Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Mini-Review Article

Apnea of Prematurity as Manifestation of Immature Control of Breathing: A Mini-Review

In Press, (this is not the final "Version of Record"). Available online 16 April, 2024
Author(s): Foti Randazzese Simone*, Toscano Fabio, Motta Federico, Costantino Serena, Leotta Michela, D’Amico Federica, Xerra Federica, Cafarella Giulia and Patané Eleonora Maria
Published on: 16 April, 2024

DOI: 10.2174/011573398X285318240408034132

Price: $95

Abstract

Apnea of prematurity is a common developmental defect affecting newborns, linked to the immaturity of systems involved in controlling breathing, particularly, central and peripheral chemoreceptors. Its severity, as well as its clinical manifestations, is inversely associated with gestational age. Symptoms of immature control of breathing progressively improve with age, with a resolution around 34-36 weeks of gestational age or 40-44 weeks in infants born at younger gestations. Prevalence seems to be higher in females and same-gender twins. The role of genetics was investigated: polymorphisms in genes encoding for adenosine receptors were associated with a higher risk of developing apnea of prematurity and bronchopulmonary dysplasia. Continuous monitoring of breathing patterns and vital signs is essential for the early detection of apnea episodes, while respiratory polygraphy shows limited utility. It is essential to treat newborns with apnea or other clinical manifestations of immature control of breathing to prevent the risk for long-term morbidities, such as bronchopulmonary dysplasia or neurodevelopmental impairment. There is no international consensus on the management of these premature infants. Nowadays, caffeine represents the first line of pharmacological treatment in association with noninvasive ventilatory support techniques. Furthermore, in the USA, doxapram is used in the case of refractory therapy with caffeine. Among nonpharmacological strategies, transfusion, prone positioning, tactile and olfactory stimulation, and kangaroo care were widely studied, but their efficacy is still unclear.

[1]
Erickson G, Dobson NR, Hunt CE. Immature control of breathing and apnea of prematurity: The known and unknown. J Perinatol 2021; 41(9): 2111-23.
[http://dx.doi.org/10.1038/s41372-021-01010-z] [PMID: 33712716]
[2]
Manti S, Galdo F, Parisi GF, et al. Long-term effects of bronchopulmonary dysplasia on lung function: A pilot study in preschool children’s cohort. J Asthma 2021; 58(9): 1186-93.
[http://dx.doi.org/10.1080/02770903.2020.1779289] [PMID: 32508174]
[3]
Williamson M, Poorun R, Hartley C. Apnoea of prematurity and neurodevelopmental outcomes: Current understanding and future prospects for research. Front Pediatr 2021; 9: 755677.
[http://dx.doi.org/10.3389/fped.2021.755677] [PMID: 34760852]
[4]
Manti S, Xerra F, Spoto G, et al. Neurotrophins: Expression of brain–lung axis development. Int J Mol Sci 2023; 24(8): 7089.
[http://dx.doi.org/10.3390/ijms24087089] [PMID: 37108250]
[5]
Di Rosa G, Nicotera AG, Lenzo P, Spanò M, Tortorella G. Long-term neuropsychiatric follow-up in hyperprolinemia type I. Psychiatr Genet 2014; 24(4): 172-5.
[http://dx.doi.org/10.1097/YPG.0000000000000037] [PMID: 24842239]
[6]
Di Rosa G, Cavallaro T, Alibrandi A, et al. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants. Early Hum Dev 2016; 101: 49-55.
[http://dx.doi.org/10.1016/j.earlhumdev.2016.04.012] [PMID: 27405056]
[7]
Spoto G, Saia MC, Amore G, et al. Neonatal seizures: An overview of genetic causes and treatment options. Brain Sci 2021; 11(10): 1295.
[http://dx.doi.org/10.3390/brainsci11101295] [PMID: 34679360]
[8]
Di Rosa G, Dicanio D, Nicotera AG, Mondello P, Cannavò L, Gitto E. Efficacy of intravenous hydrocortisone treatment in refractory neonatal seizures: A report on three cases. Brain Sci 2020; 10(11): 885.
[http://dx.doi.org/10.3390/brainsci10110885] [PMID: 33233684]
[9]
Poets CF. Apnea of prematurity: What can observational studies tell us about pathophysiology? Sleep Med 2010; 11(7): 701-7.
[http://dx.doi.org/10.1016/j.sleep.2009.11.016] [PMID: 20621558]
[10]
Di Fiore JM, Martin RJ, Gauda EB. Apnea of prematurity – Perfect storm. Respir Physiol Neurobiol 2013; 189(2): 213-22.
[http://dx.doi.org/10.1016/j.resp.2013.05.026] [PMID: 23727228]
[11]
Barrington K, Finer N. The natural history of the appearance of apnea of prematurity. Pediatr Res 1991; 29(4): 372-5.
[http://dx.doi.org/10.1038/pr.1991.72500] [PMID: 1852531]
[12]
Lorch SA, Srinivasan L, Escobar GJ. Epidemiology of apnea and bradycardia resolution in premature infants. Pediatrics 2011; 128(2): e366-73.
[http://dx.doi.org/10.1542/peds.2010-1567] [PMID: 21746726]
[13]
Di Fiore JM, Poets CF, Gauda E, Martin RJ, MacFarlane P. Cardiorespiratory events in preterm infants:Etiology and monitoring technologies. J Perinatol 2016; 36(3): 165-71.
[http://dx.doi.org/10.1038/jp.2015.164] [PMID: 26583939]
[14]
Amore G, Spoto G, Ieni A, et al. A focus on the cerebellum: From embryogenesis to an age-related clinical perspective. Front Syst Neurosci 2021; 15: 646052.
[http://dx.doi.org/10.3389/fnsys.2021.646052] [PMID: 33897383]
[15]
Spoto G, Amore G, Vetri L, et al. Cerebellum and prematurity: A Complex interplay between disruptive and dysmaturational events. Front Syst Neurosci 2021; 15: 655164.
[http://dx.doi.org/10.3389/fnsys.2021.655164] [PMID: 34177475]
[16]
Di Rosa G, Lenzo P, Parisi E, et al. Role of plasma homocysteine levels and MTHFR polymorphisms on IQ scores in children and young adults with epilepsy treated with antiepileptic drugs. Epilepsy Behav 2013; 29(3): 548-51.
[http://dx.doi.org/10.1016/j.yebeh.2013.09.034] [PMID: 24183735]
[17]
Marseglia LM, Nicotera A, Salpietro V, et al. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns. Oxid Med Cell Longev 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/543134] [PMID: 25829992]
[18]
Yang Y, He X, Zhang X, Chen P. Clinical characteristics of bronchopulmonary dysplasia in very preterm infants. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2023; 48(10): 1592-601.
[http://dx.doi.org/10.11817/j.issn.1672-7347.2023.230192]
[19]
Finer NN, Higgins R, Kattwinkel J, Martin RJ. Summary proceedings from the apnea-of-prematurity group. Pediatrics 2006; 117(3 Pt 2) (Suppl. 1): S47-51.
[http://dx.doi.org/10.1542/peds.2005-0620H] [PMID: 16777822]
[20]
Pergolizzi JV Jr, Fort P, Miller TL, LeQuang JA, Raffa RB. The epidemiology of apnoea of prematurity. J Clin Pharm Ther 2022; 47(5): 685-93.
[http://dx.doi.org/10.1111/jcpt.13587] [PMID: 35018653]
[21]
Bairam A, Laflamme N, Drolet C, Piedboeuf B, Shah PS, Kinkead R. Sex-based differences in apnoea of prematurity: A retrospective cohort study. Exp Physiol 2018; 103(10): 1403-11.
[http://dx.doi.org/10.1113/EP086996] [PMID: 29974527]
[22]
Nagraj VP, Lake DE, Kuhn L, Moorman JR, Fairchild KD. Central Apnea of Prematurity: Does sex matter? Am J Perinatol 2021; 38(13): 1428-34.
[http://dx.doi.org/10.1055/s-0040-1713405] [PMID: 32578186]
[23]
Bloch-Salisbury E, Hall MH, Sharma P, Boyd T, Bednarek F, Paydarfar D. Heritability of apnea of prematurity: A retrospective twin study. Pediatrics 2010; 126(4): e779-87.
[http://dx.doi.org/10.1542/peds.2010-0084] [PMID: 20837586]
[24]
Guo HL, Long JY, Hu YH, et al. Caffeine therapy for apnea of prematurity: Role of the circadian CLOCK Gene Polymorphism. Front Pharmacol 2022; 12: 724145.
[http://dx.doi.org/10.3389/fphar.2021.724145] [PMID: 35145399]
[25]
Poets CF, Rau GA, Neuber K, Gappa M, Seidenberg J. Determinants of lung volume in spontaneously breathing preterm infants. Am J Respir Crit Care Med 1997; 155(2): 649-53.
[http://dx.doi.org/10.1164/ajrccm.155.2.9032208] [PMID: 9032208]
[26]
Al-Matary A, Kutbi I, Qurashi M, et al. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin Perinatol 2004; 28(4): 264-72.
[http://dx.doi.org/10.1053/j.semperi.2004.08.003] [PMID: 15565786]
[27]
Bancalari EH, Jobe AH. The respiratory course of extremely preterm infants: A dilemma for diagnosis and terminology. J Pediatr 2012; 161(4): 585-8.
[http://dx.doi.org/10.1016/j.jpeds.2012.05.054] [PMID: 22785261]
[28]
Carroll JL. Developmental plasticity in respiratory control. J Appl Physiol (1985) 2003; 94(1): 1375-89.
[http://dx.doi.org/10.1152/japplphysiol.00809.2002]
[29]
Hertzberg T, Lagercrantz H. Postnatal sensitivity of the peripheral chemoreceptors in newborn infants. Arch Dis Child 1987; 62(12): 1238-41.
[http://dx.doi.org/10.1136/adc.62.12.1238] [PMID: 3435157]
[30]
Fleming PJ, Goncalves AL, Levine MR, Woollard S. The development of stability of respiration in human infants: Changes in ventilatory responses to spontaneous sighs. J Physiol 1984; 347(1): 1-16.
[http://dx.doi.org/10.1113/jphysiol.1984.sp015049] [PMID: 6707950]
[31]
Burggren WW, Reyna KS. Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respir Physiol Neurobiol 2011; 178(1): 13-21.
[http://dx.doi.org/10.1016/j.resp.2011.05.001] [PMID: 21596160]
[32]
Edwards BA, Sands SA, Skuza EM, Brodecky V, Stockx EM, Wilkinson MH. Maturation of respiratory control and the propensity for breathing instability in a sheep model. J Appl Physiol (1985) 2009; 107(5): 1463-71.
[http://dx.doi.org/10.1152/japplphysiol.00587.2009]
[33]
Delacourt C, Canet E, Bureau MA. Predominant role of peripheral chemoreceptors in the termination of apnea in maturing newborn lambs. J Appl Physiol 1996; 80(3): 892-8.
[http://dx.doi.org/10.1152/jappl.1996.80.3.892]
[34]
Fairchild K, Mohr M, Paget-Brown A, et al. Clinical associations of immature breathing in preterm infants: Part 1—central apnea. Pediatr Res 2016; 80(1): 21-7.
[http://dx.doi.org/10.1038/pr.2016.43] [PMID: 26959485]
[35]
Carroll JL, Kim I. Carotid chemoreceptor “resetting” revisited. Respir Physiol Neurobiol 2013; 185(1): 30-43.
[http://dx.doi.org/10.1016/j.resp.2012.09.002] [PMID: 22982216]
[36]
Katz-Salamon M, Jonsson B, Lagercrantz H. Blunted peripheral chemoreceptor response to hyperoxia in a group of infants with bronchopulmonary dysplasia. Pediatr Pulmonol 1995; 20(2): 101-6.
[http://dx.doi.org/10.1002/ppul.1950200209] [PMID: 8570299]
[37]
Søvik S, Lossius K. Development of ventilatory response to transient hypercapnia and hypercapnic hypoxia in term infants. Pediatr Res 2004; 55(2): 302-9.
[http://dx.doi.org/10.1203/01.PDR.0000106316.40213.DB] [PMID: 14630982]
[38]
Blanco CE, Dawes GS, Hanson MA, McCooke HB. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol 1984; 351(1): 25-37.
[http://dx.doi.org/10.1113/jphysiol.1984.sp015229] [PMID: 6747866]
[39]
Avery ME, Chernick V, Dutton RE, Permutt S. Ventilatory response to inspired carbon dioxide in infants and adults. J Appl Physiol 1963; 18(5): 895-903.
[http://dx.doi.org/10.1152/jappl.1963.18.5.895] [PMID: 14063257]
[40]
Berssenbrugge A, Dempsey J, Iber C, Skatrud J, Wilson P. Mechanisms of hypoxia-induced periodic breathing during sleep in humans. J Physiol 1983; 343(1): 507-26.
[http://dx.doi.org/10.1113/jphysiol.1983.sp014906] [PMID: 6417326]
[41]
Decima PFF, Fyfe KL, Odoi A, Wong FY, Horne RSC. The longitudinal effects of persistent periodic breathing on cerebral oxygenation in preterm infants. Sleep Med 2015; 16(6): 729-35.
[http://dx.doi.org/10.1016/j.sleep.2015.02.537] [PMID: 25959095]
[42]
Shannon DC, Carley Phd DW, Kelly DH. Periodic breathing: Quantitative analysis and clinical description. Pediatr Pulmonol 1988; 4(2): 98-102.
[http://dx.doi.org/10.1002/ppul.1950040207] [PMID: 3288944]
[43]
Prabhakar NR, Peng YJ, Kumar GK, Pawar A. Altered carotid body function by intermittent hypoxia in neonates and adults: Relevance to recurrent apneas. Respir Physiol Neurobiol 2007; 157(1): 148-53.
[http://dx.doi.org/10.1016/j.resp.2006.12.009] [PMID: 17317339]
[44]
Gozal D, Gozal E, Reeves SR, Lipton AJ. Gasping and autoresuscitation in the developing rat: Effect of antecedent intermittent hypoxia. J Appl Physiol(1985) 2002; 92(3): 1141-4.
[http://dx.doi.org/10.1152/japplphysiol.00972.2001]
[45]
Al-Kindy HA, Gélinas JF, Hatzakis G, Côté A. Risk factors for extreme events in infants hospitalized for apparent life-threatening events. J Pediatr 2009; 154(3): 332-7.
[http://dx.doi.org/10.1016/j.jpeds.2008.08.051]
[46]
MacFarlane PM, Ribeiro AP, Martin RJ. Carotid chemoreceptor development and neonatal apnea. Respir Physiol Neurobiol 2013; 185(1): 170-6.
[http://dx.doi.org/10.1016/j.resp.2012.07.017] [PMID: 22842008]
[47]
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative stress and respiratory diseases in preterm newborns. Int J Mol Sci 2021; 22(22): 12504.
[http://dx.doi.org/10.3390/ijms222212504] [PMID: 34830385]
[48]
McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI workshop on. Ann Am Thorac Soc 2014; 11(Suppl 3): S146-53.
[http://dx.doi.org/10.1513/AnnalsATS.201312-424LD]
[49]
Dobson NR, Thompson MW, Hunt CE. Control of breathing: Maturation and associated clinical disorders. 2016. Available From: https://obgynkey.com/control-of-breathing-maturation-and-associated-clinical-disorders/
[50]
Mathew OP. Apnea of prematurity: Pathogenesis and management strategies. J Perinatol 2011; 31(5): 302-10.
[http://dx.doi.org/10.1038/jp.2010.126] [PMID: 21127467]
[51]
Varisco G, Peng Z, Kommers D, et al. Central apnea detection in premature infants using machine learning. Comput Methods Programs Biomed 2022; 226: 107155.
[http://dx.doi.org/10.1016/j.cmpb.2022.107155] [PMID: 36215858]
[52]
Finer NN, Barrington KJ, Hayes BJ, Hugh A. Obstructive, mixed, and central apnea in the neonate: Physiologic correlates. J Pediatr 1992; 121(6): 943-50.
[http://dx.doi.org/10.1016/S0022-3476(05)80349-X] [PMID: 1447664]
[53]
Edwards BA, Sands SA, Berger PJ. Postnatal maturation of breathing stability and loop gain: The role of carotid chemoreceptor development. Respir Physiol Neurobiol 2013; 185(1): 144-55.
[http://dx.doi.org/10.1016/j.resp.2012.06.003] [PMID: 22705011]
[54]
Deacon-Diaz N, Malhotra A. Inherent vs. induced loop gain abnormalities in obstructive sleep apnea. Front Neurol 2018; 9: 896.
[http://dx.doi.org/10.3389/fneur.2018.00896] [PMID: 30450076]
[55]
Armoni Domany K, Hossain MM, Nava-Guerra L, et al. Cardioventilatory Control in preterm-born children and the risk of obstructive sleep apnea. Am J Respir Crit Care Med 2018; 197(12): 1596-603.
[http://dx.doi.org/10.1164/rccm.201708-1700OC] [PMID: 29323933]
[56]
Mainieri G, Montini A, Nicotera A, Di Rosa G, Provini F, Loddo G. The genetics of sleep disorders in children: A narrative review. Brain Sci 2021; 11(10): 1259.
[http://dx.doi.org/10.3390/brainsci11101259] [PMID: 34679324]
[57]
Rosen CL, Larkin EK, Kirchner HL, et al. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: Association with race and prematurity. J Pediatr 2003; 142(4): 383-9.
[http://dx.doi.org/10.1067/mpd.2003.28] [PMID: 12712055]
[58]
Hibbs AM, Johnson NL, Rosen CL, et al. Prenatal and neonatal risk factors for sleep disordered breathing in school-aged children born preterm. J Pediatr 2008; 153(2): 176-82.
[http://dx.doi.org/10.1016/j.jpeds.2008.01.040] [PMID: 18534222]
[59]
Ramanathan R, Corwin MJ, Hunt CE, et al. Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA 2001; 285(17): 2199-207.
[http://dx.doi.org/10.1001/jama.285.17.2199] [PMID: 11325321]
[60]
Mammel D, Kemp J. Prematurity, the diagnosis of bronchopulmonary dysplasia, and maturation of ventilatory control. Pediatr Pulmonol 2021; 56(11): 3533-45.
[http://dx.doi.org/10.1002/ppul.25519] [PMID: 34042316]
[61]
Trachtenberg FL, Haas EA, Kinney HC, Stanley C, Krous HF. Risk factor changes for sudden infant death syndrome after initiation of Back-to-Sleep campaign. Pediatrics 2012; 129(4): 630-8.
[http://dx.doi.org/10.1542/peds.2011-1419] [PMID: 22451703]
[62]
Lavanga M, Heremans E, Moeyersons J, et al. Maturation of the autonomic nervous system in premature infants: Estimating development based on heart-rate variability analysis. Front Physiol 2021; 11: 581250.
[http://dx.doi.org/10.3389/fphys.2020.581250] [PMID: 33584326]
[63]
Wheeler M, Cote CJ, Todres ID. A Practice of Anaesthesia for Infants and Children. (4th ed.). Philadelphia: Elsevier 2009; pp. 237-73.
[http://dx.doi.org/10.1016/B978-141603134-5.50016-0]
[64]
Stocks J, Godfrey S. Specific airway conductance in relation to postconceptional age during infancy. J Appl Physiol 1977; 43(1): 144-54.
[http://dx.doi.org/10.1152/jappl.1977.43.1.144] [PMID: 893257]
[65]
Numa AH, Newth CJ. Anatomic dead space in infants and children. J Appl Physiol 1996; 80(5): 1485-9.
[http://dx.doi.org/10.1152/jappl.1996.80.5.1485]
[66]
Langston C, Kida K, Reed M, Thurlbeck WM. Human lung growth in late gestation and in the neonate. Am Rev Respir Dis 1984; 129(4): 607-13.
[PMID: 6538770]
[67]
Trabalon M, Schaal B. It takes a mouth to eat and a nose to breathe: Abnormal oral respiration affects neonates’ oral competence and systemic adaptation. Int J Pediatr 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/207605] [PMID: 22811731]
[68]
Knudsen L, Ochs M. The micromechanics of lung alveoli: Structure and function of surfactant and tissue components. Histochem Cell Biol 2018; 150(6): 661-76.
[http://dx.doi.org/10.1007/s00418-018-1747-9] [PMID: 30390118]
[69]
Pillow JJ, Bartolák-Suki E, Noble PB, Berry CA, Suki B. Surfactant Protein Production during Maturation Is Enhanced by Natural Variability in Breathing. Am J Respir Cell Mol Biol 2023; 69(1): 115-8.
[http://dx.doi.org/10.1165/rcmb.2022-0411LE] [PMID: 37387612]
[70]
Buonocore G, Perrone S, Longini M, et al. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr Res 2002; 52(1): 46-9.
[http://dx.doi.org/10.1203/00006450-200207000-00010] [PMID: 12084846]
[71]
Cadenas E, Davies KJA. Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us. Free Radic Biol Med 2000; 29(3-4): 222-30.
[http://dx.doi.org/10.1016/S0891-5849(00)00317-8] [PMID: 11035250]
[72]
Buonocore G, Perrone S, Longini M, Terzuoli L, Bracci R. Total hydroperoxide and advanced oxidation protein products in preterm hypoxic babies. Pediatr Res 2000; 47(2): 221-4.
[http://dx.doi.org/10.1203/00006450-200002000-00012] [PMID: 10674350]
[73]
Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 2010; 15(4): 191-5.
[http://dx.doi.org/10.1016/j.siny.2010.04.001] [PMID: 20452845]
[74]
Frank L, Ilene Sosenko RS. Development of lung antioxidant enzyme system in late gestation: Possible implications for the prematurely born infant. J Pediatr 1987; 110(1): 9-14.
[http://dx.doi.org/10.1016/S0022-3476(87)80279-2] [PMID: 3540251]
[75]
Frosali S, Di Simplicio P, Perrone S, et al. Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth. Neonatology 2004; 85(3): 188-94.
[http://dx.doi.org/10.1159/000075814] [PMID: 14707431]
[76]
Eldredge LC, Levin JC, Tracy MC, et al. Summary for clinicians: Clinical practice guidelines for outpatient respiratory management of infants, children, and adolescents with post-prematurity respiratory disease. Ann Am Thorac Soc 2022; 19(6): 873-9.
[http://dx.doi.org/10.1513/AnnalsATS.202201-007CME] [PMID: 35239469]
[77]
Rodgers A, Singh C. Specialist neonatal respiratory care for babies born preterm (NICE guideline 124): A review. Arch Dis Child Educ Pract Ed 2020; 105(6): 355-7.
[http://dx.doi.org/10.1136/archdischild-2019-317461] [PMID: 32345634]
[78]
Sweet DG, Carnielli V, Greisen G, et al. European consensus guidelines on the management of respiratory distress syndrome – 2019 update. Neonatology 2019; 115(4): 432-50.
[http://dx.doi.org/10.1159/000499361] [PMID: 30974433]
[79]
Eichenwald EC, Watterberg KL, Aucott S, et al. Apnea of prematurity. Pediatrics 2016; 137(1): e20153757.
[http://dx.doi.org/10.1542/peds.2015-3757] [PMID: 26628729]
[80]
Zhao J, Gonzalez F, Mu D. Apnea of prematurity: From cause to treatment. Eur J Pediatr 2011; 170(9): 1097-105.
[http://dx.doi.org/10.1007/s00431-011-1409-6] [PMID: 21301866]
[81]
Dai HR, Guo HL, Hu YH, et al. Precision caffeine therapy for apnea of prematurity and circadian rhythms: New possibilities open up. Front Pharmacol 2022; 13: 1053210.
[http://dx.doi.org/10.3389/fphar.2022.1053210] [PMID: 36532766]
[82]
Dobson NR, Hunt CE. Caffeine: An evidence-based success story in VLBW pharmacotherapy. Pediatr Res 2018; 84(3): 333-40.
[http://dx.doi.org/10.1038/s41390-018-0089-6] [PMID: 29983414]
[83]
Yang L, Yu X, Zhang Y, Liu N, Xue X, Fu J. Encephalopathy in preterm infants: Advances in neuroprotection with caffeine. Front Pediatr 2021; 9: 724161.
[http://dx.doi.org/10.3389/fped.2021.724161] [PMID: 34660486]
[84]
Eichenwald EC. National and International Guidelines for Neonatal Caffeine Use: Are they evidenced-based? Semin Fetal Neonatal Med 2020; 25(6): 101177.
[http://dx.doi.org/10.1016/j.siny.2020.101177] [PMID: 33214064]
[85]
Dani C, Fusco M, Manti S, et al. Effects of caffeine on diaphragmatic activity in preterm infants. Pediatr Pulmonol 2023; 58(7): 2104-10.
[http://dx.doi.org/10.1002/ppul.26439] [PMID: 37144862]
[86]
Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med 2006; 354(20): 2112-21.
[http://dx.doi.org/10.1056/NEJMoa054065] [PMID: 16707748]
[87]
Charles BG, Townsend SR, Steer PA, Flenady VJ, Gray PH, Shearman A. Caffeine citrate treatment for extremely premature infants with apnea: Population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring. Ther Drug Monit 2008; 30(6): 709-16.
[http://dx.doi.org/10.1097/FTD.0b013e3181898b6f] [PMID: 19057373]
[88]
Moresco L, Sjögren A, Marques KA, Soll R, Bruschettini M. Caffeine versus other methylxanthines for the prevention and treatment of apnea in preterm infants. Cochrane Libr 2023; 2023(10): CD015462.
[http://dx.doi.org/10.1002/14651858.CD015462.pub2] [PMID: 37791592]
[89]
Marques KA, Bruschettini M, Roehr CC, Davis PG, Fiander M, Soll R. Methylxanthine for the prevention and treatment of apnea in preterm infants. Cochrane Libr 2023; 2023(10): CD013830.
[http://dx.doi.org/10.1002/14651858.CD013830.pub2] [PMID: 37905735]
[90]
McPherson C, Neil JJ, Tjoeng TH, Pineda R, Inder TE. A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatr Res 2015; 78(2): 198-204.
[http://dx.doi.org/10.1038/pr.2015.72] [PMID: 25856169]
[91]
Puia-Dumitrescu M, Smith PB, Zhao J, et al. Dosing and safety of off-label use of caffeine citrate in premature infants. J Pediatr 2019; 211: 27-32.e1.
[http://dx.doi.org/10.1016/j.jpeds.2019.04.028] [PMID: 31101409]
[92]
Brattström P, Russo C, Ley D, Bruschettini M. High-versus low- dose caffeine in preterm infants: A systematic review and meta-analysis. Acta Paediatr 2019; 108(3): 401-10.
[http://dx.doi.org/10.1111/apa.14586] [PMID: 30242903]
[93]
Ravichandran S, Chouthai NS, Patel B, et al. Higher daily doses of caffeine lowered the incidence of moderate to severe neurodevelopmental disabilities in very low birth weight infants. Acta Paediatr 2019; 108(3): 430-5.
[http://dx.doi.org/10.1111/apa.14465] [PMID: 29920770]
[94]
Schmidt B, Anderson PJ, Doyle LW, et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA 2012; 307(3): 275-82.
[http://dx.doi.org/10.1001/jama.2011.2024] [PMID: 22253394]
[95]
Nakaoka S, Kawasaki Y, Inomata S, Makimoto M, Yoshida T. Caffeine Toxicity in a Preterm Neonate. Pediatr Neonatol 2017; 58(4): 380-1.
[http://dx.doi.org/10.1016/j.pedneo.2016.08.001] [PMID: 27742225]
[96]
Ergenekon E, Dalgiç N, Aksoy E, Koç E, Atalay Y. Caffeine intoxication in a premature neonate. Paediatr Anaesth 2001; 11(6): 737-9.
[http://dx.doi.org/10.1046/j.1460-9592.2001.00753.x]
[97]
Aversa S, Marseglia L, Manti S, et al. Ventilation strategies for preventing oxidative stress-induced injury in preterm infants with respiratory disease: An update. Paediatr Respir Rev 2016; 17: 71-9.
[http://dx.doi.org/10.1016/j.prrv.2015.08.015] [PMID: 26572937]
[98]
Schmölzer GM, Kumar M, Pichler G, Aziz K, O’Reilly M, Cheung PY. Non-invasive versus invasive respiratory support in preterm infants at birth: Systematic review and meta-analysis. BMJ 2013; 347(oct17 3): f5980.
[http://dx.doi.org/10.1136/bmj.f5980] [PMID: 24136633]
[99]
Nolasco S, Manti S, Leonardi S, Vancheri C, Spicuzza L. High-flow nasal cannula oxygen therapy: Physiological mechanisms and clinical applications in children. Front Med (Lausanne) 2022; 9: 920549.
[http://dx.doi.org/10.3389/fmed.2022.920549] [PMID: 35721052]
[100]
Thomas CW, Meinzen-Derr J, Hoath SB, Narendran V. Neurodevelopmental outcomes of extremely low birth weight infants ventilated with continuous positive airway pressure vs. mechanical ventilation. Indian J Pediatr 2012; 79(2): 218-23.
[http://dx.doi.org/10.1007/s12098-011-0535-5] [PMID: 21853318]
[101]
Perrone S, Manti S, Petrolini C, et al. Oxygen for the newborn: Friend or foe? Children (Basel) 2023; 10(3): 579.
[http://dx.doi.org/10.3390/children10030579] [PMID: 36980137]
[102]
Roehr CC, Proquitté H, Hammer H, Wauer RR, Morley CJ, Schmalisch G. Positive effects of early continuous positive airway pressure on pulmonary function in extremely premature infants: Results of a subgroup analysis of the COIN trial. Arch Dis Child Fetal Neonatal Ed 2011; 96(5): F371-3.
[http://dx.doi.org/10.1136/adc.2009.181008] [PMID: 20584798]
[103]
Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 2008; 358(7): 700-8.
[http://dx.doi.org/10.1056/NEJMoa072788] [PMID: 18272893]
[104]
Hyndman TH, Fretwell S, Bowden RS, et al. The effect of doxapram on survival and APGAR score in newborn puppies delivered by elective caesarean: A randomized controlled trial. J Vet Pharmacol Ther 2023; 46(6): 353-64.
[http://dx.doi.org/10.1111/jvp.13388] [PMID: 37211671]
[105]
Vliegenthart RJS, ten Hove CH, Onland W, van Kaam AHLC. Doxapram treatment for Apnea of Prematurity: A systematic review. Neonatology 2017; 111(2): 162-71.
[http://dx.doi.org/10.1159/000448941] [PMID: 27760427]
[106]
Quitadamo P, Giorgio V, Zenzeri L, et al. Apnea in preterm neonates: What’s the role of gastroesophageal reflux? A systematic review. Dig Liver Dis 2020; 52(7): 723-9.
[http://dx.doi.org/10.1016/j.dld.2020.03.032] [PMID: 32423847]
[107]
Bairam A, Boukari R, Joseph V. Targeting progesterone receptors in newborn males and females: From the animal model to a new perspective for the treatment of apnea of prematurity? Respir Physiol Neurobiol 2019; 263: 55-61.
[http://dx.doi.org/10.1016/j.resp.2019.03.004] [PMID: 30880277]
[108]
Ren J, Ding X, Greer JJ. Ampakines enhance weak endogenous respiratory drive and alleviate apnea in perinatal rats. Am J Respir Crit Care Med 2015; 191(6): 704-10.
[http://dx.doi.org/10.1164/rccm.201410-1898OC] [PMID: 25594679]
[109]
Zagol K, Lake DE, Vergales B, et al. Anemia, apnea of prematurity, and blood transfusions. J Pediatr 2012; 161(3): 417-421.e1.
[http://dx.doi.org/10.1016/j.jpeds.2012.02.044] [PMID: 22494873]
[110]
Abu Jawdeh eg, Martin RJ, Dick TE, Walsh MC, Di Fiore JM. The effect of red blood cell transfusion on intermittent hypoxemia in ELBW infants. J Perinatol 2014; 34(12): 921-5.
[http://dx.doi.org/10.1038/jp.2014.115] [PMID: 24921411]
[111]
Kovatis KZ, Di Fiore JM, Martin RJ, et al. Effect of blood transfusions on intermittent hypoxic episodes in a prospective study of very low birth weight infants. J Pediatr 2020; 222: 65-70.
[http://dx.doi.org/10.1016/j.jpeds.2020.03.015] [PMID: 32423683]
[112]
Ballout RA, Foster JP, Kahale LA, Badr L. Body positioning for spontaneously breathing preterm infants with apnoea. Cochrane Libr 2017; 2017(2): CD004951.
[http://dx.doi.org/10.1002/14651858.CD004951.pub3] [PMID: 28067942]
[113]
Baik-Schneditz N, Urlesberger B, Schwaberger B, et al. Tactile stimulation during neonatal transition and its effect on vital parameters in neonates during neonatal transition. Acta Paediatr 2018; 107(6): 952-7.
[http://dx.doi.org/10.1111/apa.14239] [PMID: 29364540]
[114]
van Henten TMA, Dekker J, te Pas AB, Zivanovic S, Hooper SB, Roehr CC. Tactile stimulation in the delivery room: Do we practice what we preach? Arch Dis Child Fetal Neonatal Ed 2019; 104(6): F661-2.
[http://dx.doi.org/10.1136/archdischild-2018-316344] [PMID: 30824474]
[115]
Kostandy RR, Ludington-Hoe SM. The evolution of the science of kangaroo (mother) care (skin-to-skin contact). Birth Defects Res 2019; 111(15): 1032-43.
[http://dx.doi.org/10.1002/bdr2.1565] [PMID: 31419082]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy