Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Modeling Pressure Effect of Circular Tourniquet Based on Digital Arm

Author(s): Yuping Qin, Man Zhang, Jiangming Kuang and Shuang Zhang*

Volume 17, Issue 4, 2024

Published on: 29 March, 2024

Page: [312 - 318] Pages: 7

DOI: 10.2174/0122127976303194240314082728

Price: $65

Abstract

Background: This study aims to investigate displacement deformation of human tissue in the force region subjected to annular pressure.

Methods: In this patent, 727 images of a Chinese digital human arm, captured from shoulder to fingertip, were used as the reconstruction data. The geometric entities of tissue structure were obtained after tissue segmentation, three-dimensional modeling, and reverse engineering to establish the working mechanism model of the tourniquet of the human forearm in the finite element simulation software (COMSOL Multiphysics 5.5). By setting different parameter models (tourniquet pressure and width models), we analyzed the force conduction mechanism and the displacement deformation mechanism of the viscoelastic and rigid tissues of the forearm when subjected to annular pressure.

Results: Modeling analysis showed that when a pressure of 800 kPa was applied on a width of 40 mm, the annular pressure on the viscoelastic tissues was converted into displacement deformation, thus changing the tissue structure in the body and realizing the hemostatic effect of the tourniquet. In the case of fixed tourniquet width but variable tourniquet pressure, with the gradual increase of the pressure, displacement deformation showed an increasing trend. When the externally applied pressure was fixed and the tourniquet width was different, with the gradual increase of the tourniquet width, the displacement deformation showed a decreasing trend.

Conclusion: This patent study demonstrates that both the amount of externally applied pressure and the width of the tourniquet affect the hemostatic effect of the tourniquet. The hemostatic effect on the damaged body will be more obvious under a small tourniquet width and large pressure.

[1]
Sarriugarte Aldecoa-Otarola J, Iglesias-Zamora ME, Vieira R, Idoate-Iglesias B, Martin-Gorgojo A. Safety in dermatologic procedures: Accidental injury to major blood vessels and nerve structures. Actas Dermosifiliogr 2023; 114(7): 606-12.
[http://dx.doi.org/10.1016/j.ad.2023.03.005] [PMID: 37060992]
[2]
Chaudhary A, Acharya S, Pradhan SK, et al. Accidental gunshot injury with left-sided lung injury and D11 burst fracture: A case report. Ann Med Surg 2023; 85(5): 1897-901.
[http://dx.doi.org/10.1097/MS9.0000000000000343] [PMID: 37228991]
[3]
Sarriugarte Aldecoa-Otarola J, Iglesias-Zamora ME, Vieira R, Idoate-Iglesias B, Martin-Gorgojo A. Safety in dermatological procedures: Section of large blood vessels and nervous structures. Actas Dermosifiliogr 2023; 114(7): 606-12.
[http://dx.doi.org/10.1016/j.ad.2023.03.005] [PMID: 37060992]
[4]
Boix-Vilanova J, Manubens E, Bennassar A. The circular tourniquet. J Am Acad Dermatol 2023; 89(1): e41-2.
[http://dx.doi.org/10.1016/j.jaad.2021.03.121] [PMID: 33878405]
[5]
Aglyamov SR, Emelianov SY, Karpiouk AB, Ilinskii YA, Zabolotskaya EA. 4K-4 estimation of viscoelastic properties of tissue using acoustic radiation force. 2006 IEEE Ultrasonics Symposium. Vancouver, BC, Canada. 2006; pp. 1152-5.
[http://dx.doi.org/10.1109/ULTSYM.2006.297]
[6]
Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat Nanotechnol 2021; 16(9): 1019-29.
[http://dx.doi.org/10.1038/s41565-021-00926-z] [PMID: 34140673]
[7]
Kuang J, Qin Y, Shuang Z. Performance analysis of semi-refined digital forearm modeling and simplified forearm model in electromagnetic simulation. Recent Pat Eng 2024; 18: e061023221835.
[8]
Jing X, Man Z, Kuang J, Qin Y, Shuang Z. Modeling and analysis of cancer electrothermic therapy technique based on a digital arm. Recent Pat Eng 2024; 18: e041223224188.
[9]
Kuang J, Zhang M, Zhang S, Qin Y. Finite element model for local instantaneous impact protection analysis based on digital arm. Recent Pat Mech Eng 2024; 17(1): 68-74.
[http://dx.doi.org/10.2174/0122127976274753231108114014]
[10]
Chen X. Automatic hard object spring back operation puncturing suction device, has spring fixed between rotating ring and fixed cylinder, and inclined plane opening whose surface is provided with trigger button that is connected with inner wall of suction tube. CN209951338, 2023.
[11]
Alexander DG. Numericalmodeling for the prediction of primary blast injury to the lung.M. S. thesis. In: Canada, University of Waterloo. 2006.
[12]
Hoenig T, Ackerman KE, Beck BR, et al. Bone stress injuries. Nat Rev Dis Primers 2022; 8(1): 26.
[http://dx.doi.org/10.1038/s41572-022-00352-y] [PMID: 35484131]
[13]
Xing YP. Identification and simulation of stress injury of male tibia in jumping. Computer Simulation 2017; 34(2): 274-7.
[14]
LIU HR. Magnetic resonance imaging of ankle sports injuries. Int J Med Radiol 2017; 40(4): 414-8.
[15]
Richens D, Field M, Hashim S, Neale M, Oakley C. A finite element model of blunt traumatic aortic rupture1. Eur J Cardiothorac Surg 2004; 25(6): 1039-47.
[http://dx.doi.org/10.1016/j.ejcts.2004.01.059] [PMID: 15145007]
[16]
Yoganandan N, Pintar FA. Responses of side impact dummies in sled tests. Accid Anal Prev 2005; 37(3): 495-503.
[http://dx.doi.org/10.1016/j.aap.2004.12.007] [PMID: 15784203]
[17]
Shuang Zhang. Modeling and analysis of electrical signal transduction mechanism in electroacupuncture-based electrochemotherapy of intramuscular hemangioma. Chinese J Med Phy 2022; 39(9): 1145-50.
[18]
Jining Yang. Modeling and analysis of electrical signal transduction mechanism of electronic analgesic apparatus. Chinese J Med Phy 2022; 39(6): 752-7.
[19]
Cui Y, Wang X, Zhang H, et al. Research on characteristics of human pelvic and lumbar injuries based on generalized half-sine wave excitation. J Nanjing Univ Sci Tech 2022; 46(05): 544-52.
[20]
Ming L, Zhou Y, Zhang J, et al. Research on time interval of explosion impact on pelvis and lumbar spine injury. Explosion and Shock Waves 2021; 41(1): 138-49.
[21]
Zhen Lei, Yonghui Huang, Wenmeng Chen, Zhiyu Zhang, Jiguo Zhou. A study on the variation of cavity volume and energy dissipation with resistance line under blast impact load. J Vibtation Shock 2021; 40(04): 66-71.
[22]
Van Sligtenhorst C, Cronin DS, Wayne Brodland G. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus. J Biomech 2006; 39(10): 1852-8.
[http://dx.doi.org/10.1016/j.jbiomech.2005.05.015] [PMID: 16055133]
[23]
Saraf H, Ramesh KT, Lennon AM, Merkle AC, Roberts JC. Mechanical properties of soft human tissues under dynamic loading. J Biomech 2007; 40(9): 1960-7.
[http://dx.doi.org/10.1016/j.jbiomech.2006.09.021] [PMID: 17125775]
[24]
Willinger R, Kang HS, Diaw B. Three-dimensional human head finite-element model validation against two experimental impacts. Ann Biomed Eng 1999; 27(3): 403-10.
[http://dx.doi.org/10.1114/1.165] [PMID: 10374732]
[25]
Eppinger RH, Marcus JH, Morgan MM. Development of dummy and injury index for NHSTA's thoracc side impact protectlon research program. SAE Technical Paper 840885 1984; 1-31.
[26]
Zhu J, Wang KM, Li S, et al. Modeling and analysis of visual digital impact model for a Chinese human thorax. Technol Health Care 2017; 25(2): 311-8.
[http://dx.doi.org/10.3233/THC-161267] [PMID: 27792021]
[27]
Li XF, Kuang JM, Nie SB, Xu J, Zhu J, Liu YH. A numerical model for blast injury of human thorax based on digitized visible human. Technol Health Care 2017; 25(6): 1029-39.
[http://dx.doi.org/10.3233/THC-170885] [PMID: 28759981]
[28]
Bass CR, Panzer MB, Rafaels KA, Wood G, Shridharani J, Capehart B. Brain injuries from blast. Ann Biomed Eng 2012; 40(1): 185-202.
[http://dx.doi.org/10.1007/s10439-011-0424-0] [PMID: 22012085]
[29]
Bass CR, Rafaels KA, Salzar RS. Pulmonary injury risk assessment for short-duration blasts. J Trauma 2008; 65(3): 604-15.
[http://dx.doi.org/10.1097/TA.0b013e3181454ab4] [PMID: 18784574]
[30]
Zhang S, Wang J, Yu Y, Wu L, Zhang T. Chinese digital arm (CDA): A high-precision digital arm for electrical stimulation simulation. Bioengineering 2023; 10(3): 374.
[http://dx.doi.org/10.3390/bioengineering10030374] [PMID: 36978765]
[31]
Axelsson H, Yelverton JT. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment. J Trauma Inj Infect Crit Care 1996; 40(3): 31S-7S.
[http://dx.doi.org/10.1097/00005373-199603001-00006] [PMID: 8606417]
[32]
Roberts JC, Merkle AC, Biermann PJ, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact. J Biomech 2007; 40(1): 125-36.
[http://dx.doi.org/10.1016/j.jbiomech.2005.11.003] [PMID: 16376354]
[33]
Grimal Q, Watzky A, Naili S. A one-dimensional model for the propagation of transient pressure waves through the lung. J Biomech 2002; 35(8): 1081-9.
[http://dx.doi.org/10.1016/S0021-9290(02)00064-7] [PMID: 12126667]
[34]
Le J. Numerical simulation of shock (blast) wave interaction with bodies. Commun Nonlinear Sci Numer Simul 1999; 4(1): 1-7.
[http://dx.doi.org/10.1016/S1007-5704(99)90046-1]
[35]
Viano DC, Lau IV. A viscous tolerance criterion for soft tissue injury assessment. J Biomech 1988; 21(5): 387-99.
[http://dx.doi.org/10.1016/0021-9290(88)90145-5] [PMID: 3417691]
[36]
Liu Y. Car rear-end and front end collision protection device, has instantaneous buffer for absorbing impact force of vehicle collision, and interference level protection front and rear bumper assembly for driving fixed rotating shaft. CN105882576, 2016.
[37]
Pei P, Liu A, Li Y, Huang S. Protective device for absorbing collapse landslide impact super-large opening diameter pipeline instantaneous impact energy, has pipeline main body located on outer protective buffer component sleeved with protective layer. CN115789398, 2023.
[38]
Fei Y, Feng X, Xiaoyuan G, Fuyou W, Liu Y. Effect of anterior cruciate ligament rupture on secondary damage to menisci and articular cartilage. The Knee 2016; 23(1): 102-5.
[39]
Ota K, Sekiya T, Nishida H. Effects of flow measurement resolution on quasi-steady body force estimation in dielectric-barrier-discharge plasma actuator. AIP Adv 2016; 6(10): 105109.
[http://dx.doi.org/10.1063/1.4966044]
[40]
Black WJ, Denissen N, McFarland JA. Particle force model effects in a shock-driven multiphase instability. Shock Waves 2018; 28(3): 463-72.
[http://dx.doi.org/10.1007/s00193-017-0790-0]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy