Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Monochasma Savatieri Aqueous Extract inhibits Human Breast Cancer Cell Line Migration and Adhesion Without Generating Toxicity

Author(s): Lin Tan* and Juan C. Solis-Sainz

Volume 24, Issue 13, 2024

Published on: 15 April, 2024

Page: [982 - 989] Pages: 8

DOI: 10.2174/0118715206287870240408031843

Price: $65

Abstract

Background: Monochasma savatieri, is a rare and endangered plant used to treat cancer in Chinese traditional medicine.

Objective: To evaluate the anti-cancer activity of M. savatieri aqueous extract by determining its cytotoxicity, anti-migratory, and anti-adhesion effects on breast cancer cells.

Methods: Cell viability, migration, adhesion, circularity, and cell cycle were evaluated by crystal violet (CV) staining, wound-healing, and transwell assays and flow cytometry in MCF7 and MDA-MB-231 cells. Caveolin-1, snail, vimentin and activated Erk and Akt expression were determined by western blot in MDA-MB-231 cells. Immunofluorescent assays confirmed caveolin-1 expression in MDA-MB-231 cells.

Results: Survival and cell cycle of MCF7 and MDA-MB-231 cells were not modified by doses up to 500 μg/mL of the extract. The extract inhibited cell migration and adhesion of MDA-MB-231 cells. When cells were exposed to the extract, there was a slight decrease in protein expression of factors related to epithelial-to-mesenchymal transition (snail and vimentin) and a strong decrease in the expression of the oncogenic membrane protein caveolin- 1. Furthermore, the levels of phosphorylated Erk and Akt were also decreased. The content of acteoside, a phenylpropanoid glycoside with reported anti-cancer activity present in M. savatieri, was almost 5 times as much as isoacteoside.

Conclusion: M. savatieri possesses anti-cancer activity without exerting cytotoxicity on breast cancer cells. The extract exhibited anti-migratory and anti-adhesion effects on breast cancer cells by regulating Erk and Akt signaling pathways and the expression of caveolin-1. In addition, acteoside present in M. savatieri could be responsible for the observed effects.

« Previous
Graphical Abstract

[1]
IARC. IARC biennial reports 2020-2021 2021. Available from: https:/ /publications.iarc.fr/_ publications/media/download/6518/006c1dfb9be7751ab782e41bc303cbcf55e36598.pdf(Accessed on: June 26, 2023)
[2]
Möller, O.U.; Beck, I.; Rydén, L.; Malmström, M. A comprehensive approach to rehabilitation interventions following breast cancer treatment - A systematic review of systematic reviews. BMC Cancer, 2019, 19(1), 472. [http://dx.doi.org/10.1186/s12885-019-5648-7]. [PMID: 31109309].
[3]
Ingrand, I.; Defossez, G.; Chebassier, L.C.; Chavant, F.; Ferru, A.; Ingrand, P.; Pochat, P.M.C. Serious adverse effects occurring after chemotherapy: A general cancer registry‐based incidence survey. Br. J. Clin. Pharmacol., 2020, 86(4), 711-722. [http://dx.doi.org/10.1111/bcp.14159]. [PMID: 31658394].
[4]
Konstantinou, E.K.; Panagiotopoulos, A.A.; Argyri, K.; Panoutsopoulos, G.I.; Dimitriou, M.; Gioxari, A. Molecular pathways of rosmarinic acid anticancer activity in triple-negative breast cancer cells: A literature review. Nutrients, 2023, 16(1), 2. [http://dx.doi.org/10.3390/nu16010002]. [PMID: 38201832].
[5]
Wang, Y.P.; Ye, Q.B.; Wu, B.; Sheng, J. Result on the screening of scoliosis among school students in Beijing area. Zhonghua Liu Xing Bing Xue Za Zhi, 1996, 17(3), 160-162. [PMID: 9208515].
[6]
Liang, Y.; Xu, X.; Yu, H.; Li, L.; Hong, T.; Ji, Q.; Feng, Y.; Jin, S.; Song, Y.; Guo, J.; Zheng, Z.; Ye, Q.; Yang, S. Raddeanoside R13 inhibits breast cancer cell proliferation, invasion, and metastasis. Tumour Biol., 2016, 37(7), 9837-9847. [http://dx.doi.org/10.1007/s13277-015-4748-5]. [PMID: 26810189].
[7]
Wang, J.; Yang, X.; Han, H.; Wang, L.; Bao, W.; Wang, S.; Hoffman, R.M.; Yang, M.; Qi, H.; An, C.; Hu, K. Inhibition of growth and metastasis of triple-negative breast cancer targeted by Traditional Chinese Medicine Tubeimu in orthotopic mice models. Chin. J. Cancer Res., 2018, 30(1), 112-121. [http://dx.doi.org/10.21147/j.issn.1000-9604.2018.01.12]. [PMID: 29545725].
[8]
Han, B.; Wang, T.; Xue, Z.; Wen, T.; Lu, L.; Meng, J.; Liu, J.; Wu, S.; Yu, J.; Xu, H. Elemene nanoemulsion inhibits metastasis of breast cancer by ROS scavenging. Int. J. Nanomedicine, 2021, 16, 6035-6048. [http://dx.doi.org/10.2147/IJN.S327094]. [PMID: 34511904].
[9]
Yahara, S.; Nohara, T.; Kohda, H.; Satake, M. Study on the constituents of Monochasma savatieri FRANCH. ex MAXIM. J. Pharmaceut. Soc. Japan, 1986, 106(8), 725-728.
[10]
Feng, B.; Song, Y.; Xu, Q.; Xu, P.; Zeng, Q.; Shan, B.; Liu, K.; Su, D. Simultaneous determination of savaside A, acteoside, and isoacteoside in rat plasma by UHPLC-MS/MS: Comparative pharmacokinetic and bioavailability characteris -tics of Monochasma savatieri via different routes of administration. J. Sep. Sci., 2018, 41, 4408-4418.
[11]
Li, M.; Shi, M.F.; Liu, Y.L.; Xu, Q.M.; Yang, S.L. Phenylethanoid glycosides from Monochasma savatieri and their anticomplement activity through the classical pathway. Planta Med., 2012, 78(12), 1381-1386. [http://dx.doi.org/10.1055/s-0032-1314982]. [PMID: 22753034].
[12]
Daneshforouz, A.; Nazemi, S.; Gholami, O.; Kafami, M.; Amin, B. The cytotoxicity and apoptotic effects of verbascoside on breast cancer 4T1 cell line. BMC Pharmacol. Toxicol., 2021, 22(1), 72. [http://dx.doi.org/10.1186/s40360-021-00540-8]. [PMID: 34844644].
[13]
Zhang, Y.; Yuan, Y.; Wu, H.; Xie, Z.; Wu, Y.; Song, X.; Wang, J.; Shu, W.; Xu, J.; Liu, B.; Wan, L.; Yan, Y.; Ding, X.; Shi, X.; Pan, Y.; Li, X.; Yang, J.; Zhao, X.; Wang, L. Effect of verbascoside on apoptosis and metastasis in human oral squamous cell carcinoma. Int. J. Cancer, 2018, 143(4), 980-991. [http://dx.doi.org/10.1002/ijc.31378]. [PMID: 29536537].
[14]
Ocaña, M.C.; Poveda, M.B.; Quesada, A.R.; Medina, M.Á. Glucose favors lipid anabolic metabolism in the invasive breast cancer cell line MDA-MB-231. Biology, 2020, 9(1), 16. [http://dx.doi.org/10.3390/biology9010016]. [PMID: 31936882].
[15]
Bennett, J.R.; Mathews, S. Phylogeny of the parasitic plant family orobanchaceae inferred from phytochrome A. Am. J. Bot., 2006, 93(7), 1039-1051. [http://dx.doi.org/10.3732/ajb.93.7.1039]. [PMID: 21642169].
[16]
Zhang, M.; Chen, Y.; Ouyang, Y.; Huang, Z.; da Silva, T.J.A.; Ma, G. The biology and haustorial anatomy of semi-parasitic Monochasma savatieri franch. ex Maxim. Plant Growth Regul., 2015, 75(2), 473-481. [http://dx.doi.org/10.1007/s10725-014-0010-1].
[17]
Gao, H.; Cui, Y.; Kang, N.; Liu, X.; Liu, Y.; Zou, Y.; Zhang, Z.; Li, X.; Yang, S.; Li, J.; Wang, C.; Xu, Q.; Chen, X. Isoacteoside, a dihydroxyphenylethyl glycoside, exhibits anti‐inflammatory effects through blocking toll‐like receptor 4 dimerization. Br. J. Pharmacol., 2017, 174(17), 2880-2896. [http://dx.doi.org/10.1111/bph.13912]. [PMID: 28616865].
[18]
Shi, M.; He, W.; Liu, Y.; Li, X.; Yang, S.; Xu, Q. Protective effect of total phenylethanoid glycosides from Monochasma savatieri Franch on myocardial ischemia injury. Phytomedicine, 2013, 20(14), 1251-1255. [http://dx.doi.org/10.1016/j.phymed.2013.06.014]. [PMID: 23880328].
[19]
Wu, H.C.; Horng, C.T.; Lee, Y.L.; Chen, P.N.; Lin, C.Y.; Liao, C.Y.; Hsieh, Y.S.; Chu, S.C. Cinnamomum cassia extracts suppress human lung cancer cells invasion by reducing u-PA/MMP expression through the FAK to ERK pathways. Int. J. Med. Sci., 2018, 15(2), 115-123. [http://dx.doi.org/10.7150/ijms.22293]. [PMID: 29333095].
[20]
Tayeh, M.; Hiransai, P.; Kommen, H.; Watanapokasin, R. Anti-migration and anti-invasion abilities of methanolic leaves extract of clerodendrum inerme on lung cancer cells. Pharmacogn. J., 2020, 12(5), 1024-1031. [http://dx.doi.org/10.5530/pj.2020.12.145].
[21]
Rady, H.; Hassan, A.; Alla, A.H.; Raouf, A.H.; Salem, S. Hemimycale arabica induced non-cytotoxic anti-migratory activity in hepatocellular carcinoma in vitro. Asian Pac. J. Cancer Prev., 2022, 23(9), 2921-2928. [http://dx.doi.org/10.31557/APJCP.2022.23.9.2921]. [PMID: 36172653].
[22]
Tong, Y.; Li, Z.; Wu, Y.; Zhu, S.; Lu, K.; He, Z. Lotus leaf extract inhibits ER− breast cancer cell migration and metastasis. Nutr. Metab., 2021, 18(1), 20. [http://dx.doi.org/10.1186/s12986-021-00549-0]. [PMID: 33602253].
[23]
Su, C.M.; Lee, W.H.; Wu, A.T.; Lin, Y.K.; Wang, L.S.; Wu, C.H.; Yeh, C.T. Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition. J. Nutr. Biochem., 2015, 6, 675-685. [http://dx.doi.org/10.1016/j.jnutbio.2015.01.005].
[24]
Zhou, D.; Zhao, X.; Yu, M.; Xu, Y.; Fu, C.; Zheng, K.; Xia, C.; Huang, B.; Ma, S. Anti-migration and anti-invasion effects of 2-hydroxy-6-tridecylbenzoic acid is associated with the enhancement of CYP1B1 expression through activating the AMPK signaling pathway in triple-negative breast cancer cells. Nat. Prod. Res., 2021, 35(24), 5924-5928. [http://dx.doi.org/10.1080/14786419.2020.1803310]. [PMID: 32779484].
[25]
Min, T.R.; Park, H.J.; Park, M.N.; Kim, B.; Park, S.H. The root bark of morus alba l. suppressed the migration of human non-small-cell lung cancer cells through inhibition of epithelial–mesenchymal transition mediated by stat3 and src. Int. J. Mol. Sci., 2019, 20(9), 2244. [http://dx.doi.org/10.3390/ijms20092244]. [PMID: 31067694].
[26]
Li, C.F.; Chen, J.Y.; Ho, Y.H.; Hsu, W.H.; Wu, L.C.; Lan, H.Y.; Hsu, D.S.S.; Tai, S.K.; Chang, Y.C.; Yang, M.H. Snail-induced claudin-11 prompts collective migration for tumour progression. Nat. Cell Biol., 2019, 21(2), 251-262. [http://dx.doi.org/10.1038/s41556-018-0268-z]. [PMID: 30664792].
[27]
Zhang, Y.; Zou, X.; Qian, W.; Weng, X.; Zhang, L.; Zhang, L.; Wang, S.; Cao, X.; Ma, L.; Wei, G.; Wu, Y.; Hou, Z. Enhanced PAPSS2/VCAN sulfation axis is essential for Snail-mediated breast cancer cell migration and metastasis. Cell Death Differ., 2019, 26(3), 565-579. [http://dx.doi.org/10.1038/s41418-018-0147-y]. [PMID: 29955124].
[28]
Messica, Y.; Azogui, L.A.; Volberg, T.; Elisha, Y.; Lysakovskaia, K.; Eils, R.; Gladilin, E.; Geiger, B.; Beck, R. The role of vimentin in regulating cell invasive migration in dense cultures of breast carcinoma cells. Nano Lett., 2017, 17(11), 6941-6948. [http://dx.doi.org/10.1021/acs.nanolett.7b03358]. [PMID: 29022351].
[29]
Quest, A.F.G.; Pajares, G.J.L.; Torres, V.A. Caveolin‐1: an ambiguous partner in cell signalling and cancer. J. Cell. Mol. Med., 2008, 12(4), 1130-1150. [http://dx.doi.org/10.1111/j.1582-4934.2008.00331.x]. [PMID: 18400052].
[30]
Urra, H.; Torres, V.A.; Ortiz, R.J.; Lobos, L.; Díaz, M.I.; Díaz, N.; Härtel, S.; Leyton, L.; Quest, A.F.G. Caveolin-1-enhanced motility and focal adhesion turnover require tyrosine-14 but not accumulation to the rear in metastatic cancer cells. PLoS One, 2012, 7(4)e33085 [http://dx.doi.org/10.1371/journal.pone.0033085]. [PMID: 22505999].
[31]
Cheimonidi, C.; Samara, P.; Polychronopoulos, P.; Tsakiri, E.N.; Nikou, T.; Myrianthopoulos, V.; Sakellaropoulos, T.; Zoumpourlis, V.; Mikros, E.; Papassideri, I.; Argyropoulou, A.; Halabalaki, M.; Alexopoulos, L.G.; Skaltsounis, A.L.; Tsitsilonis, O.E.; Aligiannis, N.N.; Trougakos, I.P. Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol., 2018, 16, 169-178. [http://dx.doi.org/10.1016/j.redox.2018.02.015]. [PMID: 29505920].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy