Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Plastic Waste Valorization: Prospects for Green Hydrogen Production

Author(s): Rafael Luque*

Volume 11, Issue 4, 2024

Published on: 15 April, 2024

Page: [319 - 324] Pages: 6

DOI: 10.2174/0122133461291112240404032247

Price: $65

Abstract

Plastic waste is a current issue worldwide that is already negatively influencing and threatening the lives of human beings, with residual micro- and nanoplastics entering water and soil bodies inducing recalcitrant pollution and health issues. The proposed perspective has been aimed to provide an overview of the potential of plastic waste valorization to green hydrogen and carbonaceous nanostructures. The overall concept additionally includes the utilization of the generated carbonaceous nanostructures to design advanced functional materials in combination with the obtained green hydrogen from plastic waste in a number of batch-to-flow catalytic hydrogenations to close the circle of sustainable integrated valorization of plastic waste. The concept also includes insightful Life-Cycle Assessment (LCA) and techno-economic studies in order to select the most relevant lines from the sustainability and cost-competitive standpoints.

[1]
MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science, 2021, 373(6550), 61-65.
[http://dx.doi.org/10.1126/science.abg5433] [PMID: 34210878]
[2]
Martín, A.J.; Mondelli, C.; Jaydev, S.D.; Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem, 2021, 7(6), 1487-1533.
[http://dx.doi.org/10.1016/j.chempr.2020.12.006]
[3]
Che, C.A.; Heynderickx, P.M. Hydrothermal carbonization of plastic waste: A review of its potential in alternative energy applications. Fuel Communications, 2024, 18, 100103.
[http://dx.doi.org/10.1016/j.jfueco.2023.100103]
[4]
Harussani, M.M.; Sapuan, S.M.; Rashid, U.; Khalina, A.; Ilyas, R.A. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci. Total Environ., 2022, 803, 149911.
[http://dx.doi.org/10.1016/j.scitotenv.2021.149911] [PMID: 34525745]
[5]
Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223), 768-771.
[http://dx.doi.org/10.1126/science.1260352] [PMID: 25678662]
[6]
Eriksson, O.; Finnveden, G. Plastic waste as a fuel - CO2-neutral or not? Energy Environ. Sci., 2009, 2(9), 907-914.
[http://dx.doi.org/10.1039/b908135f]
[7]
Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7), e1700782.
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[8]
Jia, X.; Qin, C.; Friedberger, T.; Guan, Z.; Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv., 2016, 2(6), e1501591.
[http://dx.doi.org/10.1126/sciadv.1501591] [PMID: 27386559]
[9]
(a) Zhou, H.; Wang, Y.; Ren, Y.; Li, Z.; Kong, X.; Shao, M.; Duan, H. Plastic waste valorization by leveraging multidisciplinary catalytic technologies. ACS Catal., 2022, 12(15), 9307-9324.
[http://dx.doi.org/10.1021/acscatal.2c02775];
(b) Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current technologies for plastic waste treatment: A review. J. Clean. Prod., 2021, 282, 124523.
[http://dx.doi.org/10.1016/j.jclepro.2020.124523]
[10]
Agarwal, N.K.; Kumar, M.; Ghosh, P.; Kumar, S.S.; Singh, L.; Vijay, V.K.; Kumar, V. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. Chemosphere, 2022, 295, 133893.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133893] [PMID: 35134407]
[11]
Chaudhary, V.; Kajla, P.; Verma, D.; Singh, T.P.; Kothakota, A.; Prasath, V.A.; Jeevarathinam, G.; Kumar, M.; Ramniwas, S.; Rustagi, S.; Pandiselvam, R. Valorization of dairy wastes into wonder products by the novel use of microbial cell factories. Trends Food Sci. Technol., 2023, 142, 104221.
[http://dx.doi.org/10.1016/j.tifs.2023.104221]
[12]
Okori, F.; Lederer, J.; Komakech, A.J.; Schwarzböck, T.; Fellner, J. Plastics and other extraneous matter in municipal solid waste compost: A systematic review of sources, occurrence, implications, and fate in amended soils. Environ. Adv., 2024, 15, 100494.
[http://dx.doi.org/10.1016/j.envadv.2024.100494]
[13]
Zhou, X.; Wu, B.; Qian, X.; Xu, L.; Xu, A.; Zhou, J.; Jiang, M.; Dong, W. Valorization of PE plastic waste into lipid cells through tandem catalytic pyrolysis and biological conversion. J. Environ. Chem. Eng., 2023, 11(5), 111016.
[http://dx.doi.org/10.1016/j.jece.2023.111016]
[14]
Gluth, A.; Xu, Z.; Fifield, L.S.; Yang, B. Advancing biological processing for valorization of plastic wastes. Renew. Sustain. Energy Rev., 2022, 170, 112966.
[http://dx.doi.org/10.1016/j.rser.2022.112966]
[15]
Tan, K.Q.; Ahmad, M.A.; Oh, W.D.; Low, S.C. Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis. Renew. Sustain. Energy Rev., 2023, 182, 113346.
[http://dx.doi.org/10.1016/j.rser.2023.113346]
[16]
Díaz-Perete, D.; Hermoso-Orzáez, M.J.; Terrados-Cepeda, J.; Silva-Romano, P.; Martin-Doñate, C. WEEE polymers valorization, its use as fuel in the gasification process and revaluation of the inert by-products obtained: Sustainable mortars as a solution. Heliyon, 2023, 9(9), e20194.
[http://dx.doi.org/10.1016/j.heliyon.2023.e20194] [PMID: 37809432]
[17]
Farghali, M.; Shimahata, A.; Mohamed, I.M.A.; Iwasaki, M.; Lu, J.; Ihara, I.; Umetsu, K. Integrating anaerobic digestion with hydrothermal pretreatment for bioenergy production: Waste valorization of plastic containing food waste and rice husk. Biochem. Eng. J., 2022, 186, 108546.
[http://dx.doi.org/10.1016/j.bej.2022.108546]
[18]
Ebrahimi Farshchi, M.; Madadian Bozorg, N.; Ehsani, A.; Aghdasinia, H.; Chen, Z.; Rostamnia, S.; Ni, B.J. Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol. J. Environ. Manage., 2023, 345, 118842.
[http://dx.doi.org/10.1016/j.jenvman.2023.118842] [PMID: 37619388]
[19]
(a) Oufkir, J.; Zerraf, S.; Belaaouad, S. Valorization of agricultural polyolefin plastic waste in the kingdom of morocco through thermal pyrolysis: Influence of thermal parameters on pyrolytic oil yields. Sci. Am., 2024, 23, e01991.;
(b) Olazar, L.; Saldarriaga, J.F.; Lopez, G.; Santamaria, L.; Amutio, M.; Olazar, M.; Artetxe, M. Insight into the joint valorization of CO2 and waste plastics by pyrolysis and in line dry reforming for syngas production. Fuel Process. Technol., 2024, 253, 108024.
[http://dx.doi.org/10.1016/j.fuproc.2023.108024]
[20]
(a) Maria Coelho Vianna, L.; de Oliveira, L.; Durante Mühl, D. Waste valorization in agribusiness value chains. Waste Management Bulletin, 2024, 1(4), 195-204.
[http://dx.doi.org/10.1016/j.wmb.2023.10.009];
(b) Valizadeh, S.; Hakimian, H.; Farooq, A.; Jeon, B.H.; Chen, W.H.; Hoon Lee, S.; Jung, S.C.; Won Seo, M.; Park, Y.K. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review. Bioresour. Technol., 2022, 365, 128143.
[http://dx.doi.org/10.1016/j.biortech.2022.128143] [PMID: 36265786]
[21]
(a) Ibarra-Esparza, F.E.; González-López, M.E.; Ibarra-Esparza, J.; Lara-Topete, G.O.; Senés-Guerrero, C.; Cansdale, A.; Forrester, S.; Chong, J.P.J.; Gradilla-Hernández, M.S. Implementation of anaerobic digestion for valorizing the organic fraction of municipal solid waste in developing countries: Technical insights from a systematic review. J. Environ. Manage., 2023, 347, 118993.
[http://dx.doi.org/10.1016/j.jenvman.2023.118993] [PMID: 37751665];
(b) Saba, B.; Bharathidasan, A.K.; Ezeji, T.C.; Cornish, K. Characterization and potential valorization of industrial food processing wastes. Sci. Total Environ., 2023, 868, 161550.
[http://dx.doi.org/10.1016/j.scitotenv.2023.161550] [PMID: 36652966]
[22]
Okopi, S.I.; Wang, J.; Kong, W.; Yu, Z.; Ndudi, E.A.; Che, L.; Gu, Z.; Xu, F. Valorization of food waste impurities by catalytic co-pyrolysis for production of pyrolysis oil with high energy potential. J. Anal. Appl. Pyrolysis, 2023, 170, 105918.
[http://dx.doi.org/10.1016/j.jaap.2023.105918]
[23]
Kamali, A.R.; Li, S. Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance. Appl. Energy, 2023, 334, 120692.
[http://dx.doi.org/10.1016/j.apenergy.2023.120692]
[24]
(a) Zhang, Z.; Li, X.; Liu, H.; Zamyadi, A.; Guo, W.; Wen, H.; Gao, L.; Nghiem, L.D.; Wang, Q. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. Bioresour. Technol., 2022, 344(Pt A), 126197.
[http://dx.doi.org/10.1016/j.biortech.2021.126197] [PMID: 34710608];
(b) Kraakman, N.J.R.; Diaz, I.; Fdz-Polanco, M.; Muñoz, R. Large-scale micro-aerobic digestion studies at municipal water resource recovery facilities for process-integrated biogas desulfurization. J. Water Process Eng., 2023, 53, 103643.
[http://dx.doi.org/10.1016/j.jwpe.2023.103643]
[25]
(a) Pasciucco, F.; Francini, G.; Pecorini, I.; Baccioli, A.; Lombardi, L.; Ferrari, L. Valorization of biogas from the anaerobic co-treatment of sewage sludge and organic waste: Life cycle assessment and life cycle costing of different recovery strategies. J. Clean. Prod., 2023, 401, 136762.
[http://dx.doi.org/10.1016/j.jclepro.2023.136762];
(b) Ambaye, T.G.; Djellabi, R.; Vaccari, M.; Prasad, S.; M Aminabhavi, T.; Rtimi, S. Emerging technologies and sustainable strategies for municipal solid waste valorization: Challenges of circular economy implementation. J. Clean. Prod., 2023, 423, 138708.
[http://dx.doi.org/10.1016/j.jclepro.2023.138708]
[26]
Peng, X.Y.; Wang, S.P.; Chu, X.L.; Sun, Z.Y.; Xia, Z.Y.; Xie, C.Y.; Gou, M.; Tang, Y.Q. Valorizing kitchen waste to produce value-added fertilizer by thermophilic semi-continuous composting followed by static stacking: Performance and bacterial community succession analysis. Bioresour. Technol., 2023, 373, 128732.
[http://dx.doi.org/10.1016/j.biortech.2023.128732] [PMID: 36774986]
[27]
Azelee, N.I.W.; Dahiya, D.; Ayothiraman, S.; Noor, N.M.; Rasid, Z.I.A.; Ramli, A.N.M.; Ravindran, B.; Iwuchukwu, F.U.; Selvasembian, R. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review. Int. J. Biol. Macromol., 2023, 253(Pt 2), 126492.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126492] [PMID: 37634772]
[28]
(a) Zhang, P.; Liang, C.; Wu, M.; Li, Y.; Chen, X.; Liu, D.; Ma, J. Sustainable microwave-driven CO2 gasification of plastic waste for high-yield H2 and CO production. Appl. Catal. B, 2024, 345, 123718.
[http://dx.doi.org/10.1016/j.apcatb.2024.123718];
(b) Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals. Ind. Crops Prod., 2022, 189, 115766.
[http://dx.doi.org/10.1016/j.indcrop.2022.115766]
[29]
Lopez, G.; Santamaria, L. Microwaving plastic into hydrogen and carbons. Nat. Catal., 2020, 3(11), 861-862.
[http://dx.doi.org/10.1038/s41929-020-00538-1]
[30]
Ramzan, F.; Shoukat, B.; Naz, M.Y.; Shukrullah, S.; Ahmad, F.; Naz, I.; Makhlouf, M.M.; Farooq, M.U.; Kamran, K. Single step microwaves assisted catalytic conversion of plastic waste into valuable fuel and carbon nanotubes. Thermochim. Acta, 2022, 715, 179294.
[http://dx.doi.org/10.1016/j.tca.2022.179294]
[31]
Parmar, K.R.; Tuli, V.; Caiola, A.; Hu, J.; Wang, Y. Sustainable production of hydrogen and carbon nanotubes/nanofibers from plastic waste through microwave degradation. Int. J. Hydrogen Energy, 2024, 51, 488-498.
[http://dx.doi.org/10.1016/j.ijhydene.2023.08.224]
[32]
Zhao, J.; Gao, J.; Wang, D.; Chen, Y.; Zhang, L.; Ma, W.; Zhao, S. Microwave-intensified catalytic upcycling of plastic waste into hydrogen and carbon nanotubes over self-dispersing bimetallic catalysts. Chem. Eng. J., 2024, 483, 149270.
[http://dx.doi.org/10.1016/j.cej.2024.149270]
[33]
(a) Zhang, L.; Wu, Q.; Fan, L.; Liao, R.; Zhang, J.; Zou, R.; Cobb, K.; Ruan, R.; Wang, Y. Monocyclic aromatic hydrocarbons production from NaOH pretreatment metallized food plastic packaging waste through microwave pyrolysis coupled with ex-situ catalytic reforming. Chem. Eng. J., 2024, 484, 149777.
[http://dx.doi.org/10.1016/j.cej.2024.149777];
(b) Fan, S.; Zhang, Y.; Cui, L.; Maqsood, T.; Nižetić, S. Cleaner production of aviation oil from microwave-assisted pyrolysis of plastic wastes. J. Clean. Prod., 2023, 390, 136102.
[http://dx.doi.org/10.1016/j.jclepro.2023.136102]
[34]
(a) Meng, Y.; Zhou, Y.; Shao, Y.; Zhou, D.; Shen, D.; Long, Y. Evaluating the potential of the microwave hydrothermal method for valorizing food waste by producing 5-hydroxymethylfurfural. Fuel, 2021, 306, 121769.
[http://dx.doi.org/10.1016/j.fuel.2021.121769];
(b) Wang, B.; Chen, Y.; Chen, W.; Hu, J.; Chang, C.; Pang, S.; Li, P. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field. Energy, 2024, 293, 130711.
[http://dx.doi.org/10.1016/j.energy.2024.130711];
c) Nguyen, B.N.T.; Lim, J.Y.C. Emerging green approaches for valorization of plastics with saturated carbon backbones. Trends Chem., 2024, 6(3), 100-114.
[http://dx.doi.org/10.1016/j.trechm.2024.01.001]
[35]
Kumar, V.; Verma, P. Pulp-paper industry sludge waste biorefinery for sustainable energy and value-added products development: A systematic valorization towards waste management. J. Environ. Manage., 2024, 352, 120052.
[http://dx.doi.org/10.1016/j.jenvman.2024.120052] [PMID: 38244409]
[36]
Liu, Q.; Jiang, D.; Zhou, H.; Yuan, X.; Wu, C.; Hu, C.; Luque, R.; Wang, S.; Chu, S.; Xiao, R.; Zhang, H. Pyrolysis–catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy. Proc. Natl. Acad. Sci. USA, 2023, 120(39), e2305078120.
[http://dx.doi.org/10.1073/pnas.2305078120] [PMID: 37695879]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy