Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis, and In vitro Biological Activities of Matrine Skeleton Derivatives as Potential Cancer Inhibitors

Author(s): Bin Zhou, Lisheng Wang*, Yongquan Wei, Meiyan Jiang and Xingdong Wang

Volume 21, Issue 16, 2024

Published on: 15 April, 2024

Page: [3590 - 3603] Pages: 14

DOI: 10.2174/0115701808300981240408063655

Price: $65

Abstract

Background: Thirteen derivatives were designed and synthesized based on the excellent lead compound Matrine.

Objective: This study aimed to discover novel anticancer agents with superior anticancer activity and to support the discovery of new drugs.

Methods: The in vitro antiproliferative activity of all derivatives against four human cancer cells, A549, HGC-27, HCT-116, and HeLa, was determined by MTT. The best active compounds were subjected to cell cloning, migration, cell cycle and apoptosis, and molecular docking.

Results: Compound 5XI showed the best activity against all four cell lines, especially against A549 cells, with an IC50 of 5.805 μmol/L. The antiproliferative activity of 5XI was much higher than that of matrine and only slightly weaker than that of Cisplatin, a multi-targeted small molecule inhibitor. 5XI also showed excellent inhibitory activity in cell cycle, apoptosis, cell scratch, and cell cloning assays and has shown good affinity in docking studies.

Conclusion: 5XI has excellent antiproliferative activity, significantly inhibits cell cloning and migration, affects cancer cell cycle distribution, and induces apoptosis in a concentration-dependent manner, making it a potential anticancer drug agent.

[1]
Juanes, M.; Saragi, R.T.; Enríquez, L.; Jaraíz, M.; Lesarri, A. Molecular rotation spectrum of tetracyclic quinolizidines: Observation of trans -matrine and the elusive cis -matrine. J. Org. Chem., 2021, 86(2), 1861-1867.
[http://dx.doi.org/10.1021/acs.joc.0c02689] [PMID: 33405924]
[2]
Ni, W.; Li, C.; Liu, Y.; Song, H.; Wang, L.; Song, H.; Wang, Q. Various bioactivity and relationship of structure–activity of matrine analogues. J. Agric. Food Chem., 2017, 65(10), 2039-2047.
[http://dx.doi.org/10.1021/acs.jafc.6b05474] [PMID: 28248103]
[3]
Zhang, X.; Hou, G.; Liu, A.; Xu, H.; Guan, Y.; Wu, Y.; Deng, J.; Cao, X. Matrine inhibits the development and progression of ovarian cancer by repressing cancer associated phosphorylation signaling pathways. Cell Death Dis., 2019, 10(10), 770.
[http://dx.doi.org/10.1038/s41419-019-2013-3] [PMID: 31601793]
[4]
Zou, Y.; Sarem, M.; Xiang, S.; Hu, H.; Xu, W.; Shastri, V.P. Autophagy inhibition enhances Matrine derivative MASM induced apoptosis in cancer cells via a mechanism involving reactive oxygen species-mediated PI3K/Akt/mTOR and Erk/p38 signaling. BMC Cancer, 2019, 19(1), 949.
[http://dx.doi.org/10.1186/s12885-019-6199-7] [PMID: 31615459]
[5]
Gu, J.; Zhang, Y.; Wang, X.; Xiang, J.; Shen, J. Matrine inhibits the growth of natural killer/T-cell lymphoma cells by modulating CaMKIIγ-c-Myc signaling pathway. BMC Complement. Med. Ther., 2020, 20(1)
[6]
Zhang, F.; Zhang, H.; Qian, W.; Xi, Y.; Chang, L.; Wu, X.; Li, M. Matrine exerts antitumor activity in cervical cancer by protective autophagy via the Akt/mTOR pathway in vitro and in vivo. Oncol. Lett., 2022, 23(4), 110.
[http://dx.doi.org/10.3892/ol.2022.13230] [PMID: 35242238]
[7]
Zhang, M.F.; Shen, Y.Q. Progress of anti-upper gastrointestinal tumour effects of oxidized matrine. Yaowu Pingjia Yanjiu, 2020, 43(5), 5.
[8]
Zhang, X.; Xu, H.; Bi, X.; Hou, G.; Liu, A.; Zhao, Y.; Wang, G.; Cao, X. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis., 2021, 12(10), 931.
[http://dx.doi.org/10.1038/s41419-021-04221-6] [PMID: 34642304]
[9]
Zhu, N.; Hou, J. Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. Sci. Rep., 2021, 11(1), 1005.
[http://dx.doi.org/10.1038/s41598-020-80297-y] [PMID: 33441867]
[10]
Chu, Y.J.; Ma, W.D.; Thome, R.; Ping, J.D.; Liu, F.Z.; Wang, M.R.; Zhang, M.L.; Zhang, G.; Zhu, L. Matrine inhibits cns autoimmunity through an ifn-β-dependent mechanism. Front. Immunol., 2020, 11, 569530.
[http://dx.doi.org/10.3389/fimmu.2020.569530] [PMID: 33101289]
[11]
Luo, D.; Wu, Z.N.; Zhang, J.H.; Lin, Q.; Chen, N.H.; Chen, S.; Tang, Q.; Zhan, Z-C.; Fan, C-L.; Li, Y-L.; Wang, G-C.; Zhang, Y-B. Sophaloseedlines A—G: Diverse matrine‐based alkaloids from sophora alopecuroides with potential anti‐hepatitis b virus activities. Chin. J. Chem., 2021, 39(9), 2555-2562.
[http://dx.doi.org/10.1002/cjoc.202100279]
[12]
Liu, F; Li, Y; Yang, Y; Li, M; Du, Y; Zhang, Y Study on mechanism of matrine in treatment of COVID-19 combined with liver injury by network pharmacology and molecular docking technology. Drug Delivery,
[13]
Pourahmad Jaktaji, R.; Koochaki, S. In vitro activity of honey, total alkaloids of Sophora alopecuroides and matrine alone and in combina-tion with antibiotics against multidrug-resistant Pseudomonas aeruginosa isolates. Lett. Appl. Microbiol., 2022, 75(1), 70-80.
[http://dx.doi.org/10.1111/lam.13705] [PMID: 35322896]
[14]
Zhang, X.; Hu, C.; Zhang, N.; Wei, W.Y.; Tang, Q.Z. Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice. Acta Pharmacol. Sin., 2020, 42(4), 1-12.
[PMID: 32694761]
[15]
Kang, J.; Liu, S.; Song, Y.; Chu, Y.; Zhu, L. Matrine treatment reduces retinal ganglion cell apoptosis in experimental optic neuritis. Nature, 2021.
[http://dx.doi.org/10.1038/s41598-021-89086-7]
[16]
Zhou, W.; Wu, J.; Zhang, J.; Liu, X.; Guo, S.; Jia, S.; Zhang, X.; Zhu, Y.; Wang, M. Integrated bioinformatics analysis to decipher molecular mechanism of compound Kushen injection for esophageal cancer by combining WGCNA with network pharmacology. Sci. Rep., 2020, 10(1), 12745.
[http://dx.doi.org/10.1038/s41598-020-69708-2] [PMID: 32728182]
[17]
You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; Dong, X.; Yin, X.; Ni, J. A systematic review of the pharmacology, toxicology and pharmacokinetics of matrine. Front. Pharmacol., 2020, 11, 01067.
[http://dx.doi.org/10.3389/fphar.2020.01067] [PMID: 33041782]
[18]
Franzén, R.G. Recent advances in the preparation of heterocycles on solid support: a review of the literature. J. Comb. Chem., 2000, 2(3), 195-214.
[http://dx.doi.org/10.1021/cc000002f] [PMID: 10827923]
[19]
Hantzsch, A.; Weber, J.H. Ueber verbindungen des thiazols (pyridins der thiophenreihe). Ber. Dtsch. Chem. Ges., 1887, 20(2), 3118-3132.
[http://dx.doi.org/10.1002/cber.188702002200]
[20]
Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole ring—A biologically active scaffold. Molecules, 2021, 26(11), 3166.
[http://dx.doi.org/10.3390/molecules26113166] [PMID: 34070661]
[21]
Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; Kumar, S.; Asdaq, S.M.B.; Imran, M.; Deb, P.K.; Venugopala, K.N.; Jomah, S. Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agents. Molecules, 2022, 27(13), 3994.
[http://dx.doi.org/10.3390/molecules27133994] [PMID: 35807236]
[22]
Bishayee, A.; Karmakar, R.; Mandal, A.; Kundu, S.N.; Chatterjee, M. Vanadium-mediated chemoprotection against chemical hepatocarcin-ogenesis in rats: haematological and histological characteristics. Eur. J. Cancer Prev., 1997, 6(1), 58-70.
[http://dx.doi.org/10.1097/00008469-199702000-00010] [PMID: 9161814]
[23]
Gopal, M.; Padmashali, B.; Manohara, Y.N.; Gurupadayya, B.M. Synthesis and pharmacological evaluation of azetidin-2-ones and thiazolidin-4-ones encompassing benzothiazole. Indian J. Pharm. Sci., 2008, 70(5), 572-577.
[http://dx.doi.org/10.4103/0250-474X.45393] [PMID: 21394251]
[24]
Hargrave, K.D.; Hess, F.K.; Oliver, J.T. N-(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J. Med. Chem., 1983, 26(8), 1158-1163.
[http://dx.doi.org/10.1021/jm00362a014] [PMID: 6876084]
[25]
Muhammad, Z.A.; Masaret, G.S.; Amin, M.M.; Abdallah, M.A.; Farghaly, T.A. Anti-inflammatory, Analgesic and Anti-ulcerogenic Activities of Novel bis-thiadiazoles, bis-thiazoles and bis-formazanes. Med. Chem., 2017, 13(3), 226-238.
[http://dx.doi.org/10.2174/1573406412666160920091146] [PMID: 27659119]
[26]
Laczkowski, K.Z.; Biernasiuk, A.; Baranowska-Laczkowska, A.; Misiura, K.; Malm, A.; Plech, T.; Paneth, A. Synthesis, antibacterial activity, interaction with nucleobase and molecular docking studies of 4-formylbenzoic acid based thiazoles. Med. Chem., 2016, 12(6), 553-562.
[http://dx.doi.org/10.2174/1573406412666160201121310] [PMID: 26833073]
[27]
Patt, W.C.; Hamilton, H.W.; Taylor, M.D.; Ryan, M.J.; Taylor, D.G., Jr; Connolly, C.J.C.; Doherty, A.M.; Klutchko, S.R.; Sircar, I.; Steinbaugh, B.A. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J. Med. Chem., 1992, 35(14), 2562-2572.
[http://dx.doi.org/10.1021/jm00092a006] [PMID: 1635057]
[28]
Karade, H.N.; Acharya, B.N.; Sathe, M.; Kaushik, M.P. Design, synthesis, and antimalarial evaluation of thiazole-derived amino acids. Med. Chem. Res., 2008, 17(1), 19-29.
[http://dx.doi.org/10.1007/s00044-008-9089-0]
[29]
Pattan, S.; Dighe, N.; Nirmal, S.; Merekar, A.; Laware, R.; Shinde, H. Synthesis and biological evaluation of some substituted amino thiazole derivatives. Asian J. Res. Chem, 2009, 2(2), 196-201.
[30]
Andreani, A.; Rambaldi, M.; Mascellani, G.; Rugarli, P. Synthesis and diuretic activity of imidazo[2,1-b]thiazole acetohydrazones. Eur. J. Med. Chem., 1987, 22(1), 19-22.
[http://dx.doi.org/10.1016/0223-5234(87)90169-3]
[31]
Vengurlekar, S.; Prachand, S.; Jain, S.; Gupta, R. Synthesis and evaluation of some thiazole derivatives as an antifungal agent. Int. J. Pharm. & Life Sci., 2014, 5(5)
[32]
Ergenç, N.; Çapan, G.; Günay, N.S.; Özkirimli, S.; Güngör, M.; Özbey, S.; Kendi, E. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch. Pharm., 1999, 332(10), 343-347.
[http://dx.doi.org/10.1002/(SICI)1521-4184(199910)332:10<343::AID-ARDP343>3.0.CO;2-0] [PMID: 10575366]
[33]
Koufaki, M.; Kiziridi, C.; Nikoloudaki, F.; Alexis, M.N. Design and synthesis of 1,2-dithiolane derivatives and evaluation of their neuroprotective activity. Bioorg. Med. Chem. Lett., 2007, 17(15), 4223-4227.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.036] [PMID: 17531485]
[34]
Jubie, S.; Gowramma, B.; Nitin, K.; Jawahar, N.; Kalirajan, R.; Gomathy, S. Synthesis and biological evaluation of some 3-(methoxy phenyl)-2-aryl-thiazolidin-4-one derivatives. Indian J. Pharm. Sci., 2009, 1(1), 32-38.
[35]
Lin, R.; Johnson, S.G.; Connolly, P.J.; Wetter, S.K.; Binnun, E.; Hughes, T.V.; Murray, W.V.; Pandey, N.B.; Moreno-Mazza, S.J.; Adams, M.; Fuentes-Pesquera, A.R.; Middleton, S.A. Synthesis and evaluation of 2,7-diamino-thiazolo[4,5-d] pyrimidine analogues as anti-tumor epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(8), 2333-2337.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.067] [PMID: 19286381]
[36]
El-Subbagh, H.I.; Al-Obaid, A.M. 2,4-Disubstituted thiazoles II. A novel class of antitumor agents, synthesis and biological evaluation. Eur. J. Med. Chem., 1996, 31(12), 1017-1021.
[http://dx.doi.org/10.1016/S0223-5234(97)86181-8]
[37]
Gadekar, P.K.; Urunkar, G.; Roychowdhury, A.; Sharma, R.; Bose, J.; Khanna, S.; Damre, A.; Sarveswari, S. Design, synthesis and biological evaluation of 2,3-dihydroimidazo[2,1-b]thiazoles as dual EGFR and IGF1R inhibitors. Bioorg. Chem., 2021, 115, 105151.
[http://dx.doi.org/10.1016/j.bioorg.2021.105151] [PMID: 34333424]
[38]
Abdel-Maksoud, M.S.; Kim, M.R.; El-Gamal, M.I.; Gamal El-Din, M.M.; Tae, J.; Choi, H.S.; Lee, K.T.; Yoo, K.H.; Oh, C.H. Design, synthesis, in vitro antiproliferative evaluation, and kinase inhibitory effects of a new series of imidazo[2,1-b]thiazole derivatives. Eur. J. Med. Chem., 2015, 95, 453-463.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.065] [PMID: 25841200]
[39]
Carosati, E.; Tochowicz, A.; Marverti, G.; Guaitoli, G.; Benedetti, P.; Ferrari, S.; Stroud, R.M.; Finer-Moore, J.; Luciani, R.; Farina, D.; Cruciani, G.; Costi, M.P. Inhibitor of ovarian cancer cells growth by virtual screening: a new thiazole derivative targeting human thymidylate synthase. J. Med. Chem., 2012, 55(22), 10272-10276.
[http://dx.doi.org/10.1021/jm300850v] [PMID: 23075414]
[40]
Mumtaz, A.; Shoaib, M.; Zaib, S.; Shah, M.S.; Bhatti, H.A.; Saeed, A.; Hussain, I.; Iqbal, J. Synthesis, molecular modelling and biological evaluation of tetrasubstituted thiazoles towards cholinesterase enzymes and cytotoxicity studies. Bioorg. Chem., 2018, 78, 141-148.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.024] [PMID: 29567428]
[41]
Alrohily, W.D.; Habib, M.E.; El-Messery, S.M.; Alqurshi, A.; El-Subbagh, H.; Habib, E.S.E. Antibacterial, antibiofilm and molecular modeling study of some antitumor thiazole based chalcones as a new class of DHFR inhibitors. Microb. Pathog., 2019, 136, 103674.
[http://dx.doi.org/10.1016/j.micpath.2019.103674] [PMID: 31446042]
[42]
Mishra, B.; Zhang, S.; Zhao, H.; Darzynkiewicz, Z.; Lee, E.Y.C.; Lee, M.Y.W.T.; Zhang, Z. Discovery of a novel DNA polymerase inhibitor and characterization of its antiproliferative properties. Cancer Biol. Ther., 2019, 20(4), 474-486.
[http://dx.doi.org/10.1080/15384047.2018.1529126] [PMID: 30427259]
[43]
Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol., 2020, 13(1), 143.
[http://dx.doi.org/10.1186/s13045-020-00977-0] [PMID: 33109256]
[44]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Reddy, J.S.; Bharathi, E.V.; Srinivas, C.; Pushpavalli, S.N.C.V.L.; Pal, D.; Pal-Bhadra, M. Synthesis of imidazothiazole-chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem, 2010, 5(11), 1937-1947.
[http://dx.doi.org/10.1002/cmdc.201000346] [PMID: 20836120]
[45]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Zini, M.; Stefanelli, C.; Masotti, L.; Radin, N.S.; Shoemaker, R.H. New antitumor imidazo[2,1-b]thiazole guanylhydrazones and analogues. J. Med. Chem., 2008, 51(4), 809-816.
[http://dx.doi.org/10.1021/jm701246g] [PMID: 18251494]
[46]
Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Lenaz, G.; Fato, R.; Bergamini, C.; Farruggia, G. Potential Antitumor Agents. 37. Synthesis and Antitumor Activity of Guanylhydrazones from Imidazo[2,1- b]thiazoles and from the New Heterocyclic System Thiazolo[2‘,3‘:2,3]imidazo[4,5- c]quinoline. J. Med. Chem., 2005, 48(8), 3085-3089.
[http://dx.doi.org/10.1021/jm040888s] [PMID: 15828848]
[47]
Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Lannigan, D.; Smith, J.; Scudiero, D.; Kondapaka, S.; Shoemaker, R.H. Imidazo[2,1-b]thiazole guanylhydrazones as RSK2 inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4311-4323.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.001] [PMID: 21794960]
[48]
Kamal, A.; Balakrishna, M.; Nayak, V.L.; Shaik, T.B.; Faazil, S.; Nimbarte, V.D. Design and synthesis of imidazo[2,1-b]thiazole-chalcone conjugates: microtubule-destabilizing agents. ChemMedChem, 2014, 9(12), 2766-2780.
[http://dx.doi.org/10.1002/cmdc.201402310] [PMID: 25313981]
[49]
Substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indolinonesand analogues: synthesis, cytotoxic activity, and study of the mechanismof action(1). J. Med. Chem., 2012.
[50]
Kaur, Gurneet; Gill, Rupinder Kaur, Ramandeep Recent developments in tubulin polymerization inhibitors: An overview. Europ. J. Med. Chem.: Chimie Therapeutique, 2014.
[51]
Aryl-imidazothiadiazole analogues as microtubule disrupting agents. MedChemComm, 2015, 6(10)
[http://dx.doi.org/10.1039/C5MD00155B]
[52]
Shaik, S.P.; Nayak, V.L.; Sultana, F.; Rao, A.V.S.; Shaik, A.B.; Babu, K.S.; Kamal, A. Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents. Eur. J. Med. Chem., 2017, 126, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.060] [PMID: 27744185]
[53]
Xu, Y.; Liang, P.; Rashid, H.; Wu, L.; Xie, P.; Wang, H.; Zhang, S.; Wang, L.; Jiang, J. Design, synthesis, and biological evaluation of matrine derivatives possessing piperazine moiety as antitumor agents. Med. Chem. Res., 2019, 28(10), 1618-1627.
[http://dx.doi.org/10.1007/s00044-019-02398-2]
[54]
Phan, T.G.; Croucher, P.I. The dormant cancer cell life cycle. Nat. Rev. Cancer, 2020, 20(7), 398-411.
[http://dx.doi.org/10.1038/s41568-020-0263-0] [PMID: 32488200]

© 2025 Bentham Science Publishers | Privacy Policy