Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Green Synthesis of Au-Ni Bimetallic Nanoparticles using Aqueous Extract of Coccinia grandis (L.) Voigt and their Catalytic Activity in Oxidation of Alcohols

Author(s): Munmi Hazarika, Pankaj Das and Amlan Puzari*

Volume 13, Issue 1, 2024

Published on: 04 April, 2024

Page: [49 - 56] Pages: 8

DOI: 10.2174/0122115447301554240313040134

Abstract

Background: In recent years, bimetallic nanoparticles have gained remarkable attention due to their excellent physical and chemical properties. Especially, bimetallic nanoparticles are found to be highly efficient as catalysts in many important organic transformations.

Objective: The objective of the present work involves green synthesis of Au-Ni bimetallic nanoparticles using plant extract as the bio-reductant and to evaluate their catalytic efficiency in oxidation of alcohols.

Methods: The experiment involves a simple and eco-friendly protocol for synthesis of Au-Ni bimetallic as well as their corresponding monometallic nanoparticles that involves the use of aqueous fruit seed extract of Coccinia grandis(L.) Voigt as the bio-reductant and tannic acid as the bio-stabilizer. The synthesized nanoparticles were characterized by using XRD, TEM, FTIR, TGA etc., and their catalytic activity was evaluated for oxidation of alcohols.

Results: The synthesized bimetallic nanoparticles have shown excellent catalytic activity towards aqueous phase oxidation of alcohols to aldehydes under ambient reaction conditions. Furthermore, the results have revealed better effective performance of the bimetallic nanoparticles over the corresponding monometallic nanoparticles of gold and nickel, establishing the synergic influence of the two metals. Another attractive feature of this work is that the Au-Ni bimetallic nanoparticles could be recycled and reused up to four catalytic cycles without any significant decline in product yield.

Conclusion: The green synthesized bimetallic Au-Ni nanoparticles have shown excellent catalytic activity toward the oxidation of alcohols in aqueous media under ambient reaction conditions. In addition, the nanoparticles are found to be successfully recyclable upto four catalytic cycles.

« Previous
Graphical Abstract

[1]
Scaria, J.; Nidheesh, P.V.; Kumar, M.S. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. J. Environ. Manage., 2020, 259, 110011.
[http://dx.doi.org/10.1016/j.jenvman.2019.110011] [PMID: 32072958]
[2]
Kumari, M.M.; Jacob, J.; Philip, D. Green synthesis and applications of Au-Ag bimetallic nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 185.
[http://dx.doi.org/10.1016/j.saa.2014.08.079] [PMID: 25218228]
[3]
Jin, X.; Taniguchi, K.; Yamaguchi, K.; Mizuno, N. Au–Pd alloy nanoparticles supported on layered double hydroxide for heterogeneously catalyzed aerobic oxidative dehydrogenation of cyclohexanols and cyclohexanones to phenols. Chem. Sci., 2016, 7(8), 5371-5383.
[http://dx.doi.org/10.1039/C6SC00874G]
[4]
Sinfelt, J.H. Structure of bimetallic clusters. Acc. Chem. Res., 1987, 20(4), 134-139.
[http://dx.doi.org/10.1021/ar00136a002]
[5]
Chen, M.; Kumar, D.; Yi, C.W.; Goodman, D.W. The promotional effect of gold in catalysis by palladium-gold. Science, 2005, 310(5746), 291-293.
[http://dx.doi.org/10.1126/science.1115800]
[6]
Hutchings, G.J. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. Chem. Commun., 2008, 10(10), 1148-1164.
[http://dx.doi.org/10.1039/B712305C ] [PMID: 18309405]
[7]
Zhang, H.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater., 2012, 11(1), 49-52.
[http://dx.doi.org/10.1038/nmat3143 ] [PMID: 22019941]
[8]
Xu, N.; Lai, K.; Fan, Y.; Rasco, B.A.; Huang, Y. Rapid analysis of herbicide diquat in apple juice with surface enhanced Raman spectroscopy: Effects of particle size and the ratio of gold to silver with gold and gold-silver core-shell bimetallic nanoparticles as substrates. Lebensm. Wiss. Technol., 2019, 116, 108547.
[http://dx.doi.org/10.1016/j.lwt.2019.108547]
[9]
Deplanche, K.; Merroun, M.L.; Casadesus, M.; Tran, D.T.; Mikheenko, I.P.; Bennett, J.A.; Zhu, J.; Jones, I.P.; Attard, G.A.; Wood, J.; Selenska-Pobell, S.; Macaskie, L.E. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J. R. Soc. Interface, 2012, 9(72), 1705-1712.
[http://dx.doi.org/10.1098/rsif.2012.0003 ] [PMID: 22399790]
[10]
Balcha, T.; Strobl, J.R.; Fowler, C.; Dash, P.; Scott, R.W.J. Selective aerobic oxidation of crotyl alcohol using aupd core-shell nanoparticles. ACS Catal., 2011, 1(5), 425-436.
[http://dx.doi.org/10.1021/cs200040a]
[11]
Zhang, H.; Okuni, J.; Toshima, N. One-pot synthesis of Ag–Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation. J. Colloid Interface Sci., 2011, 354(1), 131-138.
[http://dx.doi.org/10.1016/j.jcis.2010.10.036 ] [PMID: 21067768]
[12]
Godínez-Salomón, F.; Hallen-López, M.; Solorza-Feria, O. Enhanced electroactivity for the oxygen reduction on Ni@Pt core-shell nanocatalysts. Int. J. Hydrogen Energy, 2012, 37(19), 14902-14910.
[http://dx.doi.org/10.1016/j.ijhydene.2012.01.157]
[13]
Alayoglu, S.; Nilekar, A.U.; Mavrikakis, M.; Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater., 2008, 7(4), 333-338.
[http://dx.doi.org/10.1038/nmat2156 ] [PMID: 18345004]
[14]
Zhang, J.; Chen, G.; Guay, D.; Chaker, M.; Ma, D. Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale, 2014, 6(4), 2125-2130.
[http://dx.doi.org/10.1039/C3NR04715F ] [PMID: 24217271]
[15]
Fu, G.T.; Ma, R.G.; Gao, X.Q.; Chen, Y.; Tang, Y.W.; Lu, T.H.; Lee, J.M. Hydrothermal synthesis of Pt–Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale, 2014, 6(21), 12310-12314.
[http://dx.doi.org/10.1039/C4NR03617D ] [PMID: 25169420]
[16]
Zhang, H.; Toshima, N. Synthesis of Au/Pt bimetallic nanoparticles with a Pt-rich shell and their high catalytic activities for aerobic glucose oxidation. J. Colloid Interface Sci., 2013, 394, 166-176.
[http://dx.doi.org/10.1016/j.jcis.2012.11.059 ] [PMID: 23290434]
[17]
Luo, M.F.; Wang, C.C.; Hu, G.R.; Lin, W.R.; Ho, C.Y.; Lin, Y.C.; Hsu, Y.J. Active alloying of Au with Pt in nanoclusters supported on a thin film of Al2O3/NiAl(100). J. Phys. Chem. C, 2009, 113, 21054.
[http://dx.doi.org/10.1021/jp907439c]
[18]
Hosseini, M.; Barakat, T.; Cousin, R.; Aboukaïs, A.; Su, B.L.; De Weireld, G.; Siffert, S. Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of VOC: The effect of metal deposition. Appl. Catal. B, 2012, 111-112, 218-224.
[http://dx.doi.org/10.1016/j.apcatb.2011.10.002]
[19]
Yamamoto, T.A.; Kageyama, S.; Seino, S.; Nitani, H.; Nakagawa, T.; Horioka, R.; Honda, Y.; Ueno, K.; Daimon, H. Methanol oxidation catalysis and substructure of PtRu/C bimetallic nanoparticles synthesized by a radiolytic process. Appl. Catal. A Gen., 2011, 396(1-2), 68-75.
[http://dx.doi.org/10.1016/j.apcata.2011.01.037]
[20]
Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms. J. Electroanal. Chem. Interfacial Electrochem., 1975, 60(3), 267-273.
[http://dx.doi.org/10.1016/S0022-0728(75)80261-0]
[21]
Han, Z.; Li, S.; Jiang, F.; Wang, T.; Ma, X.; Gong, J. Propane dehydrogenation over Pt–Cu bimetallic catalysts: The nature of coke deposition and the role of copper. Nanoscale, 2014, 6(17), 10000-10008.
[http://dx.doi.org/10.1039/C4NR02143F ] [PMID: 24933477]
[22]
Suo, Z.; Ma, C.; Liao, W.; Jin, M.; Lv, H. Structure and activity of Au–Pd/SiO2 bimetallic catalyst for thiophene hydrodesulfurization. Fuel Process. Technol., 2011, 92(8), 1549-1553.
[http://dx.doi.org/10.1016/j.fuproc.2011.03.018]
[23]
Xie, W.; Herrmann, C.; Kömpe, K.; Haase, M.; Schlücker, S. Synthesis of bifunctional Au/Pt/Au Core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc., 2011, 133(48), 19302-19305.
[http://dx.doi.org/10.1021/ja208298q ] [PMID: 22053855]
[24]
Fu, J.; Wang, S.; Zhu, J.; Wang, K.; Gao, M.; Wang, X.; Xu, Q. Au-Ag bimetallic nanoparticles decorated multi-amino cyclophosphazene hybrid microspheres as enhanced activity catalysts for the reduction of 4-nitrophenol. Mater. Chem. Phys., 2018, 207, 315-324.
[http://dx.doi.org/10.1016/j.matchemphys.2018.01.002]
[25]
Latha, D.; Prabu, P.; Munusamy, S.; Sampurnam, S.; Arulvasu, C.; Narayanan, V. Evaluation of catalytic activity of green synthesized bimetallic nanoparticle fromJusticiaadhatoda. Mater. Today Proc., 2019, 14, 569-573.
[http://dx.doi.org/10.1016/j.matpr.2019.04.180]
[26]
Thompson, D.T. Platin. Met. Rev., 2004, 48, 169.
[27]
Edwards, J.K.; Freakley, S.J.; Lewis, R.J.; Pritchard, J.C.; Hutchings, G.J. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catal. Today, 2015, 248, 3-9.
[http://dx.doi.org/10.1016/j.cattod.2014.03.011]
[28]
Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Mohan, S.; Venkatesh, K.S.; Esakkirajan, M.; Kaleeswarran, P.; Alharbi, N.S.; Kadaikunnan, S.; Govindarajan, M.; Benelli, G.; Arumugam, A. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog., 2016, 101, 1-11.
[http://dx.doi.org/10.1016/j.micpath.2016.10.011 ] [PMID: 27765621]
[29]
Syed, B.; Karthik, N.; Bhat, P.; Bisht, N.; Prasad, A.; Satish, S.; Prasad, M.N.N. Phyto-biologic bimetallic nanoparticles bearing antibacterial activity against human pathogens. J. King Saud Univ. Sci., 2019, 31(4), 798-803.
[http://dx.doi.org/10.1016/j.jksus.2018.01.008]
[30]
Princely, S.X.; Puja, P.; Vinita, M.N.; Devan, U.; Velangani, A.J.; Sunita, S.; Yuvakkumar, R.; Velmurugan, P.; Ravi, A.V.; Govarthanan, M.; Kumar, P. Anti-proliferative and anti-migratory effects of flower-like bimetallic (Au@Pt) nanoparticles. Mater. Lett., 2020, 267, 127491.
[http://dx.doi.org/10.1016/j.matlet.2020.127491]
[31]
Heinz, M.; Srabionyan, V.V.; Avakyan, L.A.; Bugaev, A.L.; Skidanenko, A.V.; Kaptelinin, S.Y.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L.A. Formation of bimetallic gold-silver nanoparticles in glass by UV laser irradiation. J. Alloys Compd., 2018, 767, 1253-1263.
[http://dx.doi.org/10.1016/j.jallcom.2018.07.183]
[32]
Lee, I.; Han, S.W.; Kim, K. Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem. Commun., 2001, 18(18), 1782-1783.
[http://dx.doi.org/10.1039/b105437f ] [PMID: 12240313]
[33]
Compagnini, G.; Messina, E.; Puglisi, O.; Nicolosi, V. Laser synthesis of Au/Ag colloidal nano-alloys: Optical properties, structure and composition. Appl. Surf. Sci., 2007, 254(4), 1007-1011.
[http://dx.doi.org/10.1016/j.apsusc.2007.07.177]
[34]
Chen, D.H.; Chen, C.J. Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem., 2002, 12(5), 1557-1562.
[http://dx.doi.org/10.1039/b110749f]
[35]
Mallin, M.P.; Murphy, C.J. Solution-phase synthesis of Sub-10 nm Au−Ag alloy nanoparticles. Nano Lett., 2002, 2(11), 1235-1237.
[http://dx.doi.org/10.1021/nl025774n]
[36]
Liu, H.; Sun, K.; Zhao, J.; Guo, R.; Shen, M.; Cao, X.; Zhang, G.; Shi, X. Dendrimer-mediated synthesis and shape evolution of gold–silver alloy nanoparticles. Colloids Surf. A Physicochem. Eng. Asp., 2012, 405, 22-29.
[http://dx.doi.org/10.1016/j.colsurfa.2012.04.028]
[37]
Tamuly, C.; Hazarika, M.; Borah, S.C.; Das, M.R.; Boruah, M.P. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: Green chemistry approach. Colloids Surf. B Biointerfaces, 2013, 102, 627-634.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.007 ] [PMID: 23107941]
[38]
Zhan, G.; Huang, J.; Du, M.; Abdul-Rauf, I.; Ma, Y.; Li, Q. Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Mater. Lett., 2011, 65(19-20), 2989-2991.
[http://dx.doi.org/10.1016/j.matlet.2011.06.079]
[39]
Phukan, S.; Bharali, P.; Das, A.K.; Rashid, M.H. Phytochemical assisted synthesis of size and shape tunable gold nanoparticles and assessment of their catalytic activities. RSC Advances, 2016, 6(55), 49307-49316.
[http://dx.doi.org/10.1039/C5RA23535A]
[40]
Sodeinde, K.O.; Dare, E.O.; Lasisi, A.A.; Ndungu, P.; Revaprasadu, N. Green synthesis of Ag, Au and Au–Ag bimetallic nanoparticles using chrysophyllum albidum aqueous extract for catalytic application in electro-oxidation of methanol. J. Bionano. sci., 2016, 10(3), 216-222.
[http://dx.doi.org/10.1166/jbns.2016.1363]
[41]
Liu, L.; Zhou, X.; Xin, C.; Zhang, B.; Zhang, G.; Li, S.; Liu, L.; Tai, X. Efficient oxidation of benzyl alcohol into benzaldehyde catalyzed by graphene oxide and reduced graphene oxide supported bimetallic Au–Sn catalysts. RSC Advances, 2023, 13(34), 23648-23658.
[http://dx.doi.org/10.1039/D3RA03496H ] [PMID: 37555092]
[42]
Hong, Y.; Jing, X.; Huang, J.; Sun, D.; Odoom-Wubah, T.; Yang, F.; Du, M.; Li, Q. Biosynthesized bimetallic au–pd nanoparticles supported on TiO 2 for solvent-free oxidation of benzyl alcohol. ACS Sustain. Chem.& Eng., 2014, 2(7), 1752-1759.
[http://dx.doi.org/10.1021/sc500181z]
[43]
Sun, D.; Zhang, G.; Jiang, X.; Huang, J.; Jing, X.; Zheng, Y.; He, J.; Li, Q. Biogenic flower-shaped Au–Pd nanoparticles: Synthesis, SERS detection and catalysis towards benzyl alcohol oxidation. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(6), 1767-1773.
[http://dx.doi.org/10.1039/C3TA13922K]
[44]
Zhan, G.; Hong, Y.; Mbah, V.T.; Huang, J.; Ibrahim, A.R.; Du, M.; Li, Q. Bimetallic Au–Pd/MgO as efficient catalysts for aerobic oxidation of benzyl alcohol: A green bio-reducing preparation method. Appl. Catal. A Gen., 2012, 439-440, 179-186.
[http://dx.doi.org/10.1016/j.apcata.2012.07.005]
[45]
Darabdhara, G.; Das, M.R. Dual responsive magnetic Au@Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds. J. Hazard. Mater., 2019, 368, 365-377.
[http://dx.doi.org/10.1016/j.jhazmat.2019.01.010 ] [PMID: 30690389]
[46]
Chandra, S.; Kumar, A.; Tomar, P.K. Synthesis of Ni nanoparticles and their characterizations. J. Saudi Chem. Soc., 2014, 18(5), 437-442.
[http://dx.doi.org/10.1016/j.jscs.2011.09.008]
[47]
Vysakh, A.B.; Babu, C.L.; Vinod, C.P. Demonstration of synergistic catalysis in Au@Ni bimetallic core–shell nanostructures. J. Phys. Chem. C, 2015, 119(15), 8138-8146.
[http://dx.doi.org/10.1021/jp5128089]
[48]
Hazarika, M.; Borah, D.; Bora, P.; Silva, A.R.; Das, P. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLoS One, 2017, 12(9), e0184936.
[http://dx.doi.org/10.1371/journal.pone.0184936] [PMID: 28957342]
[49]
Saha, A.; Payra, S.; Banerjee, S. Synthesis of smart bimetallic nano-Cu/Ag@SiO 2 for clean oxidation of alcohols. New J. Chem., 2017, 41(22), 13377-13381.
[http://dx.doi.org/10.1039/C7NJ02062G]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy