Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Evaluation of Moringa Oleifera Leaf Extract for its In vitro Antibacterial Properties, Mechanism of Action, and In vivo Corneal Ulcer Healing Effects in Rabbits’ Eyes

In Press, (this is not the final "Version of Record"). Available online 17 April, 2024
Author(s): Ayesha Bibi, Meenakshi Dhanawat, Shahbaz Aman, Samrat Chauhan, Rishabh Chalotra, Somdutt Mujwar, Narinder Kaur, Chamasse Homary Maivagna and Sumeet Gupta*
Published on: 17 April, 2024

DOI: 10.2174/0115672018275561240228065755

Price: $95

Abstract

M. oleifera is the most adapted tree species in different medicinal eco-systems and has resilience against climate changes. This multiple-use tree provides healthy foods, snacks, honey, and fuel. Besides this, it has immense promising applicationsby offering antimicrobial and antibacterial activities for targeted uses. This validates the court of Hippocrates that let food be the medicine and medicine be the food for which moringa qualifies. In view of this, the antioxidant and in vitro antibacterial potency of the hydro-ethanolic extract of M. oleifera was evaluated on clinically isolated multidrug-resistant strains of Staphylococcus aureus. Furthermore, in vivo, the healing response of M. oleifera extract was analysed on corneal ulcers induced in rabbit eyes infected with methicillin-resistant Staphylococcus aureus. TheM. oleifera extract exhibited exponential antioxidant activity. In-vitro antibacterial activity was evaluated by agar well diffusion assay showing zone of inhibition ranging from 11.05±0.36 to 20±0.40 mm at concentrations of 20, 40, 80, and 160 mg/ml, whereas, in our finding, no zone of inhibition was observed below 20 mg/ml concentration, which indicated that there is threshold limit below which the antibacterial activity of M. oleifera extract is not observed. Furthermore, continuous application of 3% and 5% M. oleifera extract (eye drop) four times a day for 14 consecutive days showed a significant healing response of the eyes of rabbits with corneal ulcers. These results suggest that M. oleifera extract could be a viable alternative to existing antibacterial therapies for corneal ulcers. Additionally, there is a possibility of commercial formulation of M. oleifera extract in the form of deliverable pharmaceutical products; therefore, it should be explored further.

[1]
Byrd, L.B.; Martin, N. Corneal Ulcer; StatPearls Publishing, 2022.
[2]
Ung, L.; Acharya, N.R.; Agarwal, T.; Alfonso, E.C.; Bagga, B.; Bispo, P.J.M.; Burton, M.J.; Dart, J.K.G.; Doan, T.; Fleiszig, S.M.J.; Garg, P.; Gilmore, M.S.; Gritz, D.C.; Hazlett, L.D.; Iovieno, A.; Jhanji, V.; Kempen, J.H.; Lee, C.S.; Lietman, T.M.; Margolis, T.P.; McLeod, S.D.; Mehta, J.S.; Miller, D.; Pearlman, E.; Prajna, L.; Prajna, N.V.; Seitzman, G.D.; Shanbhag, S.S.; Sharma, N.; Sharma, S.; Srinivasan, M.; Stapleton, F.; Tan, D.T.H.; Tandon, R.; Taylor, H.R.; Tu, E.Y.; Tuli, S.S.; Vajpayee, R.B.; Van Gelder, R.N.; Watson, S.L.; Zegans, M.E.; Chodosh, J. Infectious corneal ulceration: A proposal for neglected tropical disease status. Bull. World Health Organ., 2019, 97(12), 854-856.
[http://dx.doi.org/10.2471/BLT.19.232660] [PMID: 31819296]
[3]
Ting, D.S.J.; Ho, C.S.; Deshmukh, R.; Said, D.G.; Dua, H.S. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye, 2021, 35(4), 1084-1101.
[http://dx.doi.org/10.1038/s41433-020-01339-3] [PMID: 33414529]
[4]
Abouzeid, A.I.; Eissa, S.A.E.; Aboelnour, A.E.; Awad, A.M.R. Bacterial and fungal causes of infectious keratitis among patients attending Research Institute of Ophthalmology. Bull. Natl. Res. Cent., 2020, 44(1), 72.
[http://dx.doi.org/10.1186/s42269-020-00330-y]
[5]
Lee, J.W.; Somerville, T.; Kaye, S.B.; Romano, V. Staphylococcus aureus keratitis: Incidence, pathophysiology, risk factors and novel strategies for treatment. J. Clin. Med., 2021, 10(4), 758.
[http://dx.doi.org/10.3390/jcm10040758] [PMID: 33668633]
[6]
Egrilmez, S.; Yildirim-Theveny, Ş. Treatment-resistant bacterial keratitis: Challenges and solutions. Clin. Ophthalmol., 2020, 14, 287-297.
[http://dx.doi.org/10.2147/OPTH.S181997] [PMID: 32099313]
[7]
Ahmed, M.S.; Khan, I.J.; Aman, S.; Chauhan, S.; Kaur, N.; Shriwastav, S.; Goel, K.; Saini, M.; Dhankar, S.; Singh, T.G.; Dev, J.; Mujwar, S. Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. J. Exp. Biol. Agric. Sci., 2023, 11(2), 380-393.
[http://dx.doi.org/10.18006/2023.11(2).380.393]
[8]
Shriwastav, S.; Kaur, N.; Bala, R.; Dev, J.; Hassan, M.; Harshita; Khatana, C.; Mittal, D.; Aman, S.; Chauhan, J. In vitro antibacterial potency of leaf extract of moringa oleifera against NFGNB isolated from UTI patients and their plasmid profiling. J. Pure Appl. Microbiol., 2023, 17(1), 222-230.
[http://dx.doi.org/10.22207/JPAM.17.1.11]
[9]
Dhongade, H.J.; Paikra, B.K.; Gidwani, B. Phytochemistry and pharmacology of moringa oleifera lam. J. Pharmacopunct., 2017, 20(3), 194-200.
[http://dx.doi.org/10.3831/KPI.2017.20.022] [PMID: 30087795]
[10]
Kumar, S.; Bhattacharya, A.; Tiwari, P.; Sahu, P.K. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J. Pharm. Bioallied Sci., 2018, 10(4), 181-191.
[http://dx.doi.org/10.4103/JPBS.JPBS_126_18] [PMID: 30568375]
[11]
Padayachee, B.; Baijnath, H. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. S. Afr. J. Bot., 2020, 129, 304-316.
[http://dx.doi.org/10.1016/j.sajb.2019.08.021]
[12]
Batiha, G.E.S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[13]
Zhao, L.; Wang, H.; Du, X. The therapeutic use of quercetin in ophthalmology: Recent applications. Biomed. Pharmacother., 2021, 137, 111371.
[http://dx.doi.org/10.1016/j.biopha.2021.111371] [PMID: 33561647]
[14]
Cao, S.; Wan, C.; Yu, Y.; Zhou, S.; Liu, W.; Tian, S. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Pharmacogn. Mag., 2011, 7(25), 40-45.
[http://dx.doi.org/10.4103/0973-1296.75900] [PMID: 21472078]
[15]
Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H.M. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes, 2015, 8(1), 621.
[http://dx.doi.org/10.1186/s13104-015-1618-6] [PMID: 26518275]
[16]
Baldisserotto, A.; Barbari, R.; Tupini, C.; Buzzi, R.; Durini, E.; Lampronti, I.; Manfredini, S.; Baldini, E.; Vertuani, S. Multifunctional profiling of moringa oleifera leaf extracts for topical application: A comparative study of different collection time. Antioxidants, 2023, 12(2), 411.
[http://dx.doi.org/10.3390/antiox12020411] [PMID: 36829968]
[17]
Aman, S.; Mittal, D.; Shriwastav, S.; Tuli, H.S.; Chauhan, S.; Singh, P.; Sharma, S.; Saini, R.V.; Kaur, N.; Saini, A.K. Prevalence of multidrug-resistant strains in device associated nosocomial infection and their in vitro killing by nanocomposites. Ann. Med. Surg., 2022, 78, 103687.
[http://dx.doi.org/10.1016/j.amsu.2022.103687] [PMID: 35734711]
[18]
Chalotra, R.; Dhanawat, M.; Chauhan, S.; Mujwar, S.; and Gupta, S. Evaluation of Iris Kashmiriana Baker plant extracts against nociception and rheumatoid arthritis in experimental rats: A concept proof by In-silico model. J. Ethnopharmacol., 2024, 321, 117498.
[http://dx.doi.org/10.1016/j.jep.2023.117498]
[19]
Aman, S.; Kaur, N.; Mittal, D.; Sharma, D.; Shukla, K.; Singh, B.; Sharma, A.; Siwal, S.S.; Thakur, V.K.; Joshi, H.; Gupta, R.; Saini, R.V.; Saini, A.K. Novel biocompatible green silver nanoparticles efficiently eliminates multidrug resistant nosocomial pathogens and mycobacterium species. Indian J. Microbiol., 2023, 63(1), 73-83.
[http://dx.doi.org/10.1007/s12088-023-01061-0] [PMID: 37188239]
[20]
Chauhan, S.; Kaur, N.; Saini, A.K.; Aman, S.; Chauhan, J.; Kumar, H. Colistin resistant gram-negative bacteria isolated from various clinical samples in north indian tertiary care center. Int. J. Pharmaceut. Quality Assura., 2022, 13(3), 15-23.
[http://dx.doi.org/10.25258/ijpqa.13.3.18]
[21]
Kaur, N.; Shriwastav, S.; Dev, J.; Aman, S.; Hassan, M.; Kumar, A.; Bala, R.; Singh, M. Mechanistic insights of Euphorbia milii des moul mediated biocompatible and non-cytotoxic, antimicrobial nanoparticles: An answer to multidrug resistant bacteria. World J. Microbiol. Biotechnol., 2023, 39(8), 210.
[http://dx.doi.org/10.1007/s11274-023-03653-w] [PMID: 37246185]
[22]
Huang, Y.; Meek, K.M.; Ho, M.W.; Paterson, C.A. Anaylsis of birefringence during wound healing and remodeling following alkali burns in rabbit cornea. Exp. Eye Res., 2001, 73(4), 521-532.
[http://dx.doi.org/10.1006/exer.2001.1057] [PMID: 11825023]
[23]
Mujwar, S. Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors. Biomed. Biotechnol. Res. J., 2021, 5(4), 446.
[http://dx.doi.org/10.4103/bbrj.bbrj_56_21]
[24]
Shah, K.; Mujwar, S. Delineation of a novel non-steroidal anti-inflammatory drugs derivative using molecular docking and pharmacological assessment. Indian J. Pharm. Sci., 2022, 84(3)
[http://dx.doi.org/10.36468/pharmaceutical-sciences.959]
[25]
Kaur, A.; Mujwar, S.; Adlakha, N. In-silico analysis of riboswitch of Nocardia farcinica for design of its inhibitors and pharmacophores. Int. J. Comput. Biol. Drug Des., 2016, 9(3), 261.
[http://dx.doi.org/10.1504/IJCBDD.2016.078278]
[26]
Mujwar, S.; Shah, K.; Gupta, J.K.; Gour, A. Docking based screening of curcumin derivatives: A novel approach in the inhibition of tubercular DHFR. Int. J. Comput. Biol. Drug Des., 2021, 14(4), 297.
[http://dx.doi.org/10.1504/IJCBDD.2021.118830]
[27]
Shah, K.; Mujwar, S.; Krishna, G.; Gupta, J.K. Computational design and biological depiction of novel naproxen derivative. Assay Drug Dev. Technol., 2020, 18(7), 308-317.
[http://dx.doi.org/10.1089/adt.2020.977] [PMID: 32749851]
[28]
Mujwar, S.; Tripathi, A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model., 2022, 28(7), 193.
[http://dx.doi.org/10.1007/s00894-022-05185-w] [PMID: 35716240]
[29]
Mujwar, S.; Harwansh, R.K. In silico bioprospecting of taraxerol as a main protease inhibitor of SARS-CoV-2 to develop therapy against COVID-19. Struct. Chem., 2022, 33(5), 1517-1528.
[http://dx.doi.org/10.1007/s11224-022-01943-x] [PMID: 35502321]
[30]
Agrawal, N.; Mujwar, S.; Goyal, A.; Gupta, J.K. Phytoestrogens as potential antiandrogenic agents against prostate cancer: An in silico analysis. Lett. Drug Des. Discov., 2022, 19(1), 69-78.
[http://dx.doi.org/10.2174/1570180818666210813121431]
[31]
Pradhan, P.; Soni, N.; Chaudhary, L.; Mujwar, S.; Pardasani, K.R. “In-silico prediction of riboswitches and design of their potent inhibitors for H1N1, H2N2 and H3N2 strains of influenza virus”. Biosci. Biotechnol. Res. Asia, 2015, 12(3), 2173-2186.
[http://dx.doi.org/10.13005/bbra/1889]
[32]
Kciuk, M.; Mujwar, S.; Rani, I.; Munjal, K.; Gielecińska, A.; Kontek, R.; Shah, K. Computational bioprospecting guggulsterone against ADP ribose phosphatase of SARS-CoV-2. Molecules, 2022, 27(23), 8287.
[http://dx.doi.org/10.3390/molecules27238287] [PMID: 36500379]
[33]
Rani, I. Anju goyal role of GSK3 (Glycogen Synthase Kinase 3) as tumor promoter and tumor suppressor-A review. Plant Arch., 2019, 19, 1360-1365.
[34]
Rani, I.; Goyal, A.; Sharma, M. Computational design of phosphatidylinositol 3-kinase inhibitors. Assay Drug Dev. Technol., 2022, 20(7), 317-337.
[http://dx.doi.org/10.1089/adt.2022.057] [PMID: 36269231]
[35]
Shinu, P.; Sharma, M.; Gupta, G.L.; Mujwar, S.; Kandeel, M.; Kumar, M.; Nair, A.B.; Goyal, M.; Singh, P.; Attimarad, M.; Venugopala, K.N.; Nagaraja, S.; Telsang, M.; Aldhubiab, B.E.; Morsy, M.A. Computational design, synthesis, and pharmacological evaluation of naproxen-guaiacol chimera for gastro-sparing anti-inflammatory response by selective COX2 inhibition. Molecules, 2022, 27(20), 6905.
[http://dx.doi.org/10.3390/molecules27206905] [PMID: 36296501]
[36]
Gupta, S.M.; Behera, A.; Jain, N.K.; Kumar, D.; Tripathi, A.; Tripathi, S.M.; Mujwar, S.; Patra, J.; Negi, A. Indene-derived hydrazides targeting acetylcholinesterase enzyme in alzheimer’s: Design, synthesis, and biological evaluation. Pharmaceutics, 2022, 15(1), 94.
[http://dx.doi.org/10.3390/pharmaceutics15010094] [PMID: 36678724]
[37]
Er-rajy, M.; Fadili, M.E.; Mujwar, S.; Lenda, F.Z.; Zarougui, S.; Elhallaoui, M. QSAR, molecular docking, and molecular dynamics simulation-based design of novel anti-cancer drugs targeting thioredoxin reductase enzyme. Struct. Chem., 2023, 34(4), 1527-1543.
[http://dx.doi.org/10.1007/s11224-022-02111-x]
[38]
Kciuk, M.; Mujwar, S.; Szymanowska, A.; Marciniak, B.; Bukowski, K.; Mojzych, M.; Kontek, R. Preparation of novel pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides and their experimental and computational biological studies. Int. J. Mol. Sci., 2022, 23(11), 5892.
[http://dx.doi.org/10.3390/ijms23115892] [PMID: 35682571]
[39]
Er-rajy, M.; El fadili, M.; Mujwar, S.; Zarougui, S.; Elhallaoui, M. Design of novel anti-cancer drugs targeting TRKs inhibitors based 3D QSAR, molecular docking and molecular dynamics simulation. J. Biomol. Struct. Dyn., 2023, 41(21), 11657-11670.
[http://dx.doi.org/10.1080/07391102.2023.2170471] [PMID: 36695085]
[40]
Gupta, N.; Qayum, A.; Singh, S.; Mujwar, S.; Sangwan, P.L. Isolation, cytotoxicity evaluation, docking, ADMET and drug likeness studies of secondary metabolites from the stem bark of anthocephalus cadamba (Roxb.). ChemistrySelect, 2022, 7(43), e202202950.
[http://dx.doi.org/10.1002/slct.202202950]
[41]
Gupta, N.; Qayum, A.; Singh, S.; Mujwar, S.; Sangwan, P.L. Isolation, anticancer evaluation, molecular docking, drug likeness and ADMET studies of secondary metabolites from psoralea corylifolia seeds. ChemistrySelect, 2022, 7(41), e202202115.
[http://dx.doi.org/10.1002/slct.202202115]
[42]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The protein data bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(6), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[43]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[44]
Pareek, A.; Pant, M.; Gupta, M.M.; Kashania, P.; Ratan, Y.; Jain, V.; Pareek, A.; Chuturgoon, A.A. Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. Int. J. Mol. Sci., 2023, 24(3), 2098.
[http://dx.doi.org/10.3390/ijms24032098] [PMID: 36768420]
[45]
Islam, Z.; Islam, S.M.R.; Hossen, F.; Mahtab-ul-Islam, K.; Hasan, M.R.; Karim, R. Moringa oleifera is a prominent source of nutrients with potential health benefits. Int. J. Food Sci., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6627265] [PMID: 34423026]
[46]
Enan, G.; Al-Mohammadi, A.R.; Mahgoub, S.; Abdel-Shafi, S.; Askar, E.; Ghaly, M.F.; Taha, M.A.; El-Gazzar, N. Inhibition of staphylococcus aureus LC 554891 by Moringa oleifera seed extract either singly or in combination with antibiotics. Molecules, 2020, 25(19), 4583.
[http://dx.doi.org/10.3390/molecules25194583] [PMID: 33036497]
[47]
Fouad, E.A.; Abu Elnaga, A.S.M.; Kandil, M.M. Antibacterial efficacy of Moringa oleifera leaf extract against pyogenic bacteria isolated from a dromedary camel (Camelus dromedarius) abscess. Vet. World, 2019, 12(6), 802-808.
[http://dx.doi.org/10.14202/vetworld.2019.802-808] [PMID: 31439997]
[48]
Aramă, V. Topical antibiotic therapy in eye infections - myths and certainties in the era of bacterial resistance to antibiotics. Rom. J. Ophthalmol., 2020, 64(3), 245-260.
[http://dx.doi.org/10.22336/rjo.2020.42] [PMID: 33367158]
[49]
Josephine Ozioma, E-O.; Antoinette Nwamaka Chinwe, O. Herbal medicines in african traditional medicine. In: Herbal Medicine; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.80348]
[50]
Wasfy, T.; Atiba, A.; Ghoniem, A.; Abdo, W.; Zayed, T.; Shokre, M. Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats. Clin. Ophthalmol., 2015, 2015, 2019.
[http://dx.doi.org/10.2147/OPTH.S90778]
[51]
Komariah, C.; Salsabila, R.; Hilda Hapsari, A.; Rizky Kurnia Putri, S.; Febianti, Z. The anti-inflammatory effect of onion extract in rabbit with corneal ulcer. Res. J. Pharma. Technol., 2021, 1854–1858, 1854-1858.
[http://dx.doi.org/10.52711/0974-360X.2021.00328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy