Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Research Article

Knockdown of Ubiquitin-Conjugating Enzyme E2 T Abolishes the Progression of Head and Neck Squamous Cell Carcinoma by Inhibiting NF-Κb Signaling and inducing Ferroptosis

Author(s): Feng Cai, Hongbo Xu, Shilong Song, Gengming Wang, Yajun Zhang, Jing Qian and Lu Xu*

Volume 25, Issue 7, 2024

Published on: 04 April, 2024

Page: [577 - 585] Pages: 9

DOI: 10.2174/0113892037287640240322084946

Price: $65

Abstract

Background: Ubiquitin-conjugating enzyme 2T (UBE2T) has been reported to be associated with uncontrolled cell growth and tumorigenesis in multiple cancer types. However, the understanding of its regulatory role in the carcinogenesis of Head And Neck Squamous Cell Carcinoma (HNSC) is limited.

Methods: UBE2T expression in HNSC patient samples and the correlation between its expression and patients’ survival rates were evaluated using The Cancer Genome Atlas (TCGA) database. Cell survival and proliferation were investigated in UM-SCC1 and UM-SCC15 cells infected with control and shUBE2T lentivirus. The xenograft mouse model was established using UM-SCC15 cells to examine HNSC tumorigenesis with or without UBE2T. Western blot, qRT-PCR, and ferroptosis assays were carried out to disclose the interaction between UBE2T and NF-κB signaling and ferroptosis.

Results: The increased expression of UBE2T was noted in tumor tissues of patients with HNSC, correlating with a significantly reduced overall survival time in this patient cohort. Knockdown of UBE2T inhibited HNSC tumorigenesis and tumor growth. Mechanistically, inhibition of UBE2T suppressed NF-κB signaling and induced ferroptosis in HNSC.

Conclusion: Our study underscores the multifaceted role of UBE2T in HNSC, illuminating its potential as a biomarker and therapeutic target.

« Previous
Graphical Abstract

[1]
Lang, Y.; Dong, D. Cetuximab plus chemotherapy versus chemotherapy alone in recurrent or metastatic head and neck squamous cell carcinoma: A cost-effectiveness analysis. Cancer Manag. Res., 2020, 12, 11383-11390.
[http://dx.doi.org/10.2147/CMAR.S272149] [PMID: 33204154]
[2]
Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, risk factors, and prevention of head and neck squamous cell carcinoma. Med. Sci., 2023, 11(2), 42.
[http://dx.doi.org/10.3390/medsci11020042] [PMID: 37367741]
[3]
Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers, 2020, 6(1), 92.
[http://dx.doi.org/10.1038/s41572-020-00224-3] [PMID: 33243986]
[4]
Marur, S.; Forastiere, A.A. Head and neck cancer: Changing epidemiology, diagnosis, and treatment. Mayo Clin. Proc., 2008, 83(4), 489-501.
[http://dx.doi.org/10.4065/83.4.489] [PMID: 18380996]
[5]
Chamoli, A.; Gosavi, A.S.; Shirwadkar, U.P.; Wangdale, K.V.; Behera, S.K.; Kurrey, N.K.; Kalia, K.; Mandoli, A. Overview of oral cavity squamous cell carcinoma: Risk factors, mechanisms, and diagnostics. Oral Oncol., 2021, 121, 105451.
[http://dx.doi.org/10.1016/j.oraloncology.2021.105451] [PMID: 34329869]
[6]
Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of human papillomavirus–positive head and neck squamous cell carcinoma. J. Clin. Oncol., 2015, 33(29), 3235-3242.
[http://dx.doi.org/10.1200/JCO.2015.61.6995] [PMID: 26351338]
[7]
Kitamura, N.; Sento, S.; Yoshizawa, Y.; Sasabe, E.; Kudo, Y.; Yamamoto, T. Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int. J. Mol. Sci., 2020, 22(1), 240.
[http://dx.doi.org/10.3390/ijms22010240] [PMID: 33383632]
[8]
Solomon, B.; Young, R.J.; Rischin, D. Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin. Cancer Biol., 2018, 52(Pt 2), 228-240.
[http://dx.doi.org/10.1016/j.semcancer.2018.01.008] [PMID: 29355614]
[9]
Parmar, K.; Mohamed, A.; Vaish, E.; Thawani, R.; Cetnar, J.; Thein, K.Z. Immunotherapy in head and neck squamous cell carcinoma: An updated review. Cancer Treat. Res. Commun., 2022, 33, 100649.
[http://dx.doi.org/10.1016/j.ctarc.2022.100649] [PMID: 36279709]
[10]
Vos, J.L.; Elbers, J.B.W.; Krijgsman, O.; Traets, J.J.H.; Qiao, X.; van der Leun, A.M.; Lubeck, Y.; Seignette, I.M.; Smit, L.A.; Willems, S.M.; van den Brekel, M.W.M.; Dirven, R.; Baris Karakullukcu, M.; Karssemakers, L.; Klop, W.M.C.; Lohuis, P.J.F.M.; Schreuder, W.H.; Smeele, L.E.; van der Velden, L.A.; Bing Tan, I.; Onderwater, S.; Jasperse, B.; Vogel, W.V.; Al-Mamgani, A.; Keijser, A.; Van der Noort, V.; Broeks, A.; Hooijberg, E.; Peeper, D.S.; Schumacher, T.N.; Blank, C.U.; De Boer, J.P.; Haanen, J.B.A.G.; Zuur, C.L. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat. Commun., 2021, 12(1), 7348.
[http://dx.doi.org/10.1038/s41467-021-26472-9] [PMID: 34937871]
[11]
Alpi, A.F.; Chaugule, V.; Walden, H. Mechanism and disease association of E2-conjugating enzymes: Lessons from UBE2T and UBE2L3. Biochem. J., 2016, 473(20), 3401-3419.
[http://dx.doi.org/10.1042/BCJ20160028] [PMID: 27729585]
[12]
Machida, Y.J.; Machida, Y.; Chen, Y.; Gurtan, A.M.; Kupfer, G.M.; D’Andrea, A.D.; Dutta, A. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell, 2006, 23(4), 589-596.
[http://dx.doi.org/10.1016/j.molcel.2006.06.024] [PMID: 16916645]
[13]
Wen, M.; Kwon, Y.; Wang, Y.; Mao, J.H.; Wei, G. Elevated expression of UBE2T exhibits oncogenic properties in human prostate cancer. Oncotarget, 2015, 6(28), 25226-25239.
[http://dx.doi.org/10.18632/oncotarget.4712] [PMID: 26308072]
[14]
Xu, F.; Xiong, N.; Yuan, Y.; Liu, J. Prognostic value of UBE2T and its correlation with immune infiltrates in lung adenocarcinoma. J. Oncol., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/5244820] [PMID: 36245987]
[15]
Xiao, Y.; Deng, Z.; Li, Y.; Wei, B.; Chen, X.; Zhao, Z.; Xiu, Y.; Hu, M.; Alahdal, M.; Deng, Z.; Wang, D.; Liu, J.; Li, W. ANLN and UBE2T are prognostic biomarkers associated with immune regulation in breast cancer: A bioinformatics analysis. Cancer Cell Int., 2022, 22(1), 193.
[http://dx.doi.org/10.1186/s12935-022-02611-0] [PMID: 35578283]
[16]
Cao, K.; Ling, X.; Jiang, X.; Ma, J.; Zhu, J. Pan-cancer analysis of UBE2T with a focus on prognostic and immunological roles in lung adenocarcinoma. Respir. Res., 2022, 23(1), 306.
[http://dx.doi.org/10.1186/s12931-022-02226-z] [PMID: 36357897]
[17]
Yu, Z.; Jiang, X.; Qin, L.; Deng, H.; Wang, J.; Ren, W.; Li, H.; Zhao, L.; Liu, H.; Yan, H.; Shi, W.; Wang, Q.; Luo, C.; Long, B.; Zhou, H.; Sun, H.; Jiao, Z. A novel UBE2T inhibitor suppresses Wnt/β-catenin signaling hyperactivation and gastric cancer progression by blocking RACK1 ubiquitination. Oncogene, 2021, 40(5), 1027-1042.
[http://dx.doi.org/10.1038/s41388-020-01572-w] [PMID: 33323973]
[18]
Chai, F.; Zhang, J.; Fu, T.; Jiang, P.; Huang, Y.; Wang, L.; Yan, S.; Yan, X.; Yu, L.; Xu, Z.; Wang, R.; Xu, B.; Du, X.; Jiang, Y.; Zhang, J. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma. Channels, 2023, 17(1), 2208928.
[http://dx.doi.org/10.1080/19336950.2023.2208928] [PMID: 37134043]
[19]
Mele, L.; Del Vecchio, V.; Marampon, F.; Regad, T.; Wagner, S.; Mosca, L.; Bimonte, S.; Giudice, A.; Liccardo, D.; Prisco, C.; Schwerdtfeger, M.; La Noce, M.; Tirino, V.; Caraglia, M.; Papaccio, G.; Desiderio, V.; Barbieri, A. β2-AR blockade potentiates MEK1/2 inhibitor effect on HNSCC by regulating the Nrf2-mediated defense mechanism. Cell Death Dis., 2020, 11(10), 850.
[http://dx.doi.org/10.1038/s41419-020-03056-x] [PMID: 33051434]
[20]
Zhao, L.; Liang, J.; Zhong, W.; Han, C.; Liu, D.; Chen, X. Expression and prognostic analysis of BGN in head and neck squamous cell carcinoma. Gene, 2022, 827, 146461.
[http://dx.doi.org/10.1016/j.gene.2022.146461] [PMID: 35358652]
[21]
Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 227-241.
[http://dx.doi.org/10.1002/wsbm.1331] [PMID: 26990581]
[22]
Schlein, L.J.; Thamm, D.H. Review: NF-kB activation in canine cancer. Vet. Pathol., 2022, 59(5), 724-732.
[http://dx.doi.org/10.1177/03009858221092017] [PMID: 35499088]
[23]
Zinatizadeh, M.R.; Schock, B.; Chalbatani, G.M.; Zarandi, P.K.; Jalali, S.A.; Miri, S.R. The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis., 2021, 8(3), 287-297.
[http://dx.doi.org/10.1016/j.gendis.2020.06.005] [PMID: 33997176]
[24]
Chan, L.P.; Liu, C.; Chiang, F.Y.; Wang, L.F.; Lee, K.W.; Chen, W.T.; Kuo, P.L.; Liang, C.H. IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-κB pathway and reduction of JNK in HNSCC. Oncotarget, 2017, 8(34), 56375-56388.
[http://dx.doi.org/10.18632/oncotarget.16914] [PMID: 28915597]
[25]
Chang, H.; Xu, Q.; Li, J.; Li, M.; Zhang, Z.; Ma, H.; Yang, X. Lactate secreted by PKM2 upregulation promotes Galectin-9-mediated immunosuppression via inhibiting NF-κB pathway in HNSCC. Cell Death Dis., 2021, 12(8), 725.
[http://dx.doi.org/10.1038/s41419-021-03990-4] [PMID: 34290225]
[26]
Vander Broek, R.; Snow, G.E.; Chen, Z.; Van Waes, C. Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncol., 2014, 50(10), 930-941.
[http://dx.doi.org/10.1016/j.oraloncology.2013.10.005] [PMID: 24177052]
[27]
Li, M.; Jin, S.; Zhang, Z.; Ma, H.; Yang, X. Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma. Cancer Lett., 2022, 527, 28-40.
[http://dx.doi.org/10.1016/j.canlet.2021.12.011] [PMID: 34902522]
[28]
Tang, Y.; Li, C.; Zhang, Y.J.; Wu, Z.H. Ferroptosis-related long non-coding RNA signature predicts the prognosis of head and neck squamous cell carcinoma. Int. J. Biol. Sci., 2021, 17(3), 702-711.
[http://dx.doi.org/10.7150/ijbs.55552] [PMID: 33767582]
[29]
Zhao, Y.Y.; Lian, J.X.; Lan, Z.; Zou, K.L.; Wang, W.M.; Yu, G.T. Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure in HNSCC. Oral Dis., 2023, 29(3), 933-941.
[http://dx.doi.org/10.1111/odi.14077] [PMID: 34773344]
[30]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[31]
Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[32]
Xu, N.; Cui, Y.; Shi, H.; Guo, G.; Sun, F.; Jian, T.; Rao, H. UBE2T/STAT3 Signaling promotes the proliferation and tumorigenesis in retinoblastoma. Invest. Ophthalmol. Vis. Sci., 2022, 63(9), 20.
[http://dx.doi.org/10.1167/iovs.63.9.20] [PMID: 35980647]
[33]
Wang, T.; He, X.; Liu, X.; Liu, Y.; Zhang, W.; Huang, Q.; Liu, W.; Xiong, L.; Tan, R.; Wang, H.; Zeng, H. Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-kB dependent pathway. Front. Physiol., 2017, 8, 1010.
[http://dx.doi.org/10.3389/fphys.2017.01010] [PMID: 29255427]
[34]
Tzani, M.A.; Gioftsidou, D.K.; Kallitsakis, M.G.; Pliatsios, N.V.; Kalogiouri, N.P.; Angaridis, P.A.; Lykakis, I.N.; Terzidis, M.A. Direct and indirect chemiluminescence: Reactions, mechanisms and challenges. Molecules, 2021, 26(24), 7664.
[http://dx.doi.org/10.3390/molecules26247664] [PMID: 34946744]
[35]
Hao, J.; Xu, A.; Xie, X.; Hao, J.; Tian, T.; Gao, S.; Xiao, X.; He, D. Elevated expression of UBE2T in lung cancer tumors and cell lines. Tumour Biol., 2008, 29(3), 195-203.
[http://dx.doi.org/10.1159/000148187] [PMID: 18667844]
[36]
Leung, R.W.H.; Ho, N.P.Y.; Leung, C.O.N.; Lee, T.K.W. UBE2T: A new molecular regulator of cancer stemness in hepatocellular carcinoma. Oncotarget, 2021, 12(17), 1727-1728.
[http://dx.doi.org/10.18632/oncotarget.28033] [PMID: 34434501]
[37]
Luo, C.; Yao, Y.; Yu, Z.; Zhou, H.; Guo, L.; Zhang, J.; Cao, H.; Zhang, G.; Li, Y.; Jiao, Z. UBE2T knockdown inhibits gastric cancer progression. Oncotarget, 2017, 8(20), 32639-32654.
[http://dx.doi.org/10.18632/oncotarget.15947] [PMID: 28427240]
[38]
Zhu, X.; Li, T.; Niu, X.; Chen, L.; Ge, C. Identification of UBE2T as an independent prognostic biomarker for gallbladder cancer. Oncol. Lett., 2020, 20(4), 44.
[http://dx.doi.org/10.3892/ol.2020.11903] [PMID: 32802166]
[39]
Hartwell, L.; Mankoff, D.; Paulovich, A.; Ramsey, S.; Swisher, E. Cancer biomarkers: A systems approach. Nat. Biotechnol., 2006, 24(8), 905-908.
[http://dx.doi.org/10.1038/nbt0806-905] [PMID: 16900126]
[40]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[http://dx.doi.org/10.1016/j.molonc.2012.01.010] [PMID: 22356776]
[41]
Gerber, D.E. Targeted therapies: A new generation of cancer treatments. Am. Fam. Physician, 2008, 77(3), 311-319.
[PMID: 18297955]
[42]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[43]
Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch., 2005, 446(5), 475-482.
[http://dx.doi.org/10.1007/s00428-005-1264-9] [PMID: 15856292]
[44]
Kleiger, G.; Mayor, T. Perilous journey: A tour of the ubiquitin–proteasome system. Trends Cell Biol., 2014, 24(6), 352-359.
[http://dx.doi.org/10.1016/j.tcb.2013.12.003] [PMID: 24457024]
[45]
Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer, 2022, 22(7), 381-396.
[http://dx.doi.org/10.1038/s41568-022-00459-0] [PMID: 35338310]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy