.100045]
[36]
Yang, Z.; Sun, Y.; Liu, Q.; Li, A.; Wang, W.; Gu, W. Design, synthesis, and antifungal activity of novel thiophene/furan-1, 3, 4-oxadiazole carboxamides as potent succinate dehydrogenase inhibitors. J. Agric. Food Chem., 2021, 69(45), 13373-13385.
[http://dx.doi.org/10.1021/acs.jafc.1c03857] [PMID: 34735146]
[37]
Çevik, U.A.; Celik, I.; Işık, A.; Pillai, R.R.; Tallei, T.E.; Yadav, R.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis, molecular modeling, quantum mechanical calculations and ADME estimation studies of benzimidazole-oxadiazole derivatives as potent antifungal agents. J. Mol. Struct., 2022, 1252, 132095.
[http://dx.doi.org/10.1016/j.molstruc.2021.132095]
[38]
Kashid, B.B.; Salunkhe, P.H.; Dongare, B.B.; More, K.R.; Khedkar, V.M.; Ghanwat, A.A. Synthesis of novel of 2, 5-disubstituted 1, 3, 4- oxadiazole derivatives and their in vitro anti-inflammatory, anti-oxidant evaluation, and molecular docking study. Bioorg. Med. Chem. Lett., 2020, 30(12), 127136.
[http://dx.doi.org/10.1016/j.bmcl.2020.127136] [PMID: 32280025]
[39]
Jadhaw, B.; Gandhi, B.; Jhansi, M.; Misra, S.; Kaki, S.S. Synthesis and biological evaluation of novel lipophilic chromene based 1,3,4-oxadiazoles for anti-cancer and anti-inflammatory activity. Arab. J. Sci. Eng., 2024, 49(1), 221-230.
[http://dx.doi.org/10.1007/s13369-023-08030-1]
[40]
Hamoud, M.M.S.; Osman, N.A.; Rezq, S. A A Abd El-Wahab, H.; E A Hassan, A.; Abdel-Fattah, H.A.; Romero, D.G.; Ghanim, A.M. Design and synthesis of novel 1, 3, 4-oxadiazole and 1, 2, 4-triazole derivatives as cyclooxygenase-2 inhibitors with anti-inflammatory and antioxidant activity in lps-stimulated RAW264. 7 macrophages. Bioorg. Chem., 2022, 124, 105808.
[http://dx.doi.org/10.1016/j.bioorg.2022.105808] [PMID: 35447409]
[41]
Nesaragi, A.R.; Kamble, R.R.; Dixit, S.; Kodasi, B.; Hoolageri, S.R.; Bayannavar, P.K.; Dasappa, J.P.; Vootla, S.; Joshi, S.D.; Kumbar, V.M. Green synthesis of therapeutically active 1,3,4-oxadiazoles as antioxidants, selective COX-2 inhibitors and their in silico studies. Bioorg. Med. Chem. Lett., 2021, 43, 128112.
[http://dx.doi.org/10.1016/j.bmcl.2021.128112] [PMID: 33991632]
[42]
Verma, S.K.; Verma, R.; Verma, S.; Vaishnav, Y.; Tiwari, S.P.; Rakesh, K.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem., 2021, 209, 112886.
[http://dx.doi.org/10.1016/j.ejmech.2020.112886] [PMID: 33032083]
[43]
De, S.S.; Khambete, M.P.; Degani, M.S. Oxadiazole scaffolds in anti-tuberculosis drug discovery. Bioorg. Med. Chem. Lett., 2019, 29(16), 1999-2007.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.054] [PMID: 31296357]
[44]
Vaidya, A.; Pathak, D.; Shah, K. 1,3,4‐oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chem. Biol. Drug Des., 2021, 97(3), 572-591.
[http://dx.doi.org/10.1111/cbdd.13795] [PMID: 32946168]
[45]
Li, Z.; Zhan, P.; Liu, X. 1,3,4-oxadiazole: A privileged structure in antiviral agents. Mini Rev. Med. Chem., 2011, 11(13), 1130-1142.
[http://dx.doi.org/10.2174/138955711797655407] [PMID: 22353222]
[46]
Gan, X.; Hu, D.; Chen, Z.; Wang, Y.; Song, B. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates. Bioorg. Med. Chem. Lett., 2017, 27(18), 4298-4301.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.038] [PMID: 28838690]
[47]
Desai, N.; Monapara, J.; Jethawa, A.; Khedkar, V.; Shingate, B. Oxadiazole: A highly versatile scaffold in drug discovery. Arch. Pharm. (Weinheim), 2022, 355(9), 2200123.
[http://dx.doi.org/10.1002/ardp.202200123] [PMID: 35575467]
[48]
Atmaram, U.A.; Roopan, S.M. Biological activity of oxadiazole and thiadiazole derivatives. Appl. Microbiol. Biotechnol., 2022, 106(9-10), 3489-3505.
[http://dx.doi.org/10.1007/s00253-022-11969-0] [PMID: 35562490]
[49]
Siwach, A.; Verma, P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC Chem., 2020, 14(1), 70.
[http://dx.doi.org/10.1186/s13065-020-00721-2] [PMID: 33372629]
[50]
Vismaya, V. In silico design and molecular docking studies of novel 2-(4-chlorophenyl)-5-aryl-1, 3, 4-oxadiazole derivatives for anti-cancer activity. J. Pharmaceut. Sci. Res., 2019, 11(7), 2604-2609.
[51]
Qazi, A.I.; Ahmad, B.; Sahibzada, M.U.K.; Anwar, F.; Khusro, A.; Alhumaydhi, F.A.; Mohamed, A.A-R.; Mostafa-Hedeab, G.; Emran, T.B. Evaluation of antidiabetic activity of oxadiazole derivative in rats. Evid. Based Complement. Alternat. Med., 2023, 2023, 1141554.
[52]
Ajani, O.O.; Iyaye, K.T. Recent advances on oxadiazole motifs: Synthesis, reactions and biological activities. Mediterr. J. Chem., 2020, 10(5), 418.
[http://dx.doi.org/10.13171/mjc10502005121200ooa]
[53]
Sanchit, S.; Pandeya, S. Various approaches for synthesis of oxadiazole derivatives. Int. J. Res. Ayurveda Pharm., 2011, 4, 1124.
[54]
Banik, B.K.; Sahoo, B.M.; Kumar, B.V.V.R.; Panda, K.C.; Jena, J.; Mahapatra, M.K.; Borah, P. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. Molecules, 2021, 26(4), 1163.
[http://dx.doi.org/10.3390/molecules26041163] [PMID: 33671751]
[55]
Wang, J.J.; Sun, W.; Jia, W.D.; Bian, M.; Yu, L.J. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: A mini review. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2304-2319.
[http://dx.doi.org/10.1080/14756366.2022.2115036] [PMID: 36000176]
[56]
Luczynski, M.; Kudelko, A. Synthesis and biological activity of 1, 3, 4-oxadiazoles used in medicine and agriculture. Appl. Sci. (Basel), 2022, 12(8), 3756.
[http://dx.doi.org/10.3390/app12083756]
[57]
Salim, H.A.; Saoud, S.A. A review of modern methods of synthesis 1, 3, 4-oxadiazole as a bioactive compounds. Wasit J. Pure Sci., 2023, 2(4), 262.
[58]
Sharma, A.S. Salahuddin; Mazumder, A.; Kumar, R.; Datt, V.; Shabana, K.; Tyagi, S.; Yar, M.S.; Ahsan, M.J. Recent updates on synthesis, biological activity, and structure-activity relationship of 1,3,4-oxadiazole-quinoline hybrids: A review. Curr. Org. Synth., 2023, 20(7), 758-787.
[http://dx.doi.org/10.2174/1570179420666221004142659] [PMID: 36200203]
[59]
Rahul, K.; Amarnath, D.P.; Narayanan, H.; Adhya, D. The biological potential and synthetic diversity of 1, 3, 4-oxadiazole multiplexed with various heterocyclic compounds. J. Turkish Chem. Soc. Sec. A: Chem., 2023, 10(2), 267-276.
[60]
Jang, J.-M.; Yang, M.; Yu, S.; Jiang, C.; Sun, H.; Wu, H.; Wang, Z. Oxadiazole compound as well as preparation method, application and product thereof. CN Patent 115043825A, 2022.
[61]
Keil, S.; Wendler, W.; Glien, M.; Goerlitzer, J.; Chandross, K.; McGarry Daniel, G.; Merrill, J.; Bernardelli, P.; Ronan, B.; Terrier, C. Oxadiazolones and derivatives thereof as peroxisome proliferator-activated receptor (PPAR) delta agonists. US Patent 7709509B2, 2010.
[62]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Iqbal, M.A. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment. Bioorg. Chem., 2019, 83, 6-19.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.025] [PMID: 30339863]
[63]
Gani, R.S.; Kudva, A.K.; Timanagouda, K. Raghuveer; Mujawar, S.B.H.; Joshi, S.D.; Raghu, S.V. Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg. Chem., 2021, 114, 105046.
[http://dx.doi.org/10.1016/j.bioorg.2021.105046] [PMID: 34126575]
[64]
Salve, M.T.; Jadhav, S.B. Sr Synthesis, characterization and antidiabetic evaluation of sulfonamide in corporated with 1, 3, 4-oxadiazole derivatives. Indian J. Pharmaceut. Edu. Res., 2021, 55(4), 1145-1150.
[http://dx.doi.org/10.5530/ijper.55.4.214]
[65]
Shankara, S.D.; Isloor, A.M.; Kudva, A.K.; Raghu, S.V.; Jayaswamy, P.K.; Venugopal, P.P.; Shetty, P.; Chakraborty, D. 2,5-Bis(2,2,2-trifluoroethoxy)phenyl-tethered 1,3,4-oxadiazoles derivatives: Synthesis, in silico studies, and biological assessment as potential candidates for anti-cancer and anti-diabetic agent. Molecules, 2022, 27(24), 8694.
[http://dx.doi.org/10.3390/molecules27248694] [PMID: 36557829]
[66]
Srinivasa, M.G.; Paithankar, J.G.; Saheb Birangal, S.R.; Pai, A.; Pai, V.; Deshpande, S.N.; Revanasiddappa, B.C. Novel hybrids of thiazolidinedione-1,3,4-oxadiazole derivatives: Synthesis, molecular docking, MD simulations, ADMET study, in vitro, and in vivo anti-diabetic assessment. RSC Adv., 2023, 13(3), 1567-1579.
[http://dx.doi.org/10.1039/D2RA07247E] [PMID: 36712616]
[67]
Kumar, S.; Rathore, D.S.; Garg, G.; Khatri, K.; Saxena, R.; Sahu, S.K. Synthesis and evaluation of some 2-((benzothiazol-2-ylthio) methyl)-5-phenyl-1, 3, 4-oxadiazole derivatives as antidiabetic agents. Asian Pac. J. Health Sci., 2016, 3(4), 65-74.
[http://dx.doi.org/10.21276/apjhs.2016.3.4.10]
[68]
Nazreen, S.; Alam, M.S.; Hamid, H.; Yar, M.S.; Shafi, S.; Dhulap, A.; Alam, P.; Pasha, M.A.Q.; Bano, S.; Alam, M.M.; Haider, S.; Ali, Y.; Kharbanda, C.; Pillai, K.K. Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists. Eur. J. Med. Chem., 2014, 87, 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.010] [PMID: 25255433]
[69]
Srinivas, S.; Aparna, V. Design, synthesis, biological evaluation and molecular docking studies of novel quinazoline derivatives as GSK-3β inhibitors. World J. Pharm. Pharm. Sci., 2013, 2(6), 5842-5851.
[70]
Mohammed Iqbal, A.K.; Khan, A.Y.; Kalashetti, M.B.; Belavagi, N.S.; Gong, Y.D.; Khazi, I.A.M. Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring. Eur. J. Med. Chem., 2012, 53, 308-315.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.015] [PMID: 22575535]
[71]
Finck, B. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc. Res., 2007, 73(2), 269-277.
[http://dx.doi.org/10.1016/j.cardiores.2006.08.023] [PMID: 17010956]
[72]
Janani, C.; Ranjitha Kumari, B.D. PPAR gamma gene – A review. Diabetes Metab. Syndr., 2015, 9(1), 46-50.
[http://dx.doi.org/10.1016/j.dsx.2014.09.015] [PMID: 25450819]
[73]
Liu, Y.; Wang, J.; Luo, S.; Zhan, Y.; Lu, Q. The roles of PPARγ and its agonists in autoimmune diseases: A comprehensive review. J. Autoimmun., 2020, 113, 102510.
[http://dx.doi.org/10.1016/j.jaut.2020.102510] [PMID: 32622513]
[74]
El-Zahabi, M.A.; Elbendary, E.R.; Bamanie, F.H.; Radwan, M.F.; Ghareib, S.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of phthalimide-sulfonylurea hybrids as PPARγ and SUR agonists. Bioorg. Chem., 2019, 91, 103115.
[http://dx.doi.org/10.1016/j.bioorg.2019.103115] [PMID: 31310882]
[75]
Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur. J. Med. Chem., 2019, 166, 502-513.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.067] [PMID: 30739829]
[76]
Zhang, L.; Tu, Z.; Yuan, T.; Wang, H.; Xie, X.; Fu, Z. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chem., 2016, 208, 61-67.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.079] [PMID: 27132824]
[77]
Zhang, X.; Li, G.; Wu, D.; Yu, Y.; Hu, N.; Wang, H.; Li, X.; Wu, Y. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase. Food Funct., 2020, 11(1), 66-82.
[http://dx.doi.org/10.1039/C9FO01590F] [PMID: 31844870]
[78]
Wen, H.; Tang, B.; Stewart, A.J.; Tao, Y.; Shao, Y.; Cui, Y.; Yue, H.; Pei, J.; Liu, Z.; Mei, L.; Yu, R.; Jiang, L. Erythritol attenuates postprandial blood glucose by inhibiting α-glucosidase. J. Agric. Food Chem., 2018, 66(6), 1401-1407.
[http://dx.doi.org/10.1021/acs.jafc.7b05033] [PMID: 29361825]
[79]
Singh, A.; Singh, K.; Sharma, A.; Kaur, K.; Kaur, K.; Chadha, R.; Bedi, P.M.S. Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. J. Mol. Struct., 2023, 1281, 135115.
[http://dx.doi.org/10.1016/j.molstruc.2023.135115]
[80]
Singh, A.; Singh, K.; Kaur, K.; Sharma, A.; Mohana, P.; Prajapati, J.; Kaur, U.; Goswami, D.; Arora, S.; Chadha, R.; Bedi, P.M.S. Discovery of triazole tethered thymol/carvacrol-coumarin hybrids as new class of α-glucosidase inhibitors with potent in vivo antihyperglycemic activities. Eur. J. Med. Chem., 2024, 263, 115948.
[http://dx.doi.org/10.1016/j.ejmech.2023.115948] [PMID: 37984299]
[81]
Nazir, M.; Abbasi, M.A. Aziz-ur-Rehman; Siddiqui, S.Z.; Khan, K.M.; Kanwal; Salar, U.; Shahid, M.; Ashraf, M.; Arif Lodhi, M.; Ali Khan, F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg. Chem., 2018, 81, 253-263.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.010] [PMID: 30153590]
[82]
Kumar, P.; Kumar, A.; Maziyuna, F.A.; Bhat, N.; Mulukuri, N.V.L.S. Design, synthesis, and antidiabetic evaluation of coumarin fused oxadiazole derivatives. Rasayan J. Chem., 2022, 15(4), 2551-2558.
[http://dx.doi.org/10.31788/RJC.2022.1547040]
[83]
Taha, M.; Ismail, N.H.; Imran, S.; Rokei, M.Q.B.; Saad, S.M.; Khan, K.M. Synthesis of new oxadiazole derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4155-4162.
[http://dx.doi.org/10.1016/j.bmc.2015.06.060] [PMID: 26183542]
[84]
Iftikhar, M. Shahnawaz; Saleem, M.; Riaz, N.; Aziz-ur-Rehman; Ahmed, I.; Rahman, J.; Ashraf, M.; Sharif, M.S.; Khan, S.U.; Htar, T.T. A novel five‐step synthetic route to 1,3,4‐oxadiazole derivatives with potent α‐glucosidase inhibitory potential and their in silico studies. Arch. Pharm. (Weinheim), 2019, 352(12), 1900095.
[http://dx.doi.org/10.1002/ardp.201900095] [PMID: 31544284]
[85]
Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, K.M. Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem., 2017, 74, 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.009] [PMID: 28750203]
[86]
Vijayan, M.; Manju, P. In silico design, synthesis, and anti-diabetic evaluation of benzothiazole substituted oxadiazole derivatives. Asian J. Pharm. Clin. Res., 2021, 15(1), 1-7.
[87]
Abedinifar, F.; Mohammadi-Khanaposhtani, M.; Asemanipoor, N.; Mojtabavi, S.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Synthesis and biological evaluation of a new series of benzofuran‐1,3,4‐oxadiazole containing 1,2,3‐triazole‐acetamides as potential α‐glucosidase inhibitors. J. Biochem. Mol. Toxicol., 2021, 35(4), e22688.
[http://dx.doi.org/10.1002/jbt.22688] [PMID: 33368871]
[88]
Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci, 2016, 5(4), 1-8.
[89]
P, S.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement. Altern. Med., 2011, 11(1), 5.
[http://dx.doi.org/10.1186/1472-6882-11-5] [PMID: 21251279]
[90]
Kaur, N.; Kumar, V.; Nayak, S.K.; Wadhwa, P.; Kaur, P.; Sahu, S.K. Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem. Biol. Drug Des., 2021, 98(4), 539-560.
[http://dx.doi.org/10.1111/cbdd.13909] [PMID: 34173346]
[91]
Butterworth, P.J.; Warren, F.J.; Ellis, P.R. Human α‐amylase and starch digestion: An interesting marriage. Stärke, 2011, 63(7), 395-405.
[http://dx.doi.org/10.1002/star.201000150]
[92]
Peyrot des Gachons, C.; Breslin, P.A.S. Salivary amylase: Digestion and metabolic syndrome. Curr. Diab. Rep., 2016, 16(10), 102.
[http://dx.doi.org/10.1007/s11892-016-0794-7] [PMID: 27640169]
[93]
Hemlata, B.; Pornima, G.; Tukaram, K.; Pankaj, B. In vitro anti-amylase activity of some Indian dietary spices. J. Appl. Biol. Biotechnol., 2019, 7(4), 70-74.
[http://dx.doi.org/10.7324/JABB.2019.704011]
[94]
Hamdani, S.S.; Khan, B.A.; Ahmed, M.N.; Hameed, S.; Akhter, K.; Ayub, K.; Mahmood, T. Synthesis, crystal structures, computational studies and α-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. J. Mol. Struct., 2020, 1200, 127085.
[http://dx.doi.org/10.1016/j.molstruc.2019.127085]
[95]
Khan, B.A.; Hamdani, S.S.; Ahmed, M.N.; Hameed, S.; Ashfaq, M.; Shawky, A.M.; Ibrahim, M.A.A.; Sidhom, P.A. Synthesis, X-ray diffraction analysis, quantum chemical studies and α -amylase inhibition of probenecid derived S -alkylphthalimide-oxadiazole-benzenesulfonamide hybrids. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1464-1478.
[http://dx.doi.org/10.1080/14756366.2022.2078969] [PMID: 35616297]
[96]
Radia, A.J.; Lalpara, J.N.; Modasiya, I.J.; Dubal, G.G. Design and synthesis of novel 1,3,4‐oxadiazole based azaspirocycles catalyzed by NAI under mild condition and evaluated their antidiabetic and antibacterial activities. J. Heterocycl. Chem., 2021, 58(2), 612-621.
[http://dx.doi.org/10.1002/jhet.4200]
[97]
Kavitha, S.; Kannan, K.; Gnanavel, S. Synthesis, characterization and biological evaluation of novel 2,5 substituted-1,3,4 oxadiazole derivatives. Saudi Pharm. J., 2017, 25(3), 337-345.
[http://dx.doi.org/10.1016/j.jsps.2016.07.004] [PMID: 28344487]
[98]
Bukhari, A.; Nadeem, H.; Imran, M.; Muhammad, S.A. Novel oxadiazole derivatives as potent inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, in vitro evaluation, and molecular docking studies. Iran. J. Basic Med. Sci., 2021, 24(12), 1632-1642.
[PMID: 35432813]
[99]
Zhang, Y.; Huang, N.; Yan, F.; Jin, H.; Zhou, S.; Shi, J.; Jin, F. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav. Brain Res., 2018, 339, 57-65.
[http://dx.doi.org/10.1016/j.bbr.2017.11.015] [PMID: 29158110]
[100]
Wada, A. GSK-3 inhibitors and insulin receptor signaling in health, disease, and therapeutics. Front. Biosci., 2009, Volume 14, 1558-1570.
[http://dx.doi.org/10.2741/3324] [PMID: 19273146]
[101]
Qamar, S.; Hussain, K.; Bukhar, N.I.; Siddique, S.Z. Aziz-ur-Rehman; Abbas, M.A.; Parveen, S.; Latif, A.; Qamar, A.; Ali, E.; Shehzadi, N.; Islam, M.; Naheed, S. Evaluating the antidiabetic and antioxidant properties of 5- benzyl-1,3,4-oxadiazole-2-thiol. Trop. J. Pharm. Res., 2021, 18(5), 1095-1100.
[http://dx.doi.org/10.4314/tjpr.v18i5.26]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy