Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Identification of the NF-κB Inhibition Peptides in Asthma from Pheretima aspergillum Decoction and Formula Granules using Molecular Docking and Dynamics Simulations

Author(s): Xiaotong Xiao, Yaxiong Liu*, Yayang Huang, Wenjie Zeng and Zhuoya Luo*

Volume 20, Issue 3, 2024

Published on: 01 April, 2024

Page: [202 - 211] Pages: 10

DOI: 10.2174/0115734129298587240322073956

Price: $65

Abstract

Background: The Pheretima aspergillum decoction is a traditional therapeutic form, while the formula granules are produced through traditional Chinese medicine decoctions. However, the active ingredients in Pheretima aspergillum have not been fully elucidated, and no published reports have investigated the differences between Pheretima aspergillum decoction and formula granules.

Objective: The study aimed to explore the potential bioactive peptides in Pheretima aspergillum decoction and formula granules and investigate their potential pharmacological mechanisms in alleviating inflammation associated with asthma through interaction with the IκBα/NF-κB p65 complex.

Methods: μLC-Q Exactive MS combined with de novo sequencing technology was employed to identify potential bioactive peptides in Pheretima aspergillum decoction and formula granules. Deep learning models were utilized to evaluate the bioactivity and toxicity of these peptides. Further investigations included molecular docking studies aimed at uncovering the interactions between the selected peptides and the IκBβ/NF-κB p65 complex at affinity and critical residue sites. Molecular dynamics simulations were conducted to assess the stability of the peptide-receptor complexes.

Results: A total of 2,235 peptides from the Pheretima aspergillum decoction and 1,424 peptides from the Pheretima aspergillum formula granules were identified. Deep learning models resulted in the identification of 298 bioactive and non-toxic peptides from the decoction and 145 from the formula granules. Molecular docking revealed that 160 peptides from the decoction and 63 from the formula granules exhibited a strong affinity for the IκBβ/NF-κB p65 complex. The results of molecular dynamics simulations supported the stability of the interactions involving the peptide EGPANFADLGK from the decoction and the peptide KAAVDFGVPGDAGALAHLK from the formula granules with the IκBβ/NF-κB p65 complex. In conclusion, potential bioactive peptides were identified in both Pheretima aspergillum decoction and formula granules.

Conclusion: This study has investigated the potential pharmacological mechanisms of peptides derived from Pheretima aspergillum decoction and formula granules in alleviating inflammation associated with asthma through the interaction of the IκBβ/NF-κB p65 complex, providing a basis for elucidating the molecular mechanism of action for the treatment of asthma.

Graphical Abstract

[1]
Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell, 2021, 184(6), 1469-1485.
[http://dx.doi.org/10.1016/j.cell.2021.02.016] [PMID: 33711259]
[2]
Porsbjerg, C.; Melén, E.; Lehtimäki, L.; Shaw, D. Asthma. Lancet, 2023, 401(10379), 858-873.
[http://dx.doi.org/10.1016/S0140-6736(22)02125-0] [PMID: 36682372]
[3]
Christman, J.W.; Sadikot, R.T.; Blackwell, T.S. The role of nuclear factor-κ B in pulmonary diseases. Chest, 2000, 117(5), 1482-1487.
[http://dx.doi.org/10.1378/chest.117.5.1482] [PMID: 10807839]
[4]
Li, Q.; Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol., 2002, 2(10), 725-734.
[http://dx.doi.org/10.1038/nri910] [PMID: 12360211]
[5]
Viatour, P.; Merville, M.P.; Bours, V.; Chariot, A. Phosphorylation of NF-κB and IκB proteins: Implications in cancer and inflammation. Trends Biochem. Sci., 2005, 30(1), 43-52.
[http://dx.doi.org/10.1016/j.tibs.2004.11.009] [PMID: 15653325]
[6]
Mishra, V.; Banga, J.; Silveyra, P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol. Ther., 2018, 181, 169-182.
[http://dx.doi.org/10.1016/j.pharmthera.2017.08.011] [PMID: 28842273]
[7]
Efferth, T.; Oesch, F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med. Res. Rev., 2021, 41(6), 3023-3061.
[http://dx.doi.org/10.1002/med.21842] [PMID: 34288018]
[8]
Yuan, F.; Liu, R.; Hu, M.; Rong, X.; Bai, L.; Xu, L.; Mao, Y.; Hasimu, H.; Sun, Y.; He, J. JAX2, an ethanol extract of Hyssopus cuspidatus Boriss, can prevent bronchial asthma by inhibiting MAPK/NF-κB inflammatory signaling. Phytomedicine, 2019, 57, 305-314.
[http://dx.doi.org/10.1016/j.phymed.2018.12.043] [PMID: 30807985]
[9]
Huang, C.; Li, W.; Wu, B.; Chen, W.; Chen, L.; Mo, G.; Zhang, Q.; Gong, L.; Li, J.; Zhang, H.; Zhu, H.; Zeng, Q. Pheretima aspergillum decoction suppresses inflammation and relieves asthma in a mouse model of bronchial asthma by NF-κB inhibition. J. Ethnopharmacol., 2016, 189, 22-30.
[http://dx.doi.org/10.1016/j.jep.2016.05.028] [PMID: 27184188]
[10]
Bhat, Z.F.; Kumar, S.; Bhat, H.F. Antihypertensive peptides of animal origin: A review. Crit. Rev. Food Sci. Nutr., 2017, 57(3), 566-578.
[http://dx.doi.org/10.1080/10408398.2014.898241] [PMID: 25942011]
[11]
Yang, H.L.; Shen, Z.Q.; Liu, X.; Kong, Y. Two novel antimicrobial peptides from skin venoms of spadefoot toad Megophrys minor. Chin. J. Nat. Med., 2016, 14(4), 294-298.
[http://dx.doi.org/10.1016/S1875-5364(16)30030-9] [PMID: 27114317]
[12]
Han, G.; Wang, J.; Li, Y.; Chen, Z.; Xu, X.; Liu, T.; Wang, Y.; Bai, F.; Liu, K.; Zhao, Y. Novel peptide from the hydrolysate of hybrid sturgeon ( Acipenseridae ) spinal cord: Isolation, identification, and anti-proliferative effects in human cervix cancer cells. J. Agric. Food Chem., 2023, 71(1), 770-779.
[http://dx.doi.org/10.1021/acs.jafc.2c07594] [PMID: 36541899]
[13]
Zhang, L.Z.; Xin, J.L.; Zhang, X.P.; Fu, Q.; Zhang, Y.; Zhou, Q.L. The anti-osteoporotic effect of velvet antler polypeptides from Cervus elaphus Linnaeus in ovariectomized rats. J. Ethnopharmacol., 2013, 150(1), 181-186.
[http://dx.doi.org/10.1016/j.jep.2013.08.029] [PMID: 23993908]
[14]
Chu, X.; Xu, Z.; Wu, D.; Zhao, A.; Zhou, M.; Qiu, M.; Jia, W. In vitro and in vivo evaluation of the anti-asthmatic activities of fractions from Pheretima. J. Ethnopharmacol., 2007, 111(3), 490-495.
[http://dx.doi.org/10.1016/j.jep.2006.12.013] [PMID: 17236732]
[15]
Li, S.; Yang, Q.; Chen, F.; Tian, L.; Huo, J.; Meng, Y.; Tang, Q.; Wang, W. The antifibrotic effect of pheretima protein is mediated by the TGF-β1/Smad2/3 pathway and attenuates inflammation in bleomycin-induced idiopathic pulmonary fibrosis. J. Ethnopharmacol., 2022, 286, 114901.
[http://dx.doi.org/10.1016/j.jep.2021.114901] [PMID: 34890730]
[16]
Wu, Y.; Hu, S.; Ma, Y.; Zhao, B.; Yang, W.; Lu, Y.; Li, P.; Du, S. Novel Pheretima guillelmi-derived antithrombotic protein DPf3: Identification, characterization, in vitro evaluation and antithrombotic mechanisms investigation. Int. J. Biol. Macromol., 2020, 154, 545-556.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.097] [PMID: 32173431]
[17]
Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[18]
Ju, Y.; Guo, H.; Edman, M.; Hamm-Alvarez, S.F. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv. Drug Deliv. Rev., 2020, 157, 118-141.
[http://dx.doi.org/10.1016/j.addr.2020.07.026] [PMID: 32758615]
[19]
Sani, M.A.; Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res., 2016, 49(6), 1130-1138.
[http://dx.doi.org/10.1021/acs.accounts.6b00074] [PMID: 27187572]
[20]
Cell Penetrating Peptides: Methods and Protocols; Langel, Ü., Ed.; Springer US: New York, NY, 2022.
[http://dx.doi.org/10.1007/978-1-0716-1752-6]
[21]
Zhang, M.; An, B.; Qu, Y.; Shen, S.; Fu, W.; Chen, Y.J.; Wang, X.; Young, R.; Canty, J.M., Jr; Balthasar, J.P.; Murphy, K.; Bhattacharyya, D.; Josephs, J.; Ferrari, L.; Zhou, S.; Bansal, S.; Vazvaei, F.; Qu, J. Sensitive, high-throughput, and robust trapping-micro-LC-MS strategy for the quantification of biomarkers and antibody biotherapeutics. Anal. Chem., 2018, 90(3), 1870-1880.
[http://dx.doi.org/10.1021/acs.analchem.7b03949] [PMID: 29276835]
[22]
Zhao, N.; Cheng, M.; Lv, W.; Wu, Y.; Liu, D.; Zhang, X. Peptides as potential biomarkers for authentication of mountain-cultivated ginseng and cultivated ginseng of different ages using UPLC-HRMS. J. Agric. Food Chem., 2020, 68(7), 2263-2275.
[http://dx.doi.org/10.1021/acs.jafc.9b05568] [PMID: 31986019]
[23]
Bian, Y.; Bayer, F.P.; Chang, Y.C.; Meng, C.; Hoefer, S.; Deng, N.; Zheng, R.; Boychenko, O.; Kuster, B. Robust microflow LC-MS/MS for proteome analysis: 38 000 runs and counting. Anal. Chem., 2021, 93(8), 3686-3690.
[http://dx.doi.org/10.1021/acs.analchem.1c00257] [PMID: 33596053]
[24]
Sui, X.; Wu, Q.; Cui, X.; Wang, X.; Zhang, L.; Deng, N.; Bian, Y.; Xu, R.; Tian, R. Robust capillary- and micro-flow liquid chromatography–tandem mass spectrometry methods for high-throughput proteome profiling. J. Proteome Res., 2022, 21(10), 2472-2480.
[http://dx.doi.org/10.1021/acs.jproteome.2c00405] [PMID: 36040778]
[25]
Liang, L-H.; Liu, C-C.; Chen, B.; Yan, L.; Yu, H-L.; Yang, Y.; Wu, J-N.; Li, X-S.; Liu, S-L. LC-HRMS screening and identification of novel peptide markers of ricin based on multiple protease digestion strategies. Toxins, 2019, 11(7), 393.
[http://dx.doi.org/10.3390/toxins11070393]
[26]
Stella, R.; Sette, G.; Moressa, A.; Gallina, A.; Aloisi, A.M.; Angeletti, R.; Biancotto, G. LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chem., 2020, 331, 127276.
[http://dx.doi.org/10.1016/j.foodchem.2020.127276] [PMID: 32540696]
[27]
Tran, N.H.; Qiao, R.; Xin, L.; Chen, X.; Liu, C.; Zhang, X.; Shan, B.; Ghodsi, A.; Li, M. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat. Methods, 2019, 16(1), 63-66.
[http://dx.doi.org/10.1038/s41592-018-0260-3] [PMID: 30573815]
[28]
Lin, Y.; Zhang, Y.; Wang, D.; Yang, B.; Shen, Y.Q. Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine. Phytomedicine, 2022, 107, 154481.
[http://dx.doi.org/10.1016/j.phymed.2022.154481] [PMID: 36215788]
[29]
Limon, V.A.; Toalá, A.J.E.; Liceaga, A.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem., 2022, 70(4), 934-943.
[http://dx.doi.org/10.1021/acs.jafc.1c06110] [PMID: 34990125]
[30]
Liu, X.; Shi, D.; Zhou, S.; Liu, H.; Liu, H.; Yao, X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov., 2018, 13(1), 23-37.
[http://dx.doi.org/10.1080/17460441.2018.1403419] [PMID: 29139324]
[31]
Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS One, 2012, 7(10), e45012.
[http://dx.doi.org/10.1371/journal.pone.0045012] [PMID: 23056189]
[32]
Wei, L.; Ye, X.; Sakurai, T.; Mu, Z.; Wei, L. ToxIBTL: Prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics, 2022, 38(6), 1514-1524.
[http://dx.doi.org/10.1093/bioinformatics/btac006] [PMID: 34999757]
[33]
Caetano-Silva, M.E.; Rund, L.A.; Vailati-Riboni, M.; Pacheco, M.T.B.; Johnson, R.W. Copper-binding peptides attenuate microglia inflammation through suppression of NF-kB pathway. Mol. Nutr. Food Res., 2021, 65(22), 2100153.
[http://dx.doi.org/10.1002/mnfr.202100153] [PMID: 34532985]
[34]
Grancieri, M.; Martino, H.S.D.; de Mejia, G.E. Digested total protein and protein fractions from chia seed (Salvia hispanica L.) had high scavenging capacity and inhibited 5-LOX, COX-1-2, and iNOS enzymes. Food Chem., 2019, 289, 204-214.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.036] [PMID: 30955604]
[35]
Wang, S.; Lu, M.; Wang, W.; Yu, S.; Yu, R.; Cai, C.; Li, Y.; Shi, Z.; Zou, J.; He, M.; Xie, W.; Yu, D.; Jin, H.; Li, H.; Xiao, W.; Fan, C.; Wu, F.; Li, Y.; Liu, S. Macrophage polarization modulated by NF-κB in polylactide membranes-treated peritendinous adhesion. Small, 2022, 18(13), 2104112.
[http://dx.doi.org/10.1002/smll.202104112] [PMID: 34816589]
[36]
Dejardin, E. The alternative NF-κB pathway from biochemistry to biology: Pitfalls and promises for future drug development. Biochem. Pharmacol., 2006, 72(9), 1161-1179.
[http://dx.doi.org/10.1016/j.bcp.2006.08.007] [PMID: 16970925]
[37]
Bai, G.; Pan, Y.; Zhang, Y.; Li, Y.; Wang, J.; Wang, Y.; Teng, W.; Jin, G.; Geng, F.; Cao, J. Research advances of molecular docking and molecular dynamic simulation in recognizing interaction between muscle proteins and exogenous additives. Food Chem., 2023, 429, 136836.
[http://dx.doi.org/10.1016/j.foodchem.2023.136836] [PMID: 37453331]
[38]
Vaishampayan, V.; Kulabhushan, P.; Dasgupta, I.; Kapoor, A.; Gumfekar, S.P. Development of a diagnostic kit for point-of-care biosensors: Fundamentals and applications. In: Point-of-Care Biosensors for Infectious Diseases; John Wiley & Sons, Ltd, 2023; pp. 235-254.
[http://dx.doi.org/10.1002/9783527837946.ch11]
[39]
Nguyen, G.T.H.; Tran, T.N.; Podgorski, M.N.; Bell, S.G.; Supuran, C.T.; Donald, W.A. Nanoscale ion emitters in native mass spectrometry for measuring ligand–protein binding affinities. ACS Cent. Sci., 2019, 5(2), 308-318.
[http://dx.doi.org/10.1021/acscentsci.8b00787] [PMID: 30834319]

© 2024 Bentham Science Publishers | Privacy Policy