Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

Evolution of Prime Editing Systems: Move Forward to the Treatment of Hereditary Diseases

In Press, (this is not the final "Version of Record"). Available online 15 April, 2024
Author(s): Olga V. Volodina*, Anastasia R. Fabrichnikova, Arina A. Anuchina, Olesya S. Mishina, Alexander V. Lavrov and Svetlana A. Smirnikhina
Published on: 15 April, 2024

DOI: 10.2174/0115665232295117240405070809

Price: $95

Abstract

The development of gene therapy using genome editing tools recently became relevant. With the invention of programmable nucleases, it became possible to treat hereditary diseases due to introducing targeted double strand break in the genome followed by homology directed repair (HDR) or non-homologous end-joining (NHEJ) reparation. CRISPR-Cas9 is more efficient and easier to use in comparison with other programmable nucleases. To improve the efficiency and safety of this gene editing tool, various modifications CRISPR-Cas9 basis were created in recent years, such as prime editing – in this system, Cas9 nickase is fused with reverse transcriptase and guide RNA, which contains a desired correction. Prime editing demonstrates equal or higher correction efficiency as HDR-mediated editing and much less off-target effect due to inducing nick. There are several studies in which prime editing is used to correct mutations in which researchers reported little or no evidence of off-target effects. The system can also be used to functionally characterize disease variants. However, prime editing still has several limitations that could be further improved. The effectiveness of the method is not yet high enough to apply it in clinical trials. Delivery of prime editors is also a big challenge due to their size. In the present article, we observe the development of the platform, and discuss the candidate proteins for efficiency enhancing, main delivery methods and current applications of prime editing.

[1]
Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39(12): e82.
[http://dx.doi.org/10.1093/nar/gkr218] [PMID: 21493687]
[2]
Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 2005; 33(18): 5978-90.
[http://dx.doi.org/10.1093/nar/gki912] [PMID: 16251401]
[3]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[4]
Silva G, Poirot L, Galetto R, et al. Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11(1): 11-27.
[http://dx.doi.org/10.2174/156652311794520111] [PMID: 21182466]
[5]
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93(3): 1156-60.
[http://dx.doi.org/10.1073/pnas.93.3.1156] [PMID: 8577732]
[6]
Pâques F, Duchateau P. Meganucleases and DNA double-strand break-induced recombination: Perspectives for gene therapy. Curr Gene Ther 2007; 7(1): 49-66.
[http://dx.doi.org/10.2174/156652307779940216] [PMID: 17305528]
[7]
Anguela XM, Sharma R, Doyon Y, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 2013; 122(19): 3283-7.
[http://dx.doi.org/10.1182/blood-2013-04-497354] [PMID: 24085764]
[8]
Harmatz P, Prada CE, Burton BK, et al. First-in-human in vivo genome editing via AAV-zinc-finger nucleases for mucopolysaccharidosis I/II and hemophilia B. Mol Ther 2022; 30(12): 3587-600.
[http://dx.doi.org/10.1016/j.ymthe.2022.10.010] [PMID: 36299240]
[9]
Holt N, Wang J, Kim K. Zinc finger nuclease-mediated CCR5 knockout hematopoietic stem cell transplantation controls HIV-1 in vivo. Nat Biotechnol 2010; 28(8): 839-47.
[http://dx.doi.org/10.1038/nbt.1663] [PMID: 20601939]
[10]
Dupuy A, Valton J, Leduc S, et al. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN™. PLoS One 2013; 8(11): e78678.
[http://dx.doi.org/10.1371/journal.pone.0078678] [PMID: 24236034]
[11]
Gautron AS, Juillerat A, Guyot V, et al. Fine and predictable tuning of talen gene editing targeting for improved T cell adoptive immunotherapy. Mol Ther Nucleic Acids 2017; 9: 312-21.
[http://dx.doi.org/10.1016/j.omtn.2017.10.005] [PMID: 29246309]
[12]
Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 2013; 21(6): 1151-9.
[http://dx.doi.org/10.1038/mt.2013.56] [PMID: 23546300]
[13]
Xia E, Zhang Y, Cao H, Li J, Duan R, Hu J. TALEN-mediated gene targeting for cystic fibrosis-gene therapy. Genes 2019; 10(1): 39.
[http://dx.doi.org/10.3390/genes10010039] [PMID: 30641980]
[14]
Hryhorowicz M, Lipiński D, Zeyland J, Słomski R. CRISPR/Cas9 immune system as a tool for genome engineering. Arch Immunol Ther Exp 2017; 65(3): 233-40.
[http://dx.doi.org/10.1007/s00005-016-0427-5] [PMID: 27699445]
[15]
Hillary VE, Ceasar SA. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol 2023; 65(3): 311-25.
[http://dx.doi.org/10.1007/s12033-022-00567-0] [PMID: 36163606]
[16]
Devkota S. The road less traveled: Strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis. BMB Rep 2018; 51(9): 437-43.
[http://dx.doi.org/10.5483/BMBRep.2018.51.9.187] [PMID: 30103848]
[17]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[18]
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA–guided activation of endogenous human genes. Nat Methods 2013; 10(10): 977-9.
[http://dx.doi.org/10.1038/nmeth.2598] [PMID: 23892898]
[19]
Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet 2016; 32(9): 566-75.
[http://dx.doi.org/10.1016/j.tig.2016.06.007] [PMID: 27450436]
[20]
Sfeir A, Symington LS. Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? Trends Biochem Sci 2015; 40(11): 701-14.
[http://dx.doi.org/10.1016/j.tibs.2015.08.006] [PMID: 26439531]
[21]
Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Annu Rev Genet 2011; 45(1): 247-71.
[http://dx.doi.org/10.1146/annurev-genet-110410-132435] [PMID: 21910633]
[22]
Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009; 27(9): 851-7.
[http://dx.doi.org/10.1038/nbt.1562] [PMID: 19680244]
[23]
Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011; 29(8): 731-4.
[http://dx.doi.org/10.1038/nbt.1927] [PMID: 21738127]
[24]
Sommer D, Peters AE, Wirtz T, et al. Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases. Nat Commun 2014; 5(1): 3045.
[http://dx.doi.org/10.1038/ncomms4045] [PMID: 24413636]
[25]
Kim HS, Jeong YK, Hur JK, Kim JS, Bae S. Adenine base editors catalyze cytosine conversions in human cells. Nat Biotechnol 2019; 37(10): 1145-8.
[http://dx.doi.org/10.1038/s41587-019-0254-4] [PMID: 31548727]
[26]
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551(7681): 464-71.
[http://dx.doi.org/10.1038/nature24644] [PMID: 29160308]
[27]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[28]
Kantor A, McClements M, MacLaren R. CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci 2020; 21(17): 6240.
[http://dx.doi.org/10.3390/ijms21176240] [PMID: 32872311]
[29]
Fishel R. Mismatch repair. J Biol Chem 2015; 290(44): 26395-403.
[http://dx.doi.org/10.1074/jbc.R115.660142] [PMID: 26354434]
[30]
Pitsikas P, Lee D, Rainbow AJ. Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2. Mutagenesis 2007; 22(3): 235-43.
[http://dx.doi.org/10.1093/mutage/gem008] [PMID: 17351251]
[31]
Hsieh P, Yamane K. DNA mismatch repair: Molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129(7-8): 391-407.
[http://dx.doi.org/10.1016/j.mad.2008.02.012] [PMID: 18406444]
[32]
Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005; 74(1): 681-710.
[http://dx.doi.org/10.1146/annurev.biochem.74.082803.133243] [PMID: 15952900]
[33]
Oscorbin IP, Filipenko ML. M-MuLV reverse transcriptase: Selected properties and improved mutants. Comput Struct Biotechnol J 2021; 19: 6315-27.
[http://dx.doi.org/10.1016/j.csbj.2021.11.030] [PMID: 34900141]
[34]
Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T: A base editors with higher efficiency and product purity. Sci Adv 2017; 3(8): eaao4774.
[http://dx.doi.org/10.1126/sciadv.aao4774] [PMID: 28875174]
[35]
Chen PJ, Hussmann JA, Yan J, et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021; 184(22): 5635-5652.e29.
[http://dx.doi.org/10.1016/j.cell.2021.09.018] [PMID: 34653350]
[36]
Doman JL, Pandey S, Neugebauer ME, et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 2023; 186(18): 3983-4002.e26.
[http://dx.doi.org/10.1016/j.cell.2023.07.039] [PMID: 37657419]
[37]
Jiao Y, Zhou L, Tao R, et al. Random-PE: An efficient integration of random sequences into mammalian genome by prime editing. Molecular Biomedicine 2021; 2(1): 36.
[http://dx.doi.org/10.1186/s43556-021-00057-w] [PMID: 35006470]
[38]
Song M, Lim JM, Min S, et al. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat Commun 2021; 12(1): 5617.
[http://dx.doi.org/10.1038/s41467-021-25928-2] [PMID: 34556671]
[39]
Park SJ, Jeong TY, Shin SK, et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol 2021; 22(1): 170.
[http://dx.doi.org/10.1186/s13059-021-02389-w] [PMID: 34082781]
[40]
Velimirovic M, Zanetti LC, Shen MW, et al. Peptide fusion improves prime editing efficiency. Nat Commun 2022; 13(1): 3512.
[http://dx.doi.org/10.1038/s41467-022-31270-y] [PMID: 35717416]
[41]
Nelson JW, Randolph PB, Shen SP, et al. Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 2022; 40(3): 402-10.
[http://dx.doi.org/10.1038/s41587-021-01039-7] [PMID: 34608327]
[42]
Zhang G, Liu Y, Huang S, et al. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat Commun 2022; 13(1): 1856.
[http://dx.doi.org/10.1038/s41467-022-29507-x] [PMID: 35387980]
[43]
Li X, Zhou L, Gao BQ, et al. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat Commun 2022; 13(1): 1669.
[http://dx.doi.org/10.1038/s41467-022-29339-9] [PMID: 35351879]
[44]
Ferreira da Silva J, Oliveira GP, Arasa-Verge EA, et al. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nat Commun 2022; 13(1): 760.
[http://dx.doi.org/10.1038/s41467-022-28442-1] [PMID: 35140211]
[45]
Harrington JJ, Lieber MR. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J 1994; 13(5): 1235-46.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06373.x] [PMID: 8131753]
[46]
Saharia A, Teasley DC, Duxin JP, Dao B, Chiappinelli KB, Stewart SA. FEN1 ensures telomere stability by facilitating replication fork re-initiation. J Biol Chem 2010; 285(35): 27057-66.
[http://dx.doi.org/10.1074/jbc.M110.112276] [PMID: 20551483]
[47]
Ranalli TA, Tom S, Bambara RA. AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. J Biol Chem 2002; 277(44): 41715-24.
[http://dx.doi.org/10.1074/jbc.M207207200] [PMID: 12200445]
[48]
Zheng L, Jia J, Finger LD, Guo Z, Zer C, Shen B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res 2011; 39(3): 781-94.
[http://dx.doi.org/10.1093/nar/gkq884] [PMID: 20929870]
[49]
Wilson DM III, Coleman MA, Adamson AW, Christensen M, Lamerdin JE, Carney JP. Hex1: A new human Rad2 nuclease family member with homology to yeast exonuclease 1. Nucleic Acids Res 1998; 26(16): 3762-8.
[http://dx.doi.org/10.1093/nar/26.16.3762] [PMID: 9685493]
[50]
Sertic S, Quadri R, Lazzaro F, Muzi-Falconi M. EXO1: A tightly regulated nuclease. DNA Repair 2020; 93: 102929.
[http://dx.doi.org/10.1016/j.dnarep.2020.102929] [PMID: 33087266]
[51]
Keijzers G, Liu D, Rasmussen LJ. Exonuclease 1 and its versatile roles in DNA repair. Crit Rev Biochem Mol Biol 2016; 51(6): 440-51.
[http://dx.doi.org/10.1080/10409238.2016.1215407] [PMID: 27494243]
[52]
Rasmussen LJ, Rasmussen M, Lee BI, et al. Identification of factors interacting with hMSH2 in the fetal liver utilizing the yeast two-hybrid system. Mutat Res DNA Repair 2000; 460(1): 41-52.
[http://dx.doi.org/10.1016/S0921-8777(00)00012-4] [PMID: 10856833]
[53]
Keijzers G, Bohr VA, Rasmussen LJ. Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep 2015; 35(3): e00206.
[http://dx.doi.org/10.1042/BSR20150058] [PMID: 26182368]
[54]
Tishkoff DX, Amin NS, Viars CS, Arden KC, Kolodner RD. Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination. Cancer Res 1998; 58(22): 5027-31.
[PMID: 9823303]
[55]
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[56]
Ribeiro S, Mairhofer J, Madeira C, et al. Plasmid DNA size does affect nonviral gene delivery efficiency in stem cells. Cell Reprogram 2012; 14(2): 130-7.
[http://dx.doi.org/10.1089/cell.2011.0093] [PMID: 22339198]
[57]
Felgner PL, Gadek TR, Holm M, et al. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84(21): 7413-7.
[http://dx.doi.org/10.1073/pnas.84.21.7413] [PMID: 2823261]
[58]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[59]
Rak M, Góra-Sochacka A, Madeja Z. Lipofection-based delivery of DNA vaccines. Methods Mol Biol 2021; 2183: 391-404.
[http://dx.doi.org/10.1007/978-1-0716-0795-4_20] [PMID: 32959255]
[60]
Wang M, Zuris JA, Meng F, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 2016; 113(11): 2868-73.
[http://dx.doi.org/10.1073/pnas.1520244113] [PMID: 26929348]
[61]
Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016; 34(3): 328-33.
[http://dx.doi.org/10.1038/nbt.3471] [PMID: 26829318]
[62]
Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv 2021; 7(18): eabg4910.
[http://dx.doi.org/10.1126/sciadv.abg4910] [PMID: 33931459]
[63]
Dalby B, Cates S, Harris A, et al. Advanced transfection with Lipofectamine 2000 reagent: Primary neurons, siRNA, and high-throughput applications. Methods 2004; 33(2): 95-103.
[http://dx.doi.org/10.1016/j.ymeth.2003.11.023] [PMID: 15121163]
[64]
Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in patient-derived disease models. Nat Commun 2020; 11(1): 5352.
[http://dx.doi.org/10.1038/s41467-020-19136-7] [PMID: 33097693]
[65]
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 2017; 266: 17-26.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.012] [PMID: 28911805]
[66]
Duan L, Ouyang K, Xu X, et al. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front Genet 2021; 12: 673286.
[http://dx.doi.org/10.3389/fgene.2021.673286] [PMID: 34054927]
[67]
An M, Raguram A, Du SW, et al. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol 2024.
[http://dx.doi.org/10.1038/s41587-023-02078-y] [PMID: 38191664]
[68]
Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 2014; 115(5): 488-92.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304351] [PMID: 24916110]
[69]
Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 2014; 32(9): 941-6.
[http://dx.doi.org/10.1038/nbt.2951] [PMID: 24952903]
[70]
Dong W, Kantor B. Lentiviral vectors for delivery of gene-editing systems based on CRISPR/Cas: Current state and perspectives. Viruses 2021; 13(7): 1288.
[http://dx.doi.org/10.3390/v13071288] [PMID: 34372494]
[71]
Wang Q, Liu J, Janssen JM, Tasca F, Mei H, Gonçalves MAFV. Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Res 2021; 49(20): 11986-2001.
[http://dx.doi.org/10.1093/nar/gkab938] [PMID: 34669958]
[72]
Naldini L, Blömer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272(5259): 263-7.
[http://dx.doi.org/10.1126/science.272.5259.263] [PMID: 8602510]
[73]
Loewen N, Poeschla EM. Lentiviral vectors. Adv Biochem Eng Biotechnol 2005; 99: 169-91.
[http://dx.doi.org/10.1007/10_007] [PMID: 16568892]
[74]
Ahi YS, Bangari DS, Mittal SK. Adenoviral vector immunity: Its implications and circumvention strategies. Curr Gene Ther 2011; 11(4): 307-20.
[http://dx.doi.org/10.2174/156652311796150372] [PMID: 21453277]
[75]
Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995; 92(5): 1401-5.
[http://dx.doi.org/10.1073/pnas.92.5.1401] [PMID: 7877990]
[76]
Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21(4): 583-93.
[http://dx.doi.org/10.1128/CMR.00008-08] [PMID: 18854481]
[77]
Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther 2010; 18(1): 80-6.
[http://dx.doi.org/10.1038/mt.2009.255] [PMID: 19904234]
[78]
Zhi S, Chen Y, Wu G, et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol Ther 2022; 30(1): 283-94.
[http://dx.doi.org/10.1016/j.ymthe.2021.07.011] [PMID: 34298129]
[79]
Chen Y, Zhi S, Liu W, et al. Development of highly efficient dual-aav split adenosine base editor for in vivo gene therapy. Small Methods 2020; 4(9): 2000309.
[http://dx.doi.org/10.1002/smtd.202000309]
[80]
Ma D, Peng S, Xie Z. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells. Nat Commun 2016; 7(1): 13056.
[http://dx.doi.org/10.1038/ncomms13056] [PMID: 27694915]
[81]
Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 2007; 6(7): 569-82.
[http://dx.doi.org/10.1038/nrd2311] [PMID: 17599086]
[82]
Aranko AS, Wlodawer A, Iwaï H. Nature’s recipe for splitting inteins. Protein Eng Des Sel 2014; 27(8): 263-71.
[http://dx.doi.org/10.1093/protein/gzu028] [PMID: 25096198]
[83]
Geurts MH, de Poel E, Pleguezuelos-Manzano C, et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance 2021; 4(10): e202000940.
[http://dx.doi.org/10.26508/lsa.202000940] [PMID: 34373320]
[84]
Kim D, Bae S, Park J. Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 2015; 12(3): 237-43.
[85]
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13(6): 653-8.
[http://dx.doi.org/10.1016/j.stem.2013.11.002] [PMID: 24315439]
[86]
Happi Mbakam C, Rousseau J, Lu Y, et al. Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Mol Ther Nucleic Acids 2022; 30: 272-85.
[http://dx.doi.org/10.1016/j.omtn.2022.09.022] [PMID: 36320324]
[87]
Lin J, Liu X, Lu Z. Modeling a cataract disorder in mice with prime editing 2021; 25: 494-501.
[http://dx.doi.org/10.1016/j.omtn.2021.06.020]
[88]
Jang H, Jo DH, Cho CS, et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat Biomed Eng 2021; 6(2): 181-94.
[http://dx.doi.org/10.1038/s41551-021-00788-9] [PMID: 34446856]
[89]
Böck D, Rothgangl T, Villiger L, et al. In vivo prime editing of a metabolic liver disease in mice. Sci Transl Med 2022; 14(636): eabl9238.
[http://dx.doi.org/10.1126/scitranslmed.abl9238] [PMID: 35294257]
[90]
Li C, Georgakopoulou A, Newby GA, et al. In vivo HSC prime editing rescues Sickle Cell Disease in a mouse model. Blood 2023; 141(17): blood.2022018252.
[http://dx.doi.org/10.1182/blood.2022018252] [PMID: 36800642]
[91]
Erwood S, Bily TMI, Lequyer J, et al. Saturation variant interpretation using CRISPR prime editing. Nat Biotechnol 2022; 40(6): 885-95.
[http://dx.doi.org/10.1038/s41587-021-01201-1] [PMID: 35190686]
[92]
Ren X, Yang H, Nierenberg JL, et al. High-throughput PRIME-editing screens identify functional DNA variants in the human genome. Mol Cell 2023; 83(24): 4633-4645.e9.
[http://dx.doi.org/10.1016/j.molcel.2023.11.021] [PMID: 38134886]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy