Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Recent Advances in the Treatment and Management of Alzheimer’s Disease: A Precision Medicine Perspective

Author(s): Deepali Shukla, Anjali Suryavanshi, Sanjay Kumar Bharti*, Vivek Asati* and Debarshi Kar Mahapatra

Volume 24, Issue 19, 2024

Published on: 01 April, 2024

Page: [1699 - 1737] Pages: 39

DOI: 10.2174/0115680266299847240328045737

Price: $65

Abstract

About 60% to 70% of people with dementia have Alzheimer's Disease (AD), a neurodegenerative illness. One reason for this disorder is the misfolding of naturally occurring proteins in the human brain, specifically β-amyloid (Aβ) and tau. Certain diagnostic imaging techniques, such as amyloid PET imaging, tau PET imaging, Magnetic Resonance Imaging (MRI), Computerized Tomography (CT), and others, can detect biomarkers in blood, plasma, and cerebral spinal fluids, like an increased level of β-amyloid, plaques, and tangles. In order to create new pharmacotherapeutics for Alzheimer's disease, researchers must have a thorough and detailed knowledge of amyloid beta misfolding and other related aspects. Donepezil, rivastigmine, galantamine, and other acetylcholinesterase inhibitors are among the medications now used to treat Alzheimer's disease. Another medication that can temporarily alleviate dementia symptoms is memantine, which blocks the N-methyl-D-aspartate (NMDA) receptor. However, it is not able to halt or reverse the progression of the disease. Medication now on the market can only halt its advancement, not reverse it. Interventions to alleviate behavioral and psychological symptoms, exhibit anti- neuroinflammation and anti-tau effects, induce neurotransmitter alteration and cognitive enhancement, and provide other targets have recently been developed. For some Alzheimer's patients, the FDA-approved monoclonal antibody, aducanumab, is an option; for others, phase 3 clinical studies are underway for drugs, like lecanemab and donanemab, which have demonstrated potential in eliminating amyloid protein. However, additional study is required to identify and address these limitations in order to reduce the likelihood of side effects and maximize the therapeutic efficacy.

Graphical Abstract

[1]
Ageing and Health. Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (Accessed July 31, 2023).
[2]
Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer report. 2015. Available from: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
[3]
Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement., 2013, 9(1), 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[4]
Fang, X.; Zhang, J.; Roman, R.J.; Fan, F. From 1901 to 2022, how far are we from truly understanding the pathogenesis of age-related dementia? Geroscience, 2022, 44(3), 1879-1883.
[http://dx.doi.org/10.1007/s11357-022-00591-7] [PMID: 35585301]
[5]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[6]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. (N. Y.), 2019, 5(1), 272-293.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[7]
Atri, A. Current and future treatments in Alzheimer’s Disease. Semin. Neurol., 2019, 39(2), 227-240.
[http://dx.doi.org/10.1055/s-0039-1678581]
[8]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord., 2013, 6(1), 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[9]
Howard, R.; McShane, R.; Lindesay, J.; Ritchie, C.; Baldwin, A.; Barber, R.; Burns, A.; Dening, T.; Findlay, D.; Holmes, C.; Jones, R.; Jones, R.; McKeith, I.; Macharouthu, A.; O’Brien, J.; Sheehan, B.; Juszczak, E.; Katona, C.; Hills, R.; Knapp, M.; Ballard, C.; Brown, R.G.; Banerjee, S.; Adams, J.; Johnson, T.; Bentham, P.; Phillips, P.P.J. Nursing home placement in the Donepezil and Memantine in Moderate to Severe Alzheimer’s Disease (DOMINO-AD) trial: secondary and post-hoc analyses. Lancet Neurol., 2015, 14(12), 1171-1181.
[http://dx.doi.org/10.1016/S1474-4422(15)00258-6] [PMID: 26515660]
[10]
Farlow, M.; Anand, R.; Messina, J., Jr; Hartman, R.; Veach, J. A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur. Neurol., 2000, 44(4), 236-241.
[http://dx.doi.org/10.1159/000008243] [PMID: 11096224]
[11]
Cacabelos, R. Pharmacogenomic biomarkers in neuropsychiatry: The path to personalized medicine in mental disorders. In: The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes; Molecular Genetic and Genomic Markers, 2009; pp. 3-63.
[12]
Cacabelos, R. Pharmacogenomics and therapeutic strategies for dementia. Expert Rev. Mol. Diagn., 2009, 9(6), 567-611.
[http://dx.doi.org/10.1586/erm.09.42] [PMID: 19732004]
[13]
Cacabelos, R.; Fernandez-Novoa, L.; Lombardi, V.; Kubota, Y.; Takeda, M. Molecular genetics of Alzheimer’s disease and aging. Methods Find. Exp. Clin. Pharmacol., 2005, 27(Suppl. A), 1-573.
[PMID: 16470248]
[14]
Cacabelos, R.; Cacabelos, P.; Torrellas, C. Personalized medicine of Alzheimer’s disease. In: Handbook of pharmacogenomics and stratified medicine; , 2014; pp. 563-615.
[15]
Selkoe, D.J.; Podlisny, M.B. Deciphering the genetic basis of Alzheimer’s disease. Annu. Rev. Genomics Hum. Genet., 2002, 3(1), 67-99.
[http://dx.doi.org/10.1146/annurev.genom.3.022502.103022] [PMID: 12142353]
[16]
Suh, Y.H.; Checler, F. Amyloid precursor protein, presenilins, and α-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol. Rev., 2002, 54(3), 469-525.
[http://dx.doi.org/10.1124/pr.54.3.469] [PMID: 12223532]
[17]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[18]
Takeda, M.; Martínez, R.; Kudo, T.; Tanaka, T.; Okochi, M.; Tagami, S.; Morihara, T.; Hashimoto, R.; Cacabelos, R. Apolipoprotein E and central nervous system disorders: Reviews of clinical findings. Psychiatry Clin. Neurosci., 2010, 64(6), 592-607.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02148.x] [PMID: 21105952]
[19]
Cacabelos, R. Pharmacogenomics in Alzheimer’s disease. Methods Mol. Biol., 2008, 448, 213-357.
[20]
Cacabelos, R. The application of functional genomics to Alzheimer’s disease. Pharmacogenomics, 2003, 4(5), 597-621.
[http://dx.doi.org/10.1517/phgs.4.5.597.23795] [PMID: 12943467]
[21]
Petrlova, J.; Hong, H.S.; Bricarello, D.A.; Harishchandra, G.; Lorigan, G.A.; Jin, L.W.; Voss, J.C. A differential association of Apolipoprotein E isoforms with the amyloid‐β oligomer in solution. Proteins, 2011, 79(2), 402-416.
[http://dx.doi.org/10.1002/prot.22891] [PMID: 21069870]
[22]
Samaranch, L.; Cervantes, S.; Barabash, A.; Alonso, A.; Cabranes, J.A.; Lamet, I.; Ancín, I.; Lorenzo, E.; Martínez-Lage, P.; Marcos, A.; Clarimón, J.; Alcolea, D.; Lleó, A.; Blesa, R.; Gómez-Isla, T.; Pastor, P. The effect of MAPT H1 and APOE ε4 on transition from mild cognitive impairment to dementia. J. Alzheimers Dis., 2011, 22(4), 1065-1071.
[http://dx.doi.org/10.3233/JAD-2010-101011] [PMID: 20930301]
[23]
Cacabelos, R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr. Dis. Treat., 2007, 3(3), 303-333.
[PMID: 19300564]
[24]
Mallick, B.; Ghosh, Z. A complex crosstalk between polymorphic microRNA target sites and AD prognosis. RNA Biol., 2011, 8(4), 665-673.
[http://dx.doi.org/10.4161/rna.8.4.15584] [PMID: 21659796]
[25]
Qureshi, I.A.; Mehler, M.F. Advances in epigenetics and epigenomics for neurodegenerative diseases. Curr. Neurol. Neurosci. Rep., 2011, 11(5), 464-473.
[http://dx.doi.org/10.1007/s11910-011-0210-2] [PMID: 21671162]
[26]
Enciu, A.M.; Popescu, B.O.; Gheorghisan-Galateanu, A. MicroRNAs in brain development and degeneration. Mol. Biol. Rep., 2012, 39(3), 2243-2252.
[http://dx.doi.org/10.1007/s11033-011-0973-1] [PMID: 21643950]
[27]
Murray, I.V.J.; Proza, J.F.; Sohrabji, F.; Lawler, J.M. Vascular and metabolic dysfunction in Alzheimer’s disease: a review. Exp. Biol. Med. (Maywood), 2011, 236(7), 772-782.
[http://dx.doi.org/10.1258/ebm.2011.010355] [PMID: 21680755]
[28]
Lin, K.P.; Chen, S.Y.; Lai, L.C.; Huang, Y.L.; Chen, J.H.; Chen, T.F.; Sun, Y.; Wen, L.L.; Yip, P.K.; Chu, Y.M.; Chen, W.J.; Chen, Y.C. Genetic polymorphisms of a novel vascular susceptibility gene, Ninjurin2 (NINJ2), are associated with a decreased risk of Alzheimer’s disease. PLoS One, 2011, 6(6), e20573.
[http://dx.doi.org/10.1371/journal.pone.0020573] [PMID: 21674003]
[29]
Romero, A.; Cacabelos, R.; Oset-Gasque, M.J.; Samadi, A.; Marco-Contelles, J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2013, 23(7), 1916-1922.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.017] [PMID: 23481643]
[30]
Aliev, G.; Palacios, H.H.; Cacabelos, P.; Cacabelos, R.; Burzynski, G.; Burzynski, S.R. Mitochondria specific antioxidants and their derivatives in the context of the drug development for neurodegeneration and cancer. Drug Des., 2013, 2(1), 2169-0138.
[31]
Grammas, P.; Martinez, J.; Miller, B. Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev. Mol. Med., 2011, 13, e19.
[http://dx.doi.org/10.1017/S1462399411001918] [PMID: 21676288]
[32]
Cacabelos, R.; Ferna’ndez-Novoa, L.; Lombardi, V.; Corzo, L.; Pichel, V.; Kubota, Y. Cerebrovascular risk factors in Alzheimer’s disease: Brain hemodynamics and pharmacogenomic implications. Neurol. Res., 2003, 25(6), 567-580.
[http://dx.doi.org/10.1179/016164103101202002] [PMID: 14503010]
[33]
Cacabelos, R.; Fernández-Novoa, L.; Corzo, L.; Amado, L.; Pichel, V.; Lombardi, V.; Kubota, Y. Phenotypic profiles and functional genomics in Alzheimer’s disease and in dementia with a vascular component. Neurol. Res., 2004, 26(5), 459-480.
[http://dx.doi.org/10.1179/016164104225017677] [PMID: 15265264]
[34]
Kim, J.H.; Hwang, K.J.; Kim, J.H.; Lee, Y.H.; Rhee, H.Y.; Park, K.C. Regional white matter hyperintensities in normal aging, single domain amnestic mild cognitive impairment, and mild Alzheimer’s disease. J. Clin. Neurosci., 2011, 18(8), 1101-1106.
[http://dx.doi.org/10.1016/j.jocn.2011.01.008] [PMID: 21723730]
[35]
Chen, H.; Zhang, J.H. Cerebral amyloid angiopathy-related microhemorrhages in Alzheimer’s disease: A review of investigative animal models. Acta Neurochir. Suppl., 2011, 111, 15-17.
[36]
Brenn, A.; Grube, M.; Peters, M.; Fischer, A.; Jedlitschky, G.; Kroemer, H.K.; Warzok, R.W.; Vogelgesang, S. Beta-amyloid downregulates MDR1-P-glycoprotein (Abcb1) expression at the blood-brain barrier in mice. Int. J. Alzheimers Dis., 2011, 2011, 1-6.
[http://dx.doi.org/10.4061/2011/690121] [PMID: 21660212]
[37]
Chen, K.H.; Reese, E.A.; Kim, H.W.; Rapoport, S.I.; Rao, J.S. Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J. Alzheimers Dis., 2011, 26(4), 755-766.
[http://dx.doi.org/10.3233/JAD-2011-110002] [PMID: 21743130]
[38]
Alikhani, N.; Guo, L.; Yan, S.; Du, H.; Pinho, C.M.; Chen, J.X.; Glaser, E.; Yan, S.S. Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, PreP peptidasome, in Alzheimer’s disease brain mitochondria. J. Alzheimers Dis., 2011, 27(1), 75-87.
[http://dx.doi.org/10.3233/JAD-2011-101716] [PMID: 21750375]
[39]
Mathew, A.; Yoshida, Y.; Maekawa, T.; Sakthi Kumar, D. Alzheimer’s disease: Cholesterol a menace? Brain Res. Bull., 2011, 86(1-2), 1-12.
[http://dx.doi.org/10.1016/j.brainresbull.2011.06.006] [PMID: 21741455]
[40]
Qiu, L.; Buie, C.; Reay, A.; Vaughn, M.W.; Cheng, K.H. Molecular dynamics simulations reveal the protective role of cholesterol in β-amyloid protein-induced membrane disruptions in neuronal membrane mimics. J. Phys. Chem. B, 2011, 115(32), 9795-9812.
[http://dx.doi.org/10.1021/jp2012842] [PMID: 21740063]
[41]
Jones, L.; Holmans, P.A.; Hamshere, M.L.; Harold, D.; Moskvina, V.; Ivanov, D.; Pocklington, A.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Pahwa, J.S.; Jones, N.; Stretton, A.; Morgan, A.R.; Lovestone, S.; Powell, J.; Proitsi, P.; Lupton, M.K.; Brayne, C.; Rubinsztein, D.C.; Gill, M.; Lawlor, B.; Lynch, A.; Morgan, K.; Brown, K.S.; Passmore, P.A.; Craig, D.; McGuinness, B.; Todd, S.; Holmes, C.; Mann, D.; Smith, A.D.; Love, S.; Kehoe, P.G.; Mead, S.; Fox, N.; Rossor, M.; Collinge, J.; Maier, W.; Jessen, F.; Schürmann, B.; van den Bussche, H.; Heuser, I.; Peters, O.; Kornhuber, J.; Wiltfang, J.; Dichgans, M.; Frölich, L.; Hampel, H.; Hüll, M.; Rujescu, D.; Goate, A.M.; Kauwe, J.S.K.; Cruchaga, C.; Nowotny, P.; Morris, J.C.; Mayo, K.; Livingston, G.; Bass, N.J.; Gurling, H.; McQuillin, A.; Gwilliam, R.; Deloukas, P.; Al-Chalabi, A.; Shaw, C.E.; Singleton, A.B.; Guerreiro, R.; Mühleisen, T.W.; Nöthen, M.M.; Moebus, S.; Jöckel, K-H.; Klopp, N.; Wichmann, H-E.; Rüther, E.; Carrasquillo, M.M.; Pankratz, V.S.; Younkin, S.G.; Hardy, J.; O’Donovan, M.C.; Owen, M.J.; Williams, J.; Owen, M.J.; Williams, J. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One, 2010, 5(11), e13950.
[http://dx.doi.org/10.1371/journal.pone.0013950] [PMID: 21085570]
[42]
Pan, X.; Zhu, Y.; Lin, N.; Zhang, J.; Ye, Q.; Huang, H.; Chen, X. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer’s disease. Mol. Neurodegener., 2011, 6(1), 45.
[http://dx.doi.org/10.1186/1750-1326-6-45] [PMID: 21718498]
[43]
Diniz, B.S.; Teixeira, A.L.; Ojopi, E.B.; Talib, L.L.; Mendonça, V.A.; Gattaz, W.F.; Forlenza, O.V. Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J. Alzheimers Dis., 2011, 22(4), 1305-1311.
[http://dx.doi.org/10.3233/JAD-2010-100921] [PMID: 20930310]
[44]
Cacabelos, R. Ed.; World guide for drug use and pharmacogenomics; EuroEspes Publishing, 2012.
[45]
Cacabelos, R.; Martínez-Bouza, R. Genomics and pharmacogenomics of dementia. CNS Neurosci. Ther., 2011, 17(5), 566-576.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00189.x] [PMID: 20718828]
[46]
Cacabelos, R. Pharmacogenomics and therapeutic prospects in Alzheimer’s disease. Expert Opin. Pharmacother., 2005, 6(12), 1967-1987.
[http://dx.doi.org/10.1517/14656566.6.12.1967] [PMID: 16197352]
[47]
Cacabelos, R. Pharmacogenomics and therapeutic prospects in dementia. Eur. Arch. Psychiatry Clin. Neurosci., 2008, 258(S1)(Suppl. 1), 28-47.
[http://dx.doi.org/10.1007/s00406-007-1006-x] [PMID: 18344047]
[48]
Cacabelos, R. Pharmacogenetic basis for therapeutic optimization in Alzheimer’s disease. Mol. Diagn. Ther., 2007, 11(6), 385-405.
[http://dx.doi.org/10.1007/BF03256262] [PMID: 18078356]
[49]
Cacabelos, R.; Llovo, R.; Fraile, C.; Fernández-Novoa, L. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr. Alzheimer Res., 2007, 4(4), 479-500.
[http://dx.doi.org/10.2174/156720507781788846] [PMID: 17908053]
[50]
Cacabelos, R. Molecular pathology and pharmacogenomics in Alzheimer’s disease: polygenic-related effects of multifactorial treatments on cognition, anxiety and depression. Methods Find. Exp. Clin. Pharmacol., 2007, 29(Suppl. A), 1-91.
[PMID: 17957277]
[51]
Cacabelos, R. Pharmacogenomics, nutrigenomics and therapeutic optimization in Alzheimers disease. Aging Health, 2005, 1(2), 303-348.
[http://dx.doi.org/10.2217/1745509X.1.2.303]
[52]
Braak, H.; Del Tredici, K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol., 2011, 121(2), 171-181.
[http://dx.doi.org/10.1007/s00401-010-0789-4] [PMID: 21170538]
[53]
Lu, P.H.; Thompson, P.M.; Leow, A.; Lee, G.J.; Lee, A.; Yanovsky, I.; Parikshak, N.; Khoo, T.; Wu, S.; Geschwind, D.; Bartzokis, G. Apolipoprotein E genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: a tensor-based morphometry study. J. Alzheimers Dis., 2011, 23(3), 433-442.
[http://dx.doi.org/10.3233/JAD-2010-101398] [PMID: 21098974]
[54]
Canu, E.; Frisoni, G.B.; Agosta, F.; Pievani, M.; Bonetti, M.; Filippi, M. Early and late onset Alzheimer’s disease patients have distinct patterns of white matter damage. Neurobiol. Aging, 2012, 33(6), 1023-1033.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.09.021] [PMID: 21074899]
[55]
Herholz, K.; Ebmeier, K. Clinical amyloid imaging in Alzheimer’s disease. Lancet Neurol., 2011, 10(7), 667-670.
[http://dx.doi.org/10.1016/S1474-4422(11)70123-5] [PMID: 21683932]
[56]
Roh, J.H.; Park, M.H.; Ko, D.; Park, K.W.; Lee, D.H.; Han, C.; Jo, S.A.; Yang, K.S.; Jung, K.Y. Region and frequency specific changes of spectral power in Alzheimer’s disease and mild cognitive impairment. Clin. Neurophysiol., 2011, 122(11), 2169-2176.
[http://dx.doi.org/10.1016/j.clinph.2011.03.023] [PMID: 21715226]
[57]
Canuet, L.; Tellado, I.; Couceiro, V.; Fraile, C.; Fernandez-Novoa, L.; Ishii, R.; Takeda, M.; Cacabelos, R. Resting-state network disruption and APOE genotype in Alzheimer’s disease: A lagged functional connectivity study. PLoS One, 2012, 7(9), e46289.
[http://dx.doi.org/10.1371/journal.pone.0046289]
[58]
Cacabelos, R.; Fernández-Novoa, L.; Corzo, L.; Pichel, V.; Lombardi, V.; Kubota, Y. Genomics and phenotypic profiles in dementia: implications for pharmacological treatment. Methods Find. Exp. Clin. Pharmacol., 2004, 26(6), 421-444.
[http://dx.doi.org/10.1358/mf.2004.26.6.831317] [PMID: 15349138]
[59]
Hampel, H.; Frank, R.; Broich, K.; Teipel, S.J.; Katz, R.G.; Hardy, J.; Herholz, K.; Bokde, A.L.W.; Jessen, F.; Hoessler, Y.C.; Sanhai, W.R.; Zetterberg, H.; Woodcock, J.; Blennow, K. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov., 2010, 9(7), 560-574.
[http://dx.doi.org/10.1038/nrd3115] [PMID: 20592748]
[60]
Cacabelos, R.; Lombardi, V.; Fernández-Novoa, L.; Kubota, Y.; Corzo, L.; Pichel, V.; Takeda, M. A functional genomics approach to the analysis of biological markers in Alzheimer disease. In: Molecular Neurobiology of Alzheimer Disease and Related Disorders; Basel:Karger, 2004; pp. 236-285.
[61]
Portelius, E.; Mattsson, N.; Andreasson, U.; Blennow, K.; Zetterberg, H. Novel aβ isoforms in Alzheimer’s disease - their role in diagnosis and treatment. Curr. Pharm. Des., 2011, 17(25), 2594-2602.
[http://dx.doi.org/10.2174/138161211797416039] [PMID: 21728980]
[62]
Kester, M.I.; Scheffer, P.G.; Koel-Simmelink, M.J.; Twaalfhoven, H.; Verwey, N.A.; Veerhuis, R.; Twisk, J.W.; Bouwman, F.H.; Blankenstein, M.A.; Scheltens, P.; Teunissen, C.; van der Flier, W.M. Serial CSF sampling in Alzheimer’s disease: Specific versus non-specific markers. Neurobiol. Aging, 2012, 33(8), 1591-1598.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.013] [PMID: 21741127]
[63]
Loveman, E.; Green, C.; Kirby, J.; Takeda, A.; Picot, J.; Payne, E.; Clegg, A. The clinical and cost-effectiveness of donepezil, rivastigmine, galantamine and memantine for Alzheimer’s disease. Health Technol. Assess., 2006, 10(1), 1-160.
[http://dx.doi.org/10.3310/hta10010] [PMID: 16409879]
[64]
Cacabelos, R.; Alvarez, A.; Lombardi, V.; Fernández-Novoa, L.; Corzo, L.; Pérez, P.; Laredo, M.; Pichel, V.; Hernández, A.; Varela, M.; Figueroa, J. Pharmacological treatment of Alzheimer disease: From psychotropic drugs and cholinesterase inhibitors to pharmacogenomics. Drugs Today, 2000, 36(7), 415-499.
[http://dx.doi.org/10.1358/dot.2000.36.7.589153]
[65]
Giacobini, E.; Pepeu, G. The brain cholinergic system; CRC Press, 2006.
[http://dx.doi.org/10.1201/b14486]
[66]
Reisberg, B.; Doody, R.; Stöffler, A.; Schmitt, F.; Ferris, S.; Möbius, H.J. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med., 2003, 348(14), 1333-1341.
[http://dx.doi.org/10.1056/NEJMoa013128] [PMID: 12672860]
[67]
Schenk, D.B.; Seubert, P.; Grundman, M.; Black, R. A β immunotherapy: Lessons learned for potential treatment of Alzheimer’s disease. Neurodegener. Dis., 2005, 2(5), 255-260.
[http://dx.doi.org/10.1159/000090365] [PMID: 16909006]
[68]
Wisniewski, T.; Boutajangout, A. Vaccination as a therapeutic approach to Alzheimer’s disease. Mt. Sinai J. Med., 2010, 77(1), 17-31.
[http://dx.doi.org/10.1002/msj.20156]
[69]
De Strooper, B.; Vassar, R.; Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(2), 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[70]
Shelton, C.C.; Zhu, L.; Chau, D.; Yang, L.; Wang, R.; Djaballah, H.; Zheng, H.; Li, Y.M. Modulation of γ-secretase specificity using small molecule allosteric inhibitors. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20228-20233.
[http://dx.doi.org/10.1073/pnas.0910757106] [PMID: 19906985]
[71]
Lambracht-Washington, D.; Qu, B.X.; Fu, M.; Eagar, T.N.; Stüve, O.; Rosenberg, R.N. DNA β-amyloid(1-42) trimer immunization for Alzheimer disease in a wild-type mouse model. JAMA, 2009, 302(16), 1796-1802.
[http://dx.doi.org/10.1001/jama.2009.1547] [PMID: 19861672]
[72]
Mummery, C.J.; Junge, C.; Kordasiewicz, H.B.; Mignon, L.; Moore, K.M.; Yun, C.; Baumann, T.L.; Li, D.; Norris, D.A.; Crean, R.; Graham, D.; Huang, E.; Ratti, E.; Lane, R.M. Results of the first‐in‐human, randomized, double‐blind, placebo‐controlled phase 1b study of lumbar intrathecal bolus administrations of antisense oligonucleotide (ISIS 814907; BIIB080) targeting tau mRNA in patients with mild Alzheimer’s disease. Alzheimers Dement., 2021, 17(S9), e051871.
[http://dx.doi.org/10.1002/alz.051871]
[73]
Bartolomé-Nebreda, J.M.; Trabanco, A.A.; Velter, A.I.; Buijnsters, P. O-GlcNAcase inhibitors as potential therapeutics for the treatment of Alzheimer’s disease and related tauopathies: analysis of the patent literature. Expert Opin. Ther. Pat., 2021, 31(12), 1117-1154.
[http://dx.doi.org/10.1080/13543776.2021.1947242] [PMID: 34176417]
[74]
Gentry, E.G.; Henderson, B.W.; Arrant, A.E.; Gearing, M.; Feng, Y.; Riddle, N.C.; Herskowitz, J.H. Rho kinase inhibition as a therapeutic for progressive supranuclear palsy and corticobasal degeneration. J. Neurosci., 2016, 36(4), 1316-1323.
[http://dx.doi.org/10.1523/JNEUROSCI.2336-15.2016] [PMID: 26818518]
[75]
Hamano, T.; Shirafuji, N.; Yen, S.H.; Yoshida, H.; Kanaan, N.M.; Hayashi, K.; Ikawa, M.; Yamamura, O.; Fujita, Y.; Kuriyama, M.; Nakamoto, Y. Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiol. Aging, 2020, 89, 41-54.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.12.009] [PMID: 31982202]
[76]
Alquezar, C.; Arya, S.; Kao, A.W. Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front. Neurol., 2021, 11, 595532.
[http://dx.doi.org/10.3389/fneur.2020.595532] [PMID: 33488497]
[77]
Gauthier, S.; Feldman, H.H.; Schneider, L.S.; Wilcock, G.K.; Frisoni, G.B.; Hardlund, J.H.; Moebius, H.J.; Bentham, P.; Kook, K.A.; Wischik, D.J.; Schelter, B.O.; Davis, C.S.; Staff, R.T.; Bracoud, L.; Shamsi, K.; Storey, J.M.D.; Harrington, C.R.; Wischik, C.M. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet, 2016, 388(10062), 2873-2884.
[http://dx.doi.org/10.1016/S0140-6736(16)31275-2] [PMID: 27863809]
[78]
Hyun, S.; Shin, D. Chemical-mediated targeted protein degradation in neurodegenerative diseases. Life (Basel), 2021, 11(7), 607.
[http://dx.doi.org/10.3390/life11070607] [PMID: 34202541]
[79]
Hernandez, I.; Luna, G.; Rauch, J.N.; Reis, S.A.; Giroux, M.; Karch, C.M.; Boctor, D.; Sibih, Y.E.; Storm, N.J.; Diaz, A.; Kaushik, S.; Zekanowski, C.; Kang, A.A.; Hinman, C.R.; Cerovac, V.; Guzman, E.; Zhou, H.; Haggarty, S.J.; Goate, A.M.; Fisher, S.K.; Cuervo, A.M.; Kosik, K.S. A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci. Transl. Med., 2019, 11(485), eaat3005.
[http://dx.doi.org/10.1126/scitranslmed.aat3005] [PMID: 30918111]
[80]
Novak, P.; Kovacech, B.; Katina, S.; Schmidt, R.; Scheltens, P.; Kontsekova, E.; Ropele, S.; Fialova, L.; Kramberger, M.; Paulenka-Ivanovova, N.; Smisek, M.; Hanes, J.; Stevens, E.; Kovac, A.; Sutovsky, S.; Parrak, V.; Koson, P.; Prcina, M.; Galba, J.; Cente, M.; Hromadka, T.; Filipcik, P.; Piestansky, J.; Samcova, M.; Prenn-Gologranc, C.; Sivak, R.; Froelich, L.; Fresser, M.; Rakusa, M.; Harrison, J.; Hort, J.; Otto, M.; Tosun, D.; Ondrus, M.; Winblad, B.; Novak, M.; Zilka, N. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nature Aging, 2021, 1(6), 521-534.
[http://dx.doi.org/10.1038/s43587-021-00070-2] [PMID: 37117834]
[81]
Andersson, C.R.; Falsig, J.; Stavenhagen, J.B.; Christensen, S.; Kartberg, F.; Rosenqvist, N.; Finsen, B.; Pedersen, J.T. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci. Rep., 2019, 9(1), 4658.
[http://dx.doi.org/10.1038/s41598-019-41105-4] [PMID: 30874605]
[82]
Roberts, M.; Sevastou, I.; Imaizumi, Y.; Mistry, K.; Talma, S.; Dey, M.; Gartlon, J.; Ochiai, H.; Zhou, Z.; Akasofu, S.; Tokuhara, N.; Ogo, M.; Aoyama, M.; Aoyagi, H.; Strand, K.; Sajedi, E.; Agarwala, K.L.; Spidel, J.; Albone, E.; Horie, K.; Staddon, J.M.; de Silva, R. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol. Commun., 2020, 8(1), 13.
[http://dx.doi.org/10.1186/s40478-020-0884-2] [PMID: 32019610]
[83]
Wisniewski, T.; Konietzko, U. Amyloid-β immunisation for Alzheimer’s disease. Lancet Neurol., 2008, 7(9), 805-811.
[http://dx.doi.org/10.1016/S1474-4422(08)70170-4] [PMID: 18667360]
[84]
Singh, S.; Kushwah, A.S.; Singh, R.; Farswan, M.; Kaur, R. Current therapeutic strategy in Alzheimer’s disease. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(12), 1651-1664.
[PMID: 23161037]
[85]
Grill, J.D.; Cummings, J.L. Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2010, 10(5), 711-728.
[http://dx.doi.org/10.1586/ern.10.29] [PMID: 20420492]
[86]
Tabira, T. Immunization therapy for Alzheimer disease: A comprehensive review of active immunization strategies. Tohoku J. Exp. Med., 2010, 220(2), 95-106.
[http://dx.doi.org/10.1620/tjem.220.95] [PMID: 20139660]
[87]
Carrera, I.; Cacabelos, R. Novel immunotherapeutic procedures for prevention of Alzheimer’s disease. Drug Des., 2013, 2(107), 2169-0138.
[88]
Maeda, S.; Sahara, N.; Saito, Y.; Murayama, S.; Ikai, A.; Takashima, A. Increased levels of granular tau oligomers: An early sign of brain aging and Alzheimer’s disease. Neurosci. Res., 2006, 54(3), 197-201.
[http://dx.doi.org/10.1016/j.neures.2005.11.009] [PMID: 16406150]
[89]
Boutajangout, A.; Sigurdsson, E.M.; Krishnamurthy, P.K. Tau as a therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res., 2011, 8(6), 666-677.
[http://dx.doi.org/10.2174/156720511796717195] [PMID: 21679154]
[90]
Johnson, G.V.W. Tau phosphorylation and proteolysis: Insights and perspectives. J. Alzheimers Dis., 2006, 9(S3), 243-250.
[http://dx.doi.org/10.3233/JAD-2006-9S326] [PMID: 16914862]
[91]
Kudo, L.C.; Parfenova, L.; Ren, G.; Vi, N.; Hui, M.; Ma, Z.; Lau, K.; Gray, M.; Bardag-Gorce, F.; Wiedau-Pazos, M.; Hui, K.S.; Karsten, S.L. Puromycin-sensitive aminopeptidase (PSA/ NPEPPS) impedes development of neuropathology in hPSA/ TAUP301L double-transgenic mice. Hum. Mol. Genet., 2011, 20(9), 1820-1833.
[http://dx.doi.org/10.1093/hmg/ddr065] [PMID: 21320871]
[92]
Trojanowski, J.Q.; Smith, A.B.; Huryn, D.; Lee, V.M.Y. Microtubule-stabilising drugs for therapy of Alzheimer’s disease and other neurodegenerative disorders with axonal transport impairments. Expert Opin. Pharmacother., 2005, 6(5), 683-686.
[http://dx.doi.org/10.1517/14656566.6.5.683] [PMID: 15934894]
[93]
Zhang, B.; Maiti, A.; Shively, S.; Lakhani, F.; McDonald-Jones, G.; Bruce, J.; Lee, E.B.; Xie, S.X.; Joyce, S.; Li, C.; Toleikis, P.M.; Lee, V.M.Y.; Trojanowski, J.Q. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 227-231.
[http://dx.doi.org/10.1073/pnas.0406361102] [PMID: 15615853]
[94]
Boutajangout, A.; Quartermain, D.; Sigurdsson, E.M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci., 2010, 30(49), 16559-16566.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-10.2010] [PMID: 21147995]
[95]
Imbimbo, B.P.; Ottonello, S.; Frisardi, V.; Solfrizzi, V.; Greco, A.; Seripa, D.; Pilotto, A.; Panza, F. Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Rev. Clin. Immunol., 2012, 8(2), 135-149.
[http://dx.doi.org/10.1586/eci.11.93] [PMID: 22288451]
[96]
Panza, F.; Frisardi, V.; Imbimbo, B.P.; D’Onofrio, G.; Pietrarossa, G.; Seripa, D.; Pilotto, A.; Solfrizzi, V. Bapineuzumab: anti-β-amyloid monoclonal antibodies for the treatment of Alzheimer’s disease. Immunotherapy, 2010, 2(6), 767-782.
[http://dx.doi.org/10.2217/imt.10.80] [PMID: 21091109]
[97]
Magga, J.; Puli, L.; Pihlaja, R.; Kanninen, K.; Neulamaa, S.; Malm, T.; Härtig, W.; Grosche, J.; Goldsteins, G.; Tanila, H.; Koistinaho, J.; Koistinaho, M. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J. Neuroinflammation, 2010, 7(1), 90.
[http://dx.doi.org/10.1186/1742-2094-7-90] [PMID: 21138577]
[98]
Tariot, P.N.; Farlow, M.R.; Grossberg, G.T.; Graham, S.M.; McDonald, S.; Gergel, I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA, 2004, 291(3), 317-324.
[http://dx.doi.org/10.1001/jama.291.3.317] [PMID: 14734594]
[99]
van Dyck, C.H.; Tariot, P.N.; Meyers, B.; Malca Resnick, E. A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2007, 21(2), 136-143.
[http://dx.doi.org/10.1097/WAD.0b013e318065c495] [PMID: 17545739]
[100]
Lopez, O.L.; Becker, J.T.; Wahed, A.S.; Saxton, J.; Sweet, R.A.; Wolk, D.A.; Klunk, W.; DeKosky, S.T. Long-term effects of the concomitant use of memantine with cholinesterase inhibition in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry, 2009, 80(6), 600-607.
[http://dx.doi.org/10.1136/jnnp.2008.158964] [PMID: 19204022]
[101]
Atri, A.; Shaughnessy, L.W.; Locascio, J.J.; Growdon, J.H. Long-term course and effectiveness of combination therapy in Alzheimer disease. Alzheimer Dis. Assoc. Disord., 2008, 22(3), 209-221.
[http://dx.doi.org/10.1097/WAD.0b013e31816653bc] [PMID: 18580597]
[102]
Nordberg, A.; Winblad, B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett., 1986, 72(1), 115-120.
[http://dx.doi.org/10.1016/0304-3940(86)90629-4] [PMID: 3808458]
[103]
Sabbagh, M.N.; Shah, F.; Reid, R.T.; Sue, L.; Connor, D.J.; Peterson, L.K.N.; Beach, T.G. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch. Neurol., 2006, 63(12), 1771-1776.
[http://dx.doi.org/10.1001/archneur.63.12.1771] [PMID: 17172618]
[104]
Kadir, A.; Almkvist, O.; Wall, A.; Långström, B.; Nordberg, A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl.), 2006, 188(4), 509-520.
[http://dx.doi.org/10.1007/s00213-006-0447-7] [PMID: 16832659]
[105]
Mazurov, A.; Hauser, T.; Miller, C. Selective α7 nicotinic acetylcholine receptor ligands. Curr. Med. Chem., 2006, 13(13), 1567-1584.
[http://dx.doi.org/10.2174/092986706777442011] [PMID: 16787204]
[106]
Haydar, S.N.; Ghiron, C.; Bettinetti, L.; Bothmann, H.; Comery, T.A.; Dunlop, J.; La Rosa, S.; Micco, I.; Pollastrini, M.; Quinn, J.; Roncarati, R.; Scali, C.; Valacchi, M.; Varrone, M.; Zanaletti, R. SAR and biological evaluation of SEN12333/WAY-317538: Novel alpha 7 nicotinic acetylcholine receptor agonist. Bioorg. Med. Chem., 2009, 17(14), 5247-5258.
[http://dx.doi.org/10.1016/j.bmc.2009.05.040] [PMID: 19515567]
[107]
Dunbar, G.C.; Kuchibhatla, R. Cognitive enhancement in man with ispronicline, a nicotinic partial agonist. J. Mol. Neurosci., 2006, 30(1-2), 169-172.
[http://dx.doi.org/10.1385/JMN:30:1:169] [PMID: 17192668]
[108]
Potter, A.; Corwin, J.; Lang, J.; Piasecki, M.; Lenox, R.; Newhouse, P.A. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology (Berl.), 1999, 142(4), 334-342.
[http://dx.doi.org/10.1007/s002130050897] [PMID: 10229057]
[109]
Marighetto, A.; Valerio, S.; Desmedt, A.; Philippin, J.N.; Trocmé-Thibierge, C.; Morain, P. Comparative effects of the α7 nicotinic partial agonist, S 24795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice. Psychopharmacology (Berl.), 2008, 197(3), 499-508.
[http://dx.doi.org/10.1007/s00213-007-1063-x] [PMID: 18265960]
[110]
Rissman, R.A.; De Blas, A.L.; Armstrong, D.M. GABA A receptors in aging and Alzheimer’s disease. J. Neurochem., 2007, 103(4), 1285-1292.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04832.x] [PMID: 17714455]
[111]
Ellison, D.W.; Beal, M.F.; Mazurek, M.F.; Bird, E.D.; Martin, J.B. A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann. Neurol., 1986, 20(5), 616-621.
[http://dx.doi.org/10.1002/ana.410200510] [PMID: 2878639]
[112]
Chu, D.C.M.; Penney, J.B., Jr; Young, A.B. Cortical GABA B and GABA A receptors in Alzheimer’s disease. Neurology, 1987, 37(9), 1454-1459.
[http://dx.doi.org/10.1212/WNL.37.9.1454] [PMID: 2819782]
[113]
King, M.; Marsden, C.; Fone, K. A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends Pharmacol. Sci., 2008, 29(9), 482-492.
[http://dx.doi.org/10.1016/j.tips.2008.07.001] [PMID: 19086256]
[114]
Kepe, V.; Barrio, J.R.; Huang, S.C.; Ercoli, L.; Siddarth, P.; Shoghi-Jadid, K.; Cole, G.M.; Satyamurthy, N.; Cummings, J.L.; Small, G.W.; Phelps, M.E. Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc. Natl. Acad. Sci. USA, 2006, 103(3), 702-707.
[http://dx.doi.org/10.1073/pnas.0510237103] [PMID: 16407119]
[115]
Truchot, L.; Costes, S.N.; Zimmer, L.; Laurent, B.; Le Bars, D.; Thomas-Antérion, C.; Croisile, B.; Mercier, B.; Hermier, M.; Vighetto, A.; Krolak-Salmon, P. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology, 2007, 69(10), 1012-1017.
[http://dx.doi.org/10.1212/01.wnl.0000271377.52421.4a] [PMID: 17785670]
[116]
Reynolds, G.P.; Mason, S.L.; Meldrum, A.; De Keczer, S.; Parties, H.; Eglen, R.M.; Wong, E.H.F. 5‐Hydroxytryptamine (5‐HT) 4 receptors in post mortem human brain tissue: Distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol., 1995, 114(5), 993-998.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb13303.x] [PMID: 7780656]
[117]
Lorke, D.E.; Lu, G.; Cho, E.; Yew, D.T. Serotonin 5-HT2A and 5-HT6 receptors in the prefrontal cortex of Alzheimer and normal aging patients. BMC Neurosci., 2006, 7(1), 36.
[http://dx.doi.org/10.1186/1471-2202-7-36] [PMID: 16640790]
[118]
Lai, M.K.; Tsang, S.W.; Alder, J.T.; Keene, J.; Hope, T.; Esiri, M.M.; Francis, P.T.; Chen, C.P. Loss of serotonin 5-HT2A receptors in the postmortem temporal cortex correlates with rate of cognitive decline in Alzheimer’s disease. Psychopharmacology (Berl.), 2005, 179(3), 673-677.
[http://dx.doi.org/10.1007/s00213-004-2077-2] [PMID: 15551121]
[119]
Verdurand, M.; Bérod, A.; Le Bars, D.; Zimmer, L. Effects of amyloid-β peptides on the serotoninergic 5-HT1A receptors in the rat hippocampus. Neurobiol. Aging, 2011, 32(1), 103-114.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.01.008] [PMID: 19249128]
[120]
Hasselbalch, S.G.; Madsen, K.; Svarer, C.; Pinborg, L.H.; Holm, S.; Paulson, O.B.; Waldemar, G.; Knudsen, G.M. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment. Neurobiol. Aging, 2008, 29(12), 1830-1838.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.04.011] [PMID: 17544547]
[121]
Elliott, M.S.J.; Ballard, C.G.; Kalaria, R.N.; Perry, R.; Hortobágyi, T.; Francis, P.T. Increased binding to 5-HT1A and 5-HT2A receptors is associated with large vessel infarction and relative preservation of cognition. Brain, 2009, 132(7), 1858-1865.
[http://dx.doi.org/10.1093/brain/awp069] [PMID: 19433439]
[122]
M, C.; C, B.; R, S. Stimulation of 5-HT 1A receptors in the dorsal raphe ameliorates the impairment of spatial learning caused by intrahippocampal 7-chloro-kynurenic acid in naive and pretrained rats. Psychopharmacology (Berl.), 2001, 158(1), 39-47.
[http://dx.doi.org/10.1007/s002130100837] [PMID: 11685382]
[123]
Fontana, D.J.; Daniels, S.E.; Wong, E.H.F.; Clark, R.D.; Eglen, R.M. The effects of novel, selective 5-hydroxytryptamine (5-HT)4 receptor ligands in rat spatial navigation. Neuropharmacology, 1997, 36(4-5), 689-696.
[http://dx.doi.org/10.1016/S0028-3908(97)00055-5] [PMID: 9225295]
[124]
Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H 3 receptor: an attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181.
[http://dx.doi.org/10.1038/bjp.2008.147] [PMID: 18469850]
[125]
Medhurst, A.D.; Roberts, J.C.; Lee, J.; Chen, C.P.L-H.; Brown, S.H.; Roman, S.; Lai, M.K.P. Characterization of histamine H 3 receptors in Alzheimer’s Disease brain and amyloid over‐expressing TASTPM mice. Br. J. Pharmacol., 2009, 157(1), 130-138.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00075.x] [PMID: 19222483]
[126]
Tully, T.; Bourtchouladze, R.; Scott, R.; Tallman, J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov., 2003, 2(4), 267-277.
[http://dx.doi.org/10.1038/nrd1061] [PMID: 12669026]
[127]
Barco, A.; Pittenger, C.; Kandel, E.R. CREB, memory enhancement and the treatment of memory disorders: promises, pitfalls and prospects. Expert Opin. Ther. Targets, 2003, 7(1), 101-114.
[http://dx.doi.org/10.1517/14728222.7.1.101] [PMID: 12556206]
[128]
Vitolo, O.V.; Sant’Angelo, A.; Costanzo, V.; Battaglia, F.; Arancio, O.; Shelanski, M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 13217-13221.
[http://dx.doi.org/10.1073/pnas.172504199] [PMID: 12244210]
[129]
Dall’Igna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25-35)-induced cognitive deficits in mice. Exp. Neurol., 2007, 203(1), 241-245.
[http://dx.doi.org/10.1016/j.expneurol.2006.08.008] [PMID: 17007839]
[130]
Gong, B.; Vitolo, O.V.; Trinchese, F.; Liu, S.; Shelanski, M.; Arancio, O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J. Clin. Invest., 2004, 114(11), 1624-1634.
[http://dx.doi.org/10.1172/JCI22831] [PMID: 15578094]
[131]
Puzzo, D.; Staniszewski, A.; Deng, S.X.; Privitera, L.; Leznik, E.; Liu, S.; Zhang, H.; Feng, Y.; Palmeri, A.; Landry, D.W.; Arancio, O. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-β load in an Alzheimer’s disease mouse model. J. Neurosci., 2009, 29(25), 8075-8086.
[http://dx.doi.org/10.1523/JNEUROSCI.0864-09.2009] [PMID: 19553447]
[132]
Manning, C.A.; Stone, W.S.; Korol, D.L.; Gold, P.E. Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav. Brain Res., 1998, 93(1-2), 71-76.
[http://dx.doi.org/10.1016/S0166-4328(97)00136-8] [PMID: 9659988]
[133]
Craft, S.; Asthana, S.; Newcomer, J.W.; Wilkinson, C.W.; Matos, I.T.; Baker, L.D.; Cherrier, M.; Lofgreen, C.; Latendresse, S.; Petrova, A.; Plymate, S.; Raskind, M.; Grimwood, K.; Veith, R.C. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry, 1999, 56(12), 1135-1140.
[http://dx.doi.org/10.1001/archpsyc.56.12.1135] [PMID: 10591291]
[134]
Costantini, L.C.; Barr, L.J.; Vogel, J.L.; Henderson, S.T. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci., 2008, 9(S2)(Suppl. 2), S16.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S16] [PMID: 19090989]
[135]
Selkoe, D.J. The molecular pathology of Alzheimer’s disease. Neuron, 1991, 6(4), 487-498.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[136]
Hardy, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem., 2009, 110(4), 1129-1134.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06181.x] [PMID: 19457065]
[137]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[138]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[139]
Thinakaran, G.; Koo, E.H. Amyloid precursor protein trafficking, processing, and function. J. Biol. Chem., 2008, 283(44), 29615-29619.
[http://dx.doi.org/10.1074/jbc.R800019200] [PMID: 18650430]
[140]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8(7), 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[141]
Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; Regan, C.M.; Walsh, D.M.; Sabatini, B.L.; Selkoe, D.J. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med., 2008, 14(8), 837-842.
[http://dx.doi.org/10.1038/nm1782] [PMID: 18568035]
[142]
Nitsch, R.M.; Deng, M.; Tennis, M.; Schoenfeld, D.; Growdon, J.H. The selective muscarinic M1 agonist AF102B decreases levels of total A? in cerebrospinal fluid of patients with Alzheimer’s disease. Ann. Neurol., 2000, 48(6), 913-918.
[http://dx.doi.org/10.1002/1531-8249(200012)48:6<913:AID-ANA12>3.0.CO;2-S] [PMID: 11117548]
[143]
Langmead, C.J.; Watson, J.; Reavill, C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther., 2008, 117(2), 232-243.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.009] [PMID: 18082893]
[144]
Holsinger, R.D.; McLean, C.A.; Beyreuther, K.; Masters, C.L.; Evin, G. Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann. Neurol., 2002, 51(6), 783-786.
[http://dx.doi.org/10.1002/ana.10208]
[145]
Yang, L.B.; Lindholm, K.; Yan, R.; Citron, M.; Xia, W.; Yang, X.L.; Beach, T.; Sue, L.; Wong, P.; Price, D.; Li, R.; Shen, Y. Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat. Med., 2003, 9(1), 3-4.
[http://dx.doi.org/10.1038/nm0103-3] [PMID: 12514700]
[146]
Fukumoto, H.; Cheung, B.S.; Hyman, B.T.; Irizarry, M.C. β-secretase protein and activity are increased in the neocortex in Alzheimer disease. Arch. Neurol., 2002, 59(9), 1381-1389.
[http://dx.doi.org/10.1001/archneur.59.9.1381] [PMID: 12223024]
[147]
Luo, Y.; Bolon, B.; Kahn, S.; Bennett, B.D.; Babu-Khan, S.; Denis, P.; Fan, W.; Kha, H.; Zhang, J.; Gong, Y.; Martin, L.; Louis, J.C.; Yan, Q.; Richards, W.G.; Citron, M.; Vassar, R. Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat. Neurosci., 2001, 4(3), 231-232.
[http://dx.doi.org/10.1038/85059] [PMID: 11224535]
[148]
Roberds, S.L.; Anderson, J.; Basi, G.; Bienkowski, M.J.; Branstetter, D.G.; Chen, K.S.; Freedman, S.B.; Frigon, N.L.; Games, D.; Hu, K.; Johnson-Wood, K.; Kappenman, K.E.; Kawabe, T.T.; Kola, I.; Kuehn, R.; Lee, M.; Liu, W.; Motter, R.; Nichols, N.F.; Power, M.; Robertson, D.W.; Schenk, D.; Schoor, M.; Shopp, G.M.; Shuck, M.E.; Sinha, S.; Svensson, K.A.; Tatsuno, G.; Tintrup, H.; Wijsman, J.; Wright, S.; McConlogue, L. BACE knockout mice are healthy despite lacking the primary β-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum. Mol. Genet., 2001, 10(12), 1317-1324.
[http://dx.doi.org/10.1093/hmg/10.12.1317] [PMID: 11406613]
[149]
Ghosh, A.K.; Kumaragurubaran, N.; Hong, L.; Kulkarni, S.S.; Xu, X.; Chang, W.; Weerasena, V.; Turner, R.; Koelsch, G.; Bilcer, G.; Tang, J. Design, synthesis, and X-ray structure of potent memapsin 2 (β-secretase) inhibitors with isophthalamide derivatives as the P2-P3-ligands. J. Med. Chem., 2007, 50(10), 2399-2407.
[http://dx.doi.org/10.1021/jm061338s] [PMID: 17432843]
[150]
Wong, P.C.; Zheng, H.; Chen, H.; Becher, M.W.; Sirinathsinghji, D.J.S.; Trumbauer, M.E.; Chen, H.Y.; Price, D.L.; Van der Ploeg, L.H.T.; Sisodia, S.S. Presenilin 1 is required for Notch 1 and Dll1 expression in the paraxial mesoderm. Nature, 1997, 387(6630), 288-292.
[http://dx.doi.org/10.1038/387288a0] [PMID: 9153393]
[151]
Louvi, A.; Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci., 2006, 7(2), 93-102.
[http://dx.doi.org/10.1038/nrn1847] [PMID: 16429119]
[152]
Lai, EC Notch signaling: Control of cell communication and cell fate. Development, 2004, 131(5), 965-973.
[http://dx.doi.org/10.1242/dev.01074]
[153]
Lathia, J.D.; Mattson, M.P.; Cheng, A. Notch: from neural development to neurological disorders. J. Neurochem., 2008, 107(6), 1471-1481.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05715.x] [PMID: 19094054]
[154]
Golde, T.E.; Kukar, T.L. Medicine. Avoiding unintended toxicity. Science, 2009, 324(5927), 603-604.
[http://dx.doi.org/10.1126/science.1174267] [PMID: 19407192]
[155]
Tanzi, R.E.; Moir, R.D.; Wagner, S.L. Clearance of Alzheimer’s Abeta peptide: the many roads to perdition. Neuron, 2004, 43(5), 605-608.
[PMID: 15339642]
[156]
Turner, A.J.; Tanzawa, K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J., 1997, 11(5), 355-364.
[http://dx.doi.org/10.1096/fasebj.11.5.9141502] [PMID: 9141502]
[157]
Iwata, N.; Tsubuki, S.; Takaki, Y.; Watanabe, K.; Sekiguchi, M.; Hosoki, E.; Kawashima-Morishima, M.; Lee, H.J.; Hama, E.; Sekine-Aizawa, Y.; Saido, T.C. Identification of the major Aβ1-42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical and pathological deposition. Nat. Med., 2000, 6(2), 143-150.
[http://dx.doi.org/10.1038/72237] [PMID: 10655101]
[158]
Eckman, E.A.; Adams, S.K.; Troendle, F.J.; Stodola, B.A.; Kahn, M.A.; Fauq, A.H.; Xiao, H.D.; Bernstein, K.E.; Eckman, C.B. Regulation of steady-state β-amyloid levels in the brain by neprilysin and endothelin-converting enzyme but not angiotensin-converting enzyme. J. Biol. Chem., 2006, 281(41), 30471-30478.
[http://dx.doi.org/10.1074/jbc.M605827200] [PMID: 16912050]
[159]
Eckman, E.A.; Reed, D.K.; Eckman, C.B. Degradation of the Alzheimer’s amyloid β peptide by endothelin-converting enzyme. J. Biol. Chem., 2001, 276(27), 24540-24548.
[http://dx.doi.org/10.1074/jbc.M007579200] [PMID: 11337485]
[160]
Nalivaeva, N.; Fisk, L.; Belyaev, N.; Turner, A. Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer Res., 2008, 5(2), 212-224.
[http://dx.doi.org/10.2174/156720508783954785] [PMID: 18393806]
[161]
Yasojima, K.; McGeer, E.G.; McGeer, P.L. Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res., 2001, 919(1), 115-121.
[http://dx.doi.org/10.1016/S0006-8993(01)03008-6] [PMID: 11689168]
[162]
Schenk, D.; Barbour, R.; Dunn, W.; Gordon, G.; Grajeda, H.; Guido, T.; Hu, K.; Huang, J.; Johnson-Wood, K.; Khan, K.; Kholodenko, D. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 1999, 400(6740), 173-177.
[163]
Morgan, D.; Diamond, D.M.; Gottschall, P.E.; Ugen, K.E.; Dickey, C.; Hardy, J.; Duff, K.; Jantzen, P.; DiCarlo, G.; Wilcock, D.; Connor, K.; Hatcher, J.; Hope, C.; Gordon, M.; Arendash, G.W. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature, 2000, 408(6815), 982-985.
[http://dx.doi.org/10.1038/35050116] [PMID: 11140686]
[164]
Wilcock, D.M.; Gharkholonarehe, N.; Van Nostrand, W.E.; Davis, J.; Vitek, M.P.; Colton, C.A. Amyloid reduction by amyloid-β vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer’s disease. J. Neurosci., 2009, 29(25), 7957-7965.
[http://dx.doi.org/10.1523/JNEUROSCI.1339-09.2009] [PMID: 19553436]
[165]
Oddo, S.; Billings, L.; Kesslak, J.P.; Cribbs, D.H.; LaFerla, F.M. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron, 2004, 43(3), 321-332.
[http://dx.doi.org/10.1016/j.neuron.2004.07.003] [PMID: 15294141]
[166]
Hartman, R.E.; Izumi, Y.; Bales, K.R.; Paul, S.M.; Wozniak, D.F.; Holtzman, D.M. Treatment with an amyloid-β antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer’s disease. J. Neurosci., 2005, 25(26), 6213-6220.
[http://dx.doi.org/10.1523/JNEUROSCI.0664-05.2005] [PMID: 15987951]
[167]
Bard, F.; Cannon, C.; Barbour, R.; Burke, R.L.; Games, D.; Grajeda, H.; Guido, T.; Hu, K.; Huang, J.; Johnson-Wood, K.; Khan, K.; Kholodenko, D.; Lee, M.; Lieberburg, I.; Motter, R.; Nguyen, M.; Soriano, F.; Vasquez, N.; Weiss, K.; Welch, B.; Seubert, P.; Schenk, D.; Yednock, T. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med., 2000, 6(8), 916-919.
[http://dx.doi.org/10.1038/78682] [PMID: 10932230]
[168]
Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993, 261(5123), 921-923.
[http://dx.doi.org/10.1126/science.8346443] [PMID: 8346443]
[169]
Schmechel, D.E.; Saunders, A.M.; Strittmatter, W.J.; Crain, B.J.; Hulette, C.M.; Joo, S.H.; Pericak-Vance, M.A.; Goldgaber, D.; Roses, A.D. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1993, 90(20), 9649-9653.
[http://dx.doi.org/10.1073/pnas.90.20.9649] [PMID: 8415756]
[170]
Reiman, E.M.; Chen, K.; Liu, X.; Bandy, D.; Yu, M.; Lee, W.; Ayutyanont, N.; Keppler, J.; Reeder, S.A.; Langbaum, J.B.S.; Alexander, G.E.; Klunk, W.E.; Mathis, C.A.; Price, J.C.; Aizenstein, H.J.; DeKosky, S.T.; Caselli, R.J. Fibrillar amyloid-β burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(16), 6820-6825.
[http://dx.doi.org/10.1073/pnas.0900345106] [PMID: 19346482]
[171]
Ladu, M.J.; Reardon, C.; Van Eldik, L.; Fagan, A.M.; Bu, G.; Holtzman, D.; Getz, G.S. Lipoproteins in the central nervous system. Ann. N. Y. Acad. Sci., 2000, 903(1), 167-175.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06365.x] [PMID: 10818504]
[172]
Martel, C.L.; Mackic, J.B.; Matsubara, E.; Governale, S.; Miguel, C.; Miao, W.; McComb, J.G.; Frangione, B.; Ghiso, J.; Zlokovic, B.V. Isoform-specific effects of apolipoproteins E2, E3, and E4 on cerebral capillary sequestration and blood-brain barrier transport of circulating Alzheimer’s amyloid β. J. Neurochem., 1997, 69(5), 1995-2004.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69051995.x] [PMID: 9349544]
[173]
Bales, K.R.; Verina, T.; Dodel, R.C.; Du, Y.; Altstiel, L.; Bender, M.; Hyslop, P.; Johnstone, E.M.; Little, S.P.; Cummins, D.J.; Piccardo, P.; Ghetti, B.; Paul, S.M. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet., 1997, 17(3), 263-264.
[http://dx.doi.org/10.1038/ng1197-263] [PMID: 9354781]
[174]
Sadowski, M.J.; Pankiewicz, J.; Scholtzova, H.; Mehta, P.D.; Prelli, F.; Quartermain, D.; Wisniewski, T. Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18787-18792.
[http://dx.doi.org/10.1073/pnas.0604011103] [PMID: 17116874]
[175]
Cheng, I.H.; Scearce-Levie, K.; Legleiter, J.; Palop, J.J.; Gerstein, H.; Bien-Ly, N.; Puolivaöli, J.; Lesné, S.; Ashe, K.H.; Muchowski, P.J.; Mucke, L. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem., 2007, 282(33), 23818-23828.
[http://dx.doi.org/10.1074/jbc.M701078200] [PMID: 17548355]
[176]
Head, E.; Pop, V.; Vasilevko, V.; Hill, M.; Saing, T.; Sarsoza, F.; Nistor, M.; Christie, L.A.; Milton, S.; Glabe, C.; Barrett, E.; Cribbs, D. A two-year study with fibrillar β-amyloid (Abeta) immunization in aged canines: effects on cognitive function and brain Abeta. J. Neurosci., 2008, 28(14), 3555-3566.
[http://dx.doi.org/10.1523/JNEUROSCI.0208-08.2008] [PMID: 18385314]
[177]
Yan, P.; Bero, A.W.; Cirrito, J.R.; Xiao, Q.; Hu, X.; Wang, Y.; Gonzales, E.; Holtzman, D.M.; Lee, J.M. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci., 2009, 29(34), 10706-10714.
[http://dx.doi.org/10.1523/JNEUROSCI.2637-09.2009] [PMID: 19710322]
[178]
Bradke, F.; Dotti, C.G. Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr. Opin. Neurobiol., 2000, 10(5), 574-581.
[http://dx.doi.org/10.1016/S0959-4388(00)00124-0] [PMID: 11084319]
[179]
Lee, V.M.Y.; Trojanowski, J.Q. The disordered neuronal cytoskeleton in Alzheimer’s disease. Curr. Opin. Neurobiol., 1992, 2(5), 653-656.
[http://dx.doi.org/10.1016/0959-4388(92)90034-I] [PMID: 1422122]
[180]
Clark, C.M.; Xie, S.; Chittams, J.; Ewbank, D.; Peskind, E.; Galasko, D.; Morris, J.C.; McKeel, D.W., Jr; Farlow, M.; Weitlauf, S.L.; Quinn, J.; Kaye, J.; Knopman, D.; Arai, H.; Doody, R.S.; DeCarli, C.; Leight, S.; Lee, V.M.Y.; Trojanowski, J.Q. Cerebrospinal fluid tau and β-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch. Neurol., 2003, 60(12), 1696-1702.
[http://dx.doi.org/10.1001/archneur.60.12.1696] [PMID: 14676043]
[181]
Roberson, E.D.; Scearce-Levie, K.; Palop, J.J.; Yan, F.; Cheng, I.H.; Wu, T.; Gerstein, H.; Yu, G.Q.; Mucke, L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science, 2007, 316(5825), 750-754.
[http://dx.doi.org/10.1126/science.1141736] [PMID: 17478722]
[182]
SantaCruz, K.; Lewis, J.; Spires, T.; Paulson, J.; Kotilinek, L.; Ingelsson, M.; Guimaraes, A.; DeTure, M.; Ramsden, M.; McGowan, E.; Forster, C.; Yue, M.; Orne, J.; Janus, C.; Mariash, A.; Kuskowski, M.; Hyman, B.; Hutton, M.; Ashe, K.H. Tau suppression in a neurodegenerative mouse model improves memory function. Science, 2005, 309(5733), 476-481.
[http://dx.doi.org/10.1126/science.1113694] [PMID: 16020737]
[183]
Makrides, V.; Shen, T.E.; Bhatia, R.; Smith, B.L.; Thimm, J.; Lal, R.; Feinstein, S.C. Microtubule-dependent oligomerization of tau. Implications for physiological tau function and tauopathies. J. Biol. Chem., 2003, 278(35), 33298-33304.
[http://dx.doi.org/10.1074/jbc.M305207200] [PMID: 12805366]
[184]
Crowe, A.; Huang, W.; Ballatore, C.; Johnson, R.L.; Hogan, A.M.L.; Huang, R.; Wichterman, J.; McCoy, J.; Huryn, D.; Auld, D.S.; Smith, A.B., III; Inglese, J.; Trojanowski, J.Q.; Austin, C.P.; Brunden, K.R.; Lee, V.M.Y. Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry, 2009, 48(32), 7732-7745.
[http://dx.doi.org/10.1021/bi9006435] [PMID: 19580328]
[185]
Steinhilb, M.L.; Dias-Santagata, D.; Fulga, T.A.; Felch, D.L.; Feany, M.B. Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol. Biol. Cell, 2007, 18(12), 5060-5068.
[http://dx.doi.org/10.1091/mbc.e07-04-0327] [PMID: 17928404]
[186]
Drepper, F.; Biernat, J.; Kaniyappan, S.; Meyer, H.E.; Mandelkow, E.M.; Warscheid, B.; Mandelkow, E. A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. J. Biol. Chem., 2020, 295(52), 18213-18225.
[http://dx.doi.org/10.1074/jbc.RA120.015882] [PMID: 33106314]
[187]
Illenberger, S.; Zheng-Fischhöfer, Q.; Preuss, U.; Stamer, K.; Baumann, K.; Trinczek, B.; Biernat, J.; Godemann, R.; Mandelkow, E.M.; Mandelkow, E. The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol. Biol. Cell, 1998, 9(6), 1495-1512.
[http://dx.doi.org/10.1091/mbc.9.6.1495] [PMID: 9614189]
[188]
Gong, C.X.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K. Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural Transm. (Vienna), 2005, 112(6), 813-838.
[http://dx.doi.org/10.1007/s00702-004-0221-0] [PMID: 15517432]
[189]
Wen, Y.; Planel, E.; Herman, M.; Figueroa, H.Y.; Wang, L.; Liu, L.; Lau, L.F.; Yu, W.H.; Duff, K.E. Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 β mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J. Neurosci., 2008, 28(10), 2624-2632.
[http://dx.doi.org/10.1523/JNEUROSCI.5245-07.2008] [PMID: 18322105]
[190]
Plattner, F.; Angelo, M.; Giese, K.P. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J. Biol. Chem., 2006, 281(35), 25457-25465.
[http://dx.doi.org/10.1074/jbc.M603469200] [PMID: 16803897]
[191]
Fumagalli, F.; Molteni, R.; Calabrese, F.; Maj, P.F.; Racagni, G.; Riva, M.A. Neurotrophic factors in neurodegenerative disorders: potential for therapy. CNS Drugs, 2008, 22(12), 1005-1019.
[http://dx.doi.org/10.2165/0023210-200822120-00004] [PMID: 18998739]
[192]
Burger, A. Medicinal Chemistry and Drug Discovery: Cardiovascular agents and endocrines; Wiley, 2003.
[193]
Guo, J.; Hurley, M.M.; Wright, J.B.; Lushington, G.H. A docking score function for estimating ligand-protein interactions: application to acetylcholinesterase inhibition. J. Med. Chem., 2004, 47(22), 5492-5500.
[http://dx.doi.org/10.1021/jm049695v] [PMID: 15481986]
[194]
Castro, A.; Martinez, A. Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr. Pharm. Des., 2006, 12(33), 4377-4387.
[http://dx.doi.org/10.2174/138161206778792985] [PMID: 17105433]
[195]
Kadir, A.; Darreh-Shori, T.; Almkvist, O.; Wall, A.; Långström, B.; Nordberg, A. Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berl.), 2007, 191(4), 1005-1014.
[http://dx.doi.org/10.1007/s00213-007-0725-z] [PMID: 17310387]
[196]
Friedman, A.; Kaufer, D.; Shemer, J.; Hendler, I.; Soreq, H.; Tur-Kaspa, I. Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nat. Med., 1996, 2(12), 1382-1385.
[http://dx.doi.org/10.1038/nm1296-1382] [PMID: 8946841]
[197]
Darvesh, S.; Darvesh, K.V.; McDonald, R.S.; Mataija, D.; Walsh, R.; Mothana, S.; Lockridge, O.; Martin, E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem., 2008, 51(14), 4200-4212.
[http://dx.doi.org/10.1021/jm8002075] [PMID: 18570368]
[198]
Yu, Q.; Greig, N.H.; Holloway, H.W.; Brossi, A. Syntheses and anticholinesterase activities of (3aS)-N1, N8-bisnorphenserine, (3aS)-N1,N8-bisnorphysostigmine, their antipodal isomers, and other potential metabolites of phenserine. J. Med. Chem., 1998, 41(13), 2371-2379.
[http://dx.doi.org/10.1021/jm9800494] [PMID: 9632370]
[199]
Giacobini, E.; Spiegel, R.; Enz, A.; Veroff, A.E.; Cutler, N.R. Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J. Neural Transm. (Vienna), 2002, 109(7-8), 1053-1065.
[http://dx.doi.org/10.1007/s007020200089] [PMID: 12111443]
[200]
Orhan, G.; Orhan, I.; Subutay-Oztekin, N.; Ak, F.; Sener, B. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease. Recent Patents CNS Drug Discov., 2009, 4(1), 43-51.
[http://dx.doi.org/10.2174/157488909787002582] [PMID: 19149713]
[201]
Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Cavalli, A.; Minarini, A.; Recanatini, M.; Rosini, M.; Tumiatti, V.; Melchiorre, C. Heterocyclic inhibitors of AChE acylation and peripheral sites. Farmaco, 2005, 60(6-7), 465-473.
[http://dx.doi.org/10.1016/j.farmac.2005.03.010] [PMID: 15878569]
[202]
Liston, D.R.; Nielsen, J.A.; Villalobos, A.; Chapin, D.; Jones, S.B.; Hubbard, S.T.; Shalaby, I.A.; Ramirez, A.; Nason, D.; White, W.F. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer’s disease. Eur. J. Pharmacol., 2004, 486(1), 9-17.
[http://dx.doi.org/10.1016/j.ejphar.2003.11.080] [PMID: 14751402]
[203]
Rupniak, N.M.J.; Tye, S.J.; Brazell, C.; Heald, A.; Iversen, S.D.; Pagella, P.G. Reversal of cognitive impairment by heptyl physostigmine, a long-lasting cholinesterase inhibitor, in primates. J. Neurol. Sci., 1992, 107(2), 246-249.
[http://dx.doi.org/10.1016/0022-510X(92)90296-W] [PMID: 1564524]
[204]
Ogane, N.; Giacobini, E.; Messamore, E. Preferential inhibition of acetylcholinesterase molecular forms in rat brain. Neurochem. Res., 1992, 17(5), 489-495.
[http://dx.doi.org/10.1007/BF00969897] [PMID: 1528356]
[205]
Ogane, N.; Giacobini, E.; Struble, R. Differential inhibition of acetylcholinesterase molecular forms in normal and Alzheimer disease brain. Brain Res., 1992, 589(2), 307-312.
[http://dx.doi.org/10.1016/0006-8993(92)91291-L] [PMID: 1393597]
[206]
Imbimbo, B.P.; Martelli, P.; Troetel, W.M.; Lucchelli, F.; Lucca, U.; Thal, L.J. Efficacy and safety of eptastigmine for the treatment of patients with Alzheimer’s disease. Neurology, 1999, 52(4), 700-708.
[http://dx.doi.org/10.1212/WNL.52.4.700] [PMID: 10078713]
[207]
Braida, D.; Sala, M. Eptastigmine: ten years of pharmacology, toxicology, pharmacokinetic, and clinical studies. CNS Drug Rev., 2001, 7(4), 369-386.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00205.x] [PMID: 11830755]
[208]
Winblad, B.; Giacobini, E. Phenserine efficacy in Alzheimer’s disease. J. Alzheimers Dis., 2010, 22(4), 1201-1208.
[209]
Zhan, Z.J.; Bian, H.L.; Wang, J.W.; Shan, W.G. Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities. Bioorg. Med. Chem. Lett., 2010, 20(5), 1532-1534.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.097] [PMID: 20144867]
[210]
Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/728983] [PMID: 22216416]
[211]
Yu, Q.S.; Atack, J.R.; Rapoport, S.I.; Brossi, A. Carbamate analogues of (−)‐physostigmine: In vitro inhibition of acetyl‐ and butyrylcholinesterase. FEBS Lett., 1988, 234(1), 127-130.
[http://dx.doi.org/10.1016/0014-5793(88)81317-6] [PMID: 3391264]
[212]
Kapil, R.; Dhawan, S.; Beg, S.; Singh, B. Buccoadhesive films for once-a-day administration of rivastigmine: systematic formulation development and pharmacokinetic evaluation. Drug Dev. Ind. Pharm., 2013, 39(3), 466-480.
[http://dx.doi.org/10.3109/03639045.2012.665926] [PMID: 22409834]
[213]
Zheng, H.; Weiner, L.M.; Bar-Am, O.; Epsztejn, S.; Cabantchik, Z.I.; Warshawsky, A.; Youdim, M.B.H.; Fridkin, M. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg. Med. Chem., 2005, 13(3), 773-783.
[http://dx.doi.org/10.1016/j.bmc.2004.10.037] [PMID: 15653345]
[214]
Pohanka, M. Could inhibitors of acetylcholinesterase used in Alzheimer disease therapy meet immunity system and alters sensitivity to pathogens? Biosafety (Los Angel.), 2012, 1(4), e115.
[http://dx.doi.org/10.4172/2167-0331.1000e115]
[215]
Heilbronn, E.; Tyrrell, V.; Tufte, T.; Terry, W.G.; Sjöberg, B.; Toft, J. Inhibition of cholinesterases by tetrahydroaminacrin. Acta Chem. Scand., 1961, 15(6), 1386-1390.
[http://dx.doi.org/10.3891/acta.chem.scand.15-1386]
[216]
Rakonczay, Z. Potencies and selectivities of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer’s disease brain. Acta Biol. Hung., 2003, 54(2), 183-189.
[http://dx.doi.org/10.1556/ABiol.54.2003.2.7] [PMID: 14535624]
[217]
Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine derivatives and Alzheimer’s disease. Curr. Med. Chem., 2010, 17(17), 1825-1838.
[http://dx.doi.org/10.2174/092986710791111206] [PMID: 20345341]
[218]
Watkins, P.B.; Zimmerman, H.J.; Knapp, M.J.; Gracon, S.I.; Lewis, K.W. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA, 1994, 271(13), 992-998.
[http://dx.doi.org/10.1001/jama.1994.03510370044030] [PMID: 8139084]
[219]
Ezoulin, M.J.M.; Dong, C.Z.; Liu, Z.; Li, J.; Chen, H.Z.; Heymans, F.; Lelièvre, L.; Ombetta, J.E.; Massicot, F. Study of PMS777, a new type of acetylcholinesterase inhibitor, in human HepG2 cells. Comparison with tacrine and galanthamine on oxidative stress and mitochondrial impairment. Toxicol. In Vitro, 2006, 20(6), 824-831.
[http://dx.doi.org/10.1016/j.tiv.2006.01.002] [PMID: 16472967]
[220]
Bajgar, J.; Bisso, G.M.; Michalek, H. Differential inhibition of rat brain acetylcholinesterase molecular forms by 7-methoxytacrine in vitro. Toxicol. Lett., 1995, 80(1-3), 109-114.
[http://dx.doi.org/10.1016/0378-4274(95)03341-H] [PMID: 7482577]
[221]
Pohanka, M.; Kuca, K.; Kassa, J. New performance of biosensor technology for Alzheimer’s disease drugs: In vitro. comparison of tacrine and 7-methoxytacrine. Neuroendocrinol. Lett., 2008, 29(5), 755-758.
[PMID: 18987590]
[222]
Korabecny, J.; Musilek, K.; Holas, O.; Binder, J.; Zemek, F.; Marek, J.; Pohanka, M.; Opletalova, V.; Dohnal, V.; Kuca, K. Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease. Bioorg. Med. Chem. Lett., 2010, 20(20), 6093-6095.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.044] [PMID: 20817518]
[223]
Minarini, A.; Milelli, A.; Tumiatti, V.; Rosini, M.; Simoni, E.; Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Motori, E.; Angeloni, C.; Hrelia, S. Cystamine-tacrine dimer: A new multi-target-directed ligand as potential therapeutic agent for Alzheimer’s disease treatment. Neuropharmacology, 2012, 62(2), 997-1003.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.007] [PMID: 22032870]
[224]
Ishihara, Y.; Goto, G.; Miyamoto, M. Central selective acetylcholinesterase inhibitor with neurotrophic activity: structure-activity relationships of TAK-147 and related compounds. Curr. Med. Chem., 2000, 7(3), 341-354.
[http://dx.doi.org/10.2174/0929867003375272] [PMID: 10637368]
[225]
Hatip-Al-Khatib, I.; Iwasaki, K.; Yoshimitsu, Y.; Arai, T.; Egashira, N.; Mishima, K.; Ikeda, T.; Fujiwara, M. Effect of oral administration of zanapezil (TAK‐147) for 21 days on acetylcholine and monoamines levels in the ventral hippocampus of freely moving rats. Br. J. Pharmacol., 2005, 145(8), 1035-1044.
[http://dx.doi.org/10.1038/sj.bjp.0706288] [PMID: 15951830]
[226]
Maelicke, A.; Schrattenholz, A.; Samochocki, M.; Radina, M.; Albuquerque, E.X. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav. Brain Res., 2000, 113(1-2), 199-206.
[http://dx.doi.org/10.1016/S0166-4328(00)00214-X] [PMID: 10942046]
[227]
Perry, E.K.; Morris, C.M.; Court, J.A.; Cheng, A.; Fairbairn, A.F.; McKeith, I.G.; Irving, D.; Brown, A.; Perry, R.H. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: Possible index of early neuropathology. Neuroscience, 1995, 64(2), 385-395.
[http://dx.doi.org/10.1016/0306-4522(94)00410-7] [PMID: 7700528]
[228]
Nordberg, A.; Lundqvist, H.; Hartvig, P.; Lilja, A.; Långström, B. Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains-in vivo assessment using positron emission tomography. Alzheimer Dis. Assoc. Disord., 1995, 9(1), 21-27.
[http://dx.doi.org/10.1097/00002093-199505000-00006] [PMID: 7605618]
[229]
Woodruff-Pak, D.S.; Vogel, R.W., III; Wenk, G.L. Galantamine: Effect on nicotinic receptor binding, acetylcholinesterase inhibition, and learning. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 2089-2094.
[http://dx.doi.org/10.1073/pnas.98.4.2089] [PMID: 11172080]
[230]
Strittmatter, W.J.; Weisgraber, K.H.; Goedert, M.; Saunders, A.M.; Huang, D.; Corder, E.H.; Dong, L.M.; Jakes, R.; Alberts, M.J.; Gilbert, J.R.; Han, S.H.; Hulette, C.; Einstein, G.; Schmechel, D.E.; Pericak-Vance, M.A.; Roses, A.D. Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp. Neurol., 1994, 125(2), 163-171.
[http://dx.doi.org/10.1006/exnr.1994.1019] [PMID: 8313935]
[231]
Mary, A.; Renko, D.Z.; Guillou, C.; Thal, C. Potent acetylcholinesterase inhibitors: design, synthesis, and structure-Activity relationships of bis-interacting ligands in the galanthamine series. Bioorg. Med. Chem., 1998, 6(10), 1835-1850.
[http://dx.doi.org/10.1016/S0968-0896(98)00133-3] [PMID: 9839013]
[232]
Tariot, P.N.; Solomon, P.R.; Morris, J.C.; Kershaw, P.; Lilienfeld, S.; Ding, C. A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology, 2000, 54(12), 2269-2276.
[http://dx.doi.org/10.1212/WNL.54.12.2269] [PMID: 10881251]
[233]
Jia, P.; Sheng, R.; Zhang, J.; Fang, L.; He, Q.; Yang, B.; Hu, Y. Design, synthesis and evaluation of galanthamine derivatives as acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2009, 44(2), 772-784.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.018] [PMID: 18550228]
[234]
da Silva, V.B.; de Andrade, P.; Kawano, D.F.; Morais, P.A.B.; de Almeida, J.R.; Carvalho, I.; Taft, C.A.; da Silva, C.H.T.P. In silico design and search for acetylcholinesterase inhibitors in Alzheimer’s disease with a suitable pharmacokinetic profile and low toxicity. Future Med. Chem., 2011, 3(8), 947-960.
[http://dx.doi.org/10.4155/fmc.11.67] [PMID: 21707398]
[235]
Pagliosa, L.B.; Monteiro, S.C.; Silva, K.B.; de Andrade, J.P.; Dutilh, J.; Bastida, J.; Cammarota, M.; Zuanazzi, J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine, 2010, 17(8-9), 698-701.
[http://dx.doi.org/10.1016/j.phymed.2009.10.003] [PMID: 19969445]
[236]
Geissler, T.; Brandt, W.; Porzel, A.; Schlenzig, D.; Kehlen, A.; Wessjohann, L.; Arnold, N. Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorg. Med. Chem., 2010, 18(6), 2173-2177.
[http://dx.doi.org/10.1016/j.bmc.2010.01.074] [PMID: 20176490]
[237]
Khorana, N.; Changwichit, K.; Ingkaninan, K.; Utsintong, M. Prospective acetylcholinesterase inhibitory activity of indole and its analogs. Bioorg. Med. Chem. Lett., 2012, 22(8), 2885-2888.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.057] [PMID: 22425563]
[238]
Guo, B.; Xu, L.; Wei, Y.; Liu, C. Research advances of Huperzia serrata (Thunb.) Trev. Zhongguo Zhongyao Zazhi, 2009, 34(16), 2018-2023. [
[PMID: 19938535]
[239]
Kozikowski, A.P.; Xia, Y.; Reddy, E.R.; Tuckmantel, W.; Hanin, I.; Tang, X.C. Synthesis of huperzine A, its analogs, and their anticholinesterase activity. J. Org. Chem., 1991, 56(15), 4636-4645.
[http://dx.doi.org/10.1021/jo00015a014]
[240]
Little, J.T.; Walsh, S.; Aisen, P.S. An update on huperzine A as a treatment for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2008, 17(2), 209-215.
[http://dx.doi.org/10.1517/13543784.17.2.209] [PMID: 18230054]
[241]
Pohanka, M.; Zemek, F.; Bandouchova, H.; Pikula, J. Toxicological scoring of Alzheimer’s disease drug huperzine in a guinea pig model. Toxicol. Mech. Methods, 2012, 22(3), 231-235.
[http://dx.doi.org/10.3109/15376516.2011.635320] [PMID: 22112162]
[242]
Yang, L.; Ye, C.; Huang, X.; Tang, X.; Zhang, H. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J. Alzheimers Dis., 2012, 31(1), 131-142.
[http://dx.doi.org/10.3233/JAD-2012-120274] [PMID: 22531425]
[243]
Zhao, Y.; Dou, J.; Luo, J.; Li, W.; Chan, H.H.N.; Cui, W.; Zhang, H.; Han, R.; Carlier, P.R.; Zhang, X.; Han, Y. Neuroprotection against excitotoxic and ischemic insults by bis(12)-hupyridone, a novel anti-acetylcholinesterase dimer, possibly via acting on multiple targets. Brain Res., 2011, 1421, 100-109.
[http://dx.doi.org/10.1016/j.brainres.2011.09.014] [PMID: 21978549]
[244]
Shi, Y.; Zhang, H.; Wang, W.; Fu, Y.; Xia, Y.; Tang, X.; Bai, D.; He, X. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors. Acta Pharmacol. Sin., 2009, 30(8), 1195-1203.
[http://dx.doi.org/10.1038/aps.2009.91] [PMID: 19578388]
[245]
Yin, X.; Qi, J.; Li, Y.; Za, B.; Du, P.; Kou, R. Terpenoids with neurotrophic and anti-neuroinflammatory activities from the cultures of the fungus Cyathus stercoreus. Nat. Prod. Res., 2020, 34, 1-10.
[PMID: 32162975]
[246]
Qi, J.; Gao, Y.Q.; Kang, S.; Liu, C.; Gao, J.M. Secondary metabolites of bird’s nest fungi: chemical structures and biological activities. J. Agric. Food Chem., 2023, 71(17), 6513-6524.
[http://dx.doi.org/10.1021/acs.jafc.3c00904] [PMID: 37071706]
[247]
Wei, J.; Li, J.; Feng, X.; Zhang, Y.; Hu, X.; Hui, H.; Xue, X.; Qi, J. Unprecedented Neoverrucosane and Cyathane Diterpenoids with Anti-Neuroinflammatory Activity from Cultures of the Culinary-Medicinal Mushroom Hericium erinaceus. Molecules, 2023, 28(17), 6380.
[http://dx.doi.org/10.3390/molecules28176380] [PMID: 37687209]
[248]
Wei, J.; Ye, M.Y.; Wang, Z.X.; Zhang, Y.L.; Hu, X.S.; Hui, H.; Liu, Y.; Qi, J. Molecular properties, structure, neurotrophic and anti-inflammatory activities of cultured secondary metabolites from the cultures of the mushroom Cyathus striatus CBPFE A06. Nat. Prod. Res., 2023, 1-6.
[http://dx.doi.org/10.1080/14786419.2023.2273911] [PMID: 37876186]
[249]
Bailly, C.; Gao, J.M. Erinacine A and related cyathane diterpenoids: Molecular diversity and mechanisms underlying their neuroprotection and anticancer activities. Pharmacol. Res., 2020, 159, 104953.
[http://dx.doi.org/10.1016/j.phrs.2020.104953] [PMID: 32485283]
[250]
Egan, M.F.; Kost, J.; Voss, T.; Mukai, Y.; Aisen, P.S.; Cummings, J.L.; Tariot, P.N.; Vellas, B.; van Dyck, C.H.; Boada, M.; Zhang, Y.; Li, W.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Mo, Y.; Sur, C.; Michelson, D. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N. Engl. J. Med., 2019, 380(15), 1408-1420.
[http://dx.doi.org/10.1056/NEJMoa1812840] [PMID: 30970186]
[251]
Novak, G.; Streffer, J.R.; Timmers, M.; Henley, D.; Brashear, H.R.; Bogert, J.; Russu, A.; Janssens, L.; Tesseur, I.; Tritsmans, L.; Van Nueten, L.; Engelborghs, S. Long-term safety and tolerability of atabecestat (JNJ-54861911), an oral BACE1 inhibitor, in early Alzheimer’s disease spectrum patients: a randomized, double-blind, placebo-controlled study and a two-period extension study. Alzheimers Res. Ther., 2020, 12(1), 58.
[http://dx.doi.org/10.1186/s13195-020-00614-5] [PMID: 32410694]
[252]
Ferreira, J.P.S.; Albuquerque, H.M.T.; Cardoso, S.M.; Silva, A.M.S.; Silva, V.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem., 2021, 221, 113492.
[http://dx.doi.org/10.1016/j.ejmech.2021.113492] [PMID: 33984802]
[253]
Evans, D.A.; Funkenstein, H.H.; Albert, M.S.; Scherr, P.A.; Cook, N.R.; Chown, M.J.; Hebert, L.E.; Hennekens, C.H.; Taylor, J.O. Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA, 1989, 262(18), 2551-2556.
[http://dx.doi.org/10.1001/jama.1989.03430180093036] [PMID: 2810583]
[254]
Brufani, M.; Filocamo, L. New acetylcholinesterase inhibitors. Drugs Future, 1997, 22, 171-177.
[255]
Sugimoto, H.; Tsuchiya, Y.; Sugumi, H.; Higurashi, K.; Karibe, N.; Iimura, Y.; Sasaki, A.; Kawakami, Y.; Nakamura, T.; Araki, S. Novel piperidine derivatives. Synthesis and anti-acetylcholineste-rase activity of 1-benzyl-4-[2-(N-benzoylamino)ethyl]piperidine derivatives. J. Med. Chem., 1990, 33(7), 1880-1887.
[http://dx.doi.org/10.1021/jm00169a008] [PMID: 2362265]
[256]
Sugimoto, H.; Tsuchiya, Y.; Sugumi, H.; Higurashi, K.; Karibe, N.; Iimura, Y.; Sasaki, A.; Araki, S.; Yamanishi, Y.; Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-(2-phthalimidoethyl)piperidine, and related derivatives. J. Med. Chem., 1992, 35(24), 4542-4548.
[http://dx.doi.org/10.1021/jm00102a005] [PMID: 1469686]
[257]
Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperi-dine hydrochloride and related compounds. J. Med. Chem., 1995, 38(24), 4821-4829.
[http://dx.doi.org/10.1021/jm00024a009] [PMID: 7490731]
[258]
Sugimoto, H. Structure-activity relationships of acetylcholinesterase inhibitors: Donepezil hydrochloride for the treatment of Alzheimer’s Disease. Pure Appl. Chem., 1999, 71(11), 2031-2037.
[http://dx.doi.org/10.1351/pac199971112031]
[259]
Zhu, Y.; Xiao, K.; Ma, L.; Xiong, B.; Fu, Y.; Yu, H.; Wang, W.; Wang, X.; Hu, D.; Peng, H.; Li, J.; Gong, Q.; Chai, Q.; Tang, X.; Zhang, H.; Li, J.; Shen, J. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and β-secretase. Bioorg. Med. Chem., 2009, 17(4), 1600-1613.
[http://dx.doi.org/10.1016/j.bmc.2008.12.067] [PMID: 19162488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy