Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Hemisynthesis of Pentacyclic Triterpenoids from Diospyros foxworthyi with In vitro and In silico Anti-malarial Evaluation

Author(s): Muhammad Solehin Abd Ghani, Nur Ain Latifhaa Abu Bakar, Arba Pramundita Ramadani, Arde Toga Nugraha, Khalijah Binti Awang, Mohammad Tasyriq Che Omar, Unang Supratman, Ezatul Ezleen Kamarulzaman and Mohamad Nurul Azmi Mohamad Taib*

Volume 28, Issue 10, 2024

Published on: 16 April, 2024

Page: [799 - 814] Pages: 16

DOI: 10.2174/0113852728294047240315063815

Price: $65

Abstract

A total of twelve pentacyclic triterpenoid derivatives based on betulin (1) and lupeol (2) scaffolds isolated from Diospyros foxworthyi were hemisynthesized by acylation or acetylation reactions with appropriate acid chloride or acetic anhydride. The structures of the hemisynthesised compounds were characterised by means of FT-IR, 1D- and 2D-NMR, as well as HRMS analysis. These compounds were assayed for in vitro anti-malarial studies by inhibition of β-hematin formation assay with chloroquine as a positive control. Compounds 1d and 2f showed the strongest potential as β-hematin formation inhibitors with IC50 values of 6.66 ± 1.36 and 11.89 ± 0.15 μM, respectively, compared with the positive control (chloroquine; IC50 = 37.50 ± 0.60 μM). In silico molecular docking simulations were performed using AutoDock Vina for compounds 1d and 2f to investigate the binding interactions and free energy of binding (FEB) with the hemozoin supercell crystal structure (CCDC number: XETXUP01). The findings revealed several hydrophobic interaction modes between the 1d, 2f and hemozoin, with calculated FEBs of -8.4 ± 0.2 and -8.9 ± 0.0 kcal mol-1, indicating strong and favourable interactions.

« Previous
Graphical Abstract

[1]
Cox, F.E.G. History of the discovery of the malaria parasites and their vectors. Parasit. Vectors, 2010, 3(1), 5.
[http://dx.doi.org/10.1186/1756-3305-3-5] [PMID: 20205846]
[2]
Basu, S.; Sahi, P.K. Malaria: An update. Indian J. Pediatr., 2017, 84(7), 521-528.
[http://dx.doi.org/10.1007/s12098-017-2332-2] [PMID: 28357581]
[3]
World Health Organization (WHO). World Malaria report 2022. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
[4]
Roser, M. Malaria: One of the leading causes of child deaths, but progress is possible and you can contribute to it. Available from: https://ourworldindata.org/malaria-introduction
[5]
Wiwanitkit, V. Concurrent malaria and dengue infection: A brief summary and comment. Asian Pac. J. Trop. Biomed., 2011, 1(4), 326-327.
[http://dx.doi.org/10.1016/S2221-1691(11)60053-1] [PMID: 23569785]
[6]
Burns, W.R. East meets West: How China almost cured malaria. Endeavour, 2008, 32(3), 101-106.
[http://dx.doi.org/10.1016/j.endeavour.2008.07.001] [PMID: 18691761]
[7]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J., 2011, 10(1), 144.
[http://dx.doi.org/10.1186/1475-2875-10-144]
[8]
Tisnerat, C.; Klimpt, D.A.; Gosselet, F.; Sonnet, P. Antimalarial drug discovery: From quinine to the most recent promising clinical drug candidates. Curr. Med. Chem., 2022, 29(19), 3326-3365.
[http://dx.doi.org/10.2174/0929867328666210803152419] [PMID: 34344287]
[9]
Moore, D.V.; Lanier, J.E. Observations on two Plasmodium falciparum infections with an abnormal response to chloroquine. Am. J. Trop. Med. Hyg., 1961, 10(1), 5-9.
[http://dx.doi.org/10.4269/ajtmh.1961.10.5] [PMID: 13772281]
[10]
Su, X.Z.; Miller, L.H. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci. China Life Sci., 2015, 58(11), 1175-1179.
[http://dx.doi.org/10.1007/s11427-015-4948-7] [PMID: 26481135]
[11]
World Health Organization (WHO). WHO guidelines for Malaria, 14 March 2023 (No. WHO/UCN/GMP/ 2023.01), 2023. Available from: https://www.mmv.org/sites/default/files/content/document/WHO-UCN-GMP-2023.01-eng.pdf
[12]
Oboh, M.A.; Ndiaye, D.; Antony, H.A.; Badiane, A.S.; Singh, U.S.; Ali, N.A.; Bharti, P.K.; Das, A. Status of artemisinin resistance in malaria parasite Plasmodium falciparum from molecular analyses of the Kelch13 gene in Southwestern Nigeria. BioMed Res. Int., 2018, 2018(1), 1-5.
[http://dx.doi.org/10.1155/2018/2305062] [PMID: 30402465]
[13]
Menard, D.; Dondorp, A. Antimalarial drug resistance: A threat to malaria elimination. Cold Spring Harb. Perspect. Med., 2017, 7(7), a025619.
[http://dx.doi.org/10.1101/cshperspect.a025619] [PMID: 28289248]
[14]
Assefa, A.; Fola, A.A.; Tasew, G. Emergence of Plasmodium falciparum strains with artemisinin partial resistance in East Africa and the Horn of Africa: Is there a need to panic? Malar. J., 2024, 23(1), 34.
[http://dx.doi.org/10.1186/s12936-024-04848-8] [PMID: 38273360]
[15]
Uzor, P.F. Alkaloids from plants with antimalarial activity: A review of recent studies. Evid. Based Complement. Alternat. Med., 2020, 2020(1), 1-17.
[http://dx.doi.org/10.1155/2020/8749083] [PMID: 32104196]
[16]
Huy, N.T.; Uyen, D.T.; Maeda, A.; Trang, D.T.X.; Oida, T.; Harada, S.; Kamei, K. Simple colorimetric inhibition assay of heme crystallization for high-throughput screening of antimalarial compounds. Antimicrob. Agents Chemother., 2007, 51(1), 350-353.
[http://dx.doi.org/10.1128/AAC.00985-06] [PMID: 17088494]
[17]
Ntie-Kang, F.; Onguéné, P.A.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M. The potential of anti-malarial compounds derived from African medicinal plants, part II: A pharmacological evaluation of non-alkaloids and non-terpenoids. Malar. J., 2014, 13(1), 81.
[http://dx.doi.org/10.1186/1475-2875-13-81] [PMID: 24602358]
[18]
Atanasov, A.G.; Waltenberger, B.; Wenzig, P.E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[19]
Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects - A decade update. Tetrahedron, 2021, 78, 131801.
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[20]
Josh, B. Semisynthetic: A real word that saves lives. Available from: https://www.acsh.org/news/2016/12/28/semisynthetic-real-word-saves-lives-10605
[21]
Guo, Z. The modification of natural products for medical use. Acta Pharm. Sin. B, 2017, 7(2), 119-136.
[http://dx.doi.org/10.1016/j.apsb.2016.06.003] [PMID: 28303218]
[22]
POWO. Diospyros L.: Plants of the World Online: Kew Science. Available from: https://powo.science.kew.org/taxon/urn:lsid (Accessed on: August 10, 2023).
[23]
USDA. Agricultural research service, national plant germplasm system. Genus Diospyros L. Available from: https://npgsweb.ars-grin.gov/gringlobal/taxonomygenus ?id=3761 (Accessed on: August 10, 2023).
[24]
Wisetsai, A.; Schevenels, F.T.; Lekphrom, R. Chemical constituents and their biological activities from the roots of Diospyros filipendula. Nat. Prod. Res., 2021, 35(16), 2739-2743.
[http://dx.doi.org/10.1080/14786419.2019.1656630] [PMID: 31510803]
[25]
Aljohny, B.O.; Rauf, A.; Anwar, Y.; Naz, S.; Wadood, A. Anti-bacterial, anti-fungal, anti-oxidant, and docking studies of potential dinaphthodiospyrols from Diospyros lotus Linn roots. ACS Omega, 2021, 6(8), 5878-5885.
[http://dx.doi.org/10.1021/acsomega.0c06297] [PMID: 33681626]
[26]
Peyrat, L.A.; Eparvier, V.; Eydoux, C.; Guillemot, J.C.; Stien, D.; Litaudon, M. Chemical diversity and antiviral potential in the pantropical Diospyros genus. Fitoterapia, 2016, 112, 9-15.
[http://dx.doi.org/10.1016/j.fitote.2016.04.017] [PMID: 27126897]
[27]
Bawazeer, S.; Rauf, A. In vivo anti-inflammatory, analgesic, and sedative studies of the extract and naphthoquinone isolated from Diospyros kaki (persimmon). ACS Omega, 2021, 6(14), 9852-9856.
[http://dx.doi.org/10.1021/acsomega.1c00537] [PMID: 33869965]
[28]
Tameye, J.N.S.; Akak, M.C.; Happi, M.G.; Frese, M.; Stammler, H.G.; Neumann, B.; Lenta, N.B.; Sewald, N.; Nkengfack, A.E. Antioxidant norbergenin derivatives from the leaves of Diospyros gilletii De Wild (Ebenaceae). Phytochem. Lett., 2020, 36, 63-67.
[http://dx.doi.org/10.1016/j.phytol.2020.01.012]
[29]
The, N.S.; Thu, N.T.H.; Van, P.C.; Thanh, N.T.; Van, N.T.; Thi, L.T.A.; Thi, B.C. Cytotoxic naphthoquinones from Diospyros fleuryana leaves. Discovery Phytomedicine, 2020, 7(1), 42-46.
[http://dx.doi.org/10.15562/phytomedicine.2020.117]
[30]
Suchaichit, N.; Suchaichit, N.P.; Kanokmedhakul, K.; Boottanun, P.; Sermswan, R.W.; Moosophon, P.; Kanokmedhakul, S. A new cytotoxic plumbagin derivative from roots of Diospyros undulata. Nat. Prod. Res., 2021, 35(10), 1605-1612.
[http://dx.doi.org/10.1080/14786419.2019.1630120] [PMID: 31203668]
[31]
Loc, P.K. Diospyros foxworthyi. The IUCN red list of threatened species. Available from: https://www.iucnredlist.org/species/31455/9635939
[32]
Ghani, M.S.A.; Zakaria, N.; Arshad, M.N.; Kamarulzaman, E.E.; Awang, K.; Litaudon, M.; Taib, M.N.A.M. Pentacyclic triterpenoids isolated from Diospyros foxworthyi Bakh. (Ebenaceae) with its cytotoxic activity against HT-29 human colon cancer cell. Malays. J. Chem, 2022, 24(4), 19-25.
[33]
Khasanah, U.; Ariani, N.; Aprilia, Y.N.; Winarsih, S. Phytochemical screening and haem polymerisation inhibitory activity of root extract and fractions from Strychnos lucida R. Br. Pharmacogn. Commun., 2022, 12(2), 40-43.
[http://dx.doi.org/10.5530/pc.2022.2.10]
[34]
Azhari, A.; Harneti, D.; Wulandari, A.P.; Mulyani, Y.; Purbaya, S.; Sari, A.P.; Pratama, G.B.; Supratman, U.; Shiono, Y. Diketopiperazine cyclo-(S-Pro-R-Leu) produced by Periconia pseudobyssoides K5 isolated from Toona sureni (Meliaceae) and its heme polymerisation inhibition activity. Makara J. Sci., 2023, 27(1), 1-8.
[35]
Putri, R.R.; Pranowo, H.D.; Kurniawan, Y.S.; Fatimi, H.A.; Jumina, J. Synthesis of calix [4] resorcinarene derivatives as antimalarial agents through heme polymerisation inhibition assay. Indones. J. Chem., 2023, 23(4), 1032-1041.
[http://dx.doi.org/10.22146/ijc.81452]
[36]
Sullivan, D.J., Jr; Gluzman, I.Y.; Russell, D.G.; Goldberg, D.E. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci., 1996, 93(21), 11865-11870.
[http://dx.doi.org/10.1073/pnas.93.21.11865] [PMID: 8876229]
[37]
Wicht, K.J.; Mok, S.; Fidock, D.A. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu. Rev. Microbiol., 2020, 74(1), 431-454.
[http://dx.doi.org/10.1146/annurev-micro-020518-115546] [PMID: 32905757]
[38]
Basilico, N.; Pagani, E.; Monti, D.; Olliaro, P.; Taramelli, D. A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs. J. Antimicrob. Chemother., 1998, 42(1), 55-60.
[http://dx.doi.org/10.1093/jac/42.1.55] [PMID: 9700528]
[39]
Kannan, R.; Sahal, D.; Chauhan, V.S. Heme-artemisinin adducts are crucial mediators of the ability of artemisinin to inhibit heme polymerization. Chem. Biol., 2002, 9(3), 321-332.
[http://dx.doi.org/10.1016/S1074-5521(02)00117-5] [PMID: 11927257]
[40]
Pandey, A.V.; Tekwani, B.L.; Singh, R.L.; Chauhan, V.S. Artemisinin, an endoperoxide antimalarial, disrupts the hemoglobin catabolism and heme detoxification systems in malarial parasite. J. Biol. Chem., 1999, 274(27), 19383-19388.
[http://dx.doi.org/10.1074/jbc.274.27.19383] [PMID: 10383451]
[41]
Zakiah, M.; Syarif, R.A.; Mustofa, M.; Jumina, J.; Fatmasari, N.; Sholikhah, E.N. In vitro antiplasmodial, heme polymerisation, and cytotoxicity of hydroxyxanthone derivatives. J. Trop. Med., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/8866681] [PMID: 33859703]
[42]
O’Neill, P.M.; Bray, P.G.; Hawley, S.R.; Ward, S.A.; Park, B.K. 4-Aminoquinolines-past, present, and future; A chemical perspective. Pharmacol. Ther., 1998, 77(1), 29-58.
[http://dx.doi.org/10.1016/S0163-7258(97)00084-3] [PMID: 9500158]
[43]
Hameed, A.; Masood, S.; Hameed, A.; Ahmed, E.; Sharif, A.; Abdullah, M.I. Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent. J. Comput. Aided Mol. Des., 2019, 33(7), 677-688.
[http://dx.doi.org/10.1007/s10822-019-00210-2] [PMID: 31270655]
[44]
Auparakkitanon, S.; Wilairat, P.; Wilairat, P. Will the in situ activator(s) of artemisinin please stand up? Mol. Biochem. Parasitol., 2022, 248, 111461.
[http://dx.doi.org/10.1016/j.molbiopara.2022.111461] [PMID: 35122935]
[45]
Mamede, L.; Ledoux, A.; Jansen, O.; Frédérich, M. Natural phenolic compounds and derivatives as potential antimalarial agents. Planta Med., 2020, 86(9), 585-618.
[http://dx.doi.org/10.1055/a-1148-9000] [PMID: 32325510]
[46]
Gnoatto, S.C.; Susplugas, S.; Vechia, D.L.; Ferreira, T.B.; Klimpt, D.A.; Zimmer, K.R.; Demailly, C.; Nascimento, D.S.; Guillon, J.; Grellier, P.; Verli, H.; Gosmann, G.; Sonnet, P. Pharmacomodulation on the 3-acetylursolic acid skeleton: Design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl) piperazinyl] propyl}-3-O-acetylursolamide derivatives as antimalarial agents. Bioorg. Med. Chem., 2008, 16(2), 771-782.
[http://dx.doi.org/10.1016/j.bmc.2007.10.031] [PMID: 17967541]
[47]
Kalani, K.; Cheema, H.S.; Tripathi, H.; Khan, F.; Daroker, M.P.; Srivastava, S.K. QSAR-guided semi-synthesis and in vitro validation of antiplasmodial activity in ursolic acid derivatives. RSC Advances, 2015, 5(41), 32133-32143.
[http://dx.doi.org/10.1039/C4RA13709D]
[48]
Prakoso, N.I.; Zakiyah, Z.N.; Liyanita, A.; Rubiyanto, D.; Fitriastuti, D.; Ramadani, A.P.; Kamari, A.; Mow, S.K. Antimalarial activity of Andrographis paniculata Ness’s n-hexane extract and its major compounds. Open Chem., 2019, 17(1), 788-797.
[http://dx.doi.org/10.1515/chem-2019-0086]
[49]
Gorka, A.P.; de Dios, A.; Roepe, P.D. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J. Med. Chem., 2013, 56(13), 5231-5246.
[http://dx.doi.org/10.1021/jm400282d] [PMID: 23586757]
[50]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[51]
Eberhardt, J.; Martins, S.D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[52]
Veale, C.G.L.; Jayram, J.; Naidoo, S.; Laming, D.; Swart, T.; Olivier, T.; Akerman, M.P.; de Villiers, K.A.; Hoppe, H.C.; Jeena, V. Insights into structural and physicochemical properties required for β-hematin inhibition of privileged triarylimidazoles. RSC Med. Chem., 2020, 11(1), 85-91.
[http://dx.doi.org/10.1039/C9MD00468H] [PMID: 33479606]
[53]
Takahashi, O.; Masuda, Y.; Muroya, A.; Furuya, T. Theory of docking scores and its application to a customizable scoring function. SAR QSAR Environ. Res., 2010, 21(5-6), 547-558.
[http://dx.doi.org/10.1080/1062936X.2010.502299] [PMID: 20818587]
[54]
Arthur, D.E.; Uzairu, A. Molecular docking studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. J. King Saud Univ. Sci., 2019, 31(4), 1151-1166.
[http://dx.doi.org/10.1016/j.jksus.2019.01.011]
[55]
Abdul Kadir Jilani, N.; Natsuhisa, O.; Kaori, A.; Hasbullah, S.A. Synthesis, characterisation and binding evaluation of new 6-amidinoindole compound as the potential heme binder. Sains Malays., 2023, 52(4), 1231-1242.
[http://dx.doi.org/10.17576/jsm-2023-5204-15]
[56]
Ignatushchenko, M.V.; Winter, R.W.; Bächinger, H.P.; Hinrichs, D.J.; Riscoe, M.K. Xanthones as antimalarial agents; studies of a possible mode of action. FEBS Lett., 1997, 409(1), 67-73.
[http://dx.doi.org/10.1016/S0014-5793(97)00405-5] [PMID: 9199506]
[57]
Anuar, N.; Taib, M.M.N.A.; Hanafiah, M.K.; Shammary, A.A.A.K.; Shalan, N.S.N.; Humaidi, C.S.N.I.; Awang, K. Synthesis of 1ʹ-acetoxychavicol acetate (ACA) analogues and their inhibitory activities against methicillin-resistant Staphylococcus aureus. J. Physiol. Sci., 2020, 31(3), 101-111.
[http://dx.doi.org/10.21315/jps2020.31.3.8]
[58]
Butt, S.S.; Badshah, Y.; Shabbir, M.; Rafiq, M. Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinform. Biotechnol., 2020, 1(1), e14232.
[59]
Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst., 2011, 44(6), 1272-1276.
[http://dx.doi.org/10.1107/S0021889811038970]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy