Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Benefits of Bambara Groundnut (Vigna subterranea) as a Source of Protein on Reproductive Function Related to Ghrelin-leptin in Female Mice Fed a Low Protein Diet

In Press, (this is not the final "Version of Record"). Available online 29 March, 2024
Author(s): Rimonta Febby Gunanegara, Agung Dewanto and Sunarti*
Published on: 29 March, 2024

DOI: 10.2174/0115734013291868240324152826

Price: $95

Abstract

Background: Low protein intake during pregnancy increases maternal mortality and blood levels of leptin and ghrelin, the hormones that regulate energy balance, affecting energy intake and body weight. The benefits of protein depend on the amount and type of amino acids that make up the protein. The need for L-lysine amino acids in pregnant women is reported to increase, especially at the end of pregnancy. Bambara beans contain high levels of the amino acid L-lysine, so they can be used as a source of protein that contains high levels of L-lysine.

Objective: This study evaluated the Bambara groundnuts (Vigna subterranea) supplementation effects on reproductive function related to ghrelin-leptin in female mice fed a low protein diet.

Method: Quasi-experimental study with a control group employing 50 female mice divided into five groups: normal protein diet (N), low protein diet (LP), low protein diet with 100 g (LP+100); 200 g (LP+200), and 300 g (LP+300) Bambara groundnut supplementation. After 2 months of intervention, half of the mice in each group (n=25) were terminated, and blood samples were collected to determine albumin, ghrelin, and leptin levels. The other half mice were mated to assess gestational age.

Results: Supplementation with Bambara groundnuts at 200 and 300 g/kg of feed increases protein intake and ghrelin and leptin levels. The leptin/ ghrelin ratio in the group of mice supplemented with Bambara groundnut at a dose of 300 g/kg feed shows a similar ratio to the normal group. Although there were no significant changes in albumin levels in all groups, protein intake, ghrelin and leptin levels were positively correlated with gestational age.

Conclusion: Bambara groundnuts can reduce the negative effect of a low protein diet in female mice. It is an excellent protein source that increases the leptin/ghrelin ratio to improve gestational age.

[1]
Borazjani, F.; Angali, K.A.; Kulkarni, S.S. Milk and protein intake by pregnant women affects growth of foetus. J. Health Popul. Nutr., 2013, 31(4), 435-445.
[PMID: 24592584]
[2]
Elango, R.; Ball, R.O. Protein and amino acid requirements during pregnancy. Adv. Nutr., 2016, 7(4), 839S-844S.
[http://dx.doi.org/10.3945/an.115.011817] [PMID: 27422521]
[3]
Tan, C.; Huang, Z.; Xiong, W.; Ye, H.; Deng, J.; Yin, Y. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs. J. Anim. Sci. Biotechnol., 2022, 13(1), 28.
[http://dx.doi.org/10.1186/s40104-022-00676-5] [PMID: 35232472]
[4]
Guzmán, C.; Cabrera, R.; Cárdenas, M.; Larrea, F.; Nathanielsz, P.W.; Zambrano, E. Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny. J. Physiol., 2006, 572(1), 97-108.
[http://dx.doi.org/10.1113/jphysiol.2005.103903] [PMID: 16497715]
[5]
Zambrano, E.; Bautista, C.J.; Deás, M.; Samayoa, M.P.M.; Zamorano, G.M.; Ledesma, H.; Morales, J.; Larrea, F.; Nathanielsz, P.W. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J. Physiol., 2006, 571(1), 221-230.
[http://dx.doi.org/10.1113/jphysiol.2005.100313] [PMID: 16339179]
[6]
Dong, X.; Lin, X.; Hou, Q.; Hu, Z.; Wang, Y.; Wang, Z. Effect of maternal gradient nutritional restriction during pregnancy on mammary gland development in offspring. Animals, 2023, 13(5), 946.
[http://dx.doi.org/10.3390/ani13050946] [PMID: 36899802]
[7]
Ajuogu, P.K.; Aqbi, A.M.A.K.; Hart, R.A.; Wolden, M.; Smart, N.A.; McFarlane, J.R. The effect of dietary protein intake on factors associated with male infertility: A systematic literature review and meta-analysis of animal clinical trials in rats. Nutr. Health, 2020, 26(1), 53-64.
[http://dx.doi.org/10.1177/0260106019900731] [PMID: 31992124]
[8]
Dimas, A.; Politi, A.; Papaioannou, G.; Barber, T.M.; Weickert, M.O.; Grammatopoulos, D.K.; Kumar, S.; Kalantaridou, S.; Valsamakis, G. The gestational effects of maternal appetite axis molecules on fetal growth, metabolism and long-term metabolic health: A systematic review. Int. J. Mol. Sci., 2022, 23(2), 695.
[http://dx.doi.org/10.3390/ijms23020695] [PMID: 35054881]
[9]
Du, F.; Higginbotham, D.A.; White, B.D. Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets. J. Nutr., 2000, 130(3), 514-521.
[http://dx.doi.org/10.1093/jn/130.3.514] [PMID: 10702578]
[10]
De França, A.S.; dos Santos, M.P.; Garófalo, M.A.R.; Navegantes, L.C.; Kettelhut, I.C.; Lopes, C.F.; Kawashita, N.H. Low protein diet changes the energetic balance and sympathetic activity in brown adipose tissue of growing rats. Nutrition, 2009, 25(11-12), 1186-1192.
[http://dx.doi.org/10.1016/j.nut.2009.03.011] [PMID: 19535223]
[11]
Payne, M.; Stephens, T.; Lim, K.; Ball, R.O.; Pencharz, P.B.; Elango, R. Lysine requirements of healthy pregnant women are higher during late stages of gestation compared to early gestation. J. Nutr., 2018, 148(1), 94-99.
[http://dx.doi.org/10.1093/jn/nxx034] [PMID: 29378056]
[12]
Gao, H.; Tanchico, D.T.; Yallampalli, U.; Balakrishnan, M.P.; Yallampalli, C. Appetite regulation is independent of the changes in ghrelin levels in pregnant rats fed low-protein diet. Physiol. Rep., 2015, 3(4), e12368.
[http://dx.doi.org/10.14814/phy2.12368] [PMID: 25907788]
[13]
Adamska-Patruno, E.; Ostrowska, L.; Goscik, J.; Pietraszewska, B.; Kretowski, A.; Gorska, M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: A randomized crossover study. Nutr. J., 2018, 17(1), 118.
[http://dx.doi.org/10.1186/s12937-018-0427-x] [PMID: 30593267]
[14]
Oluwole, O.B.; Okpara, N.V.A.N.; Elemo, G.; Adeyoju, O.; Ibekwe, D.; Adegboyega, M.O. Medicinal uses, nutraceutical potentials and traditional farm production of bambara beans and pigeon pea. Glob. J. Epidemiol. Public Health., 2022, 6, 41-50.
[http://dx.doi.org/10.12974/2313-0946.2021.06.01.3]
[15]
Popoola, J.O.; Ojuederie, O.B.; Aworunse, O.S.; Adelekan, A.; Oyelakin, A.S.; Oyesola, O.L.; Akinduti, P.A.; Dahunsi, S.O.; Adegboyega, T.T.; Oranusi, S.U.; Ayilara, M.S.; Omonhinmin, C.A. Nutritional, functional, and bioactive properties of african underutilized legumes. Front. Plant Sci., 2023, 14, 1105364.
[http://dx.doi.org/10.3389/fpls.2023.1105364] [PMID: 37123863]
[16]
Mune, M.M.A.; Minka, R.S.; Mbome, L.I.; Etoa, F.X. Nutritional potential of bambara bean protein concentrate. Pak. J. Nutr., 2011, 10(2), 112-119.
[http://dx.doi.org/10.3923/pjn.2011.112.119]
[17]
Ekeleme, ECA; Famurewa, AC; Egedigwe, UO; Onyeabo, C; Kanu, SC; Ogunwa, SC Comparative studies on the amino acids, pesticide residue content, biogenic and toxic elements in an underutilized nut: Bambara groundnut (Vigna subterranea). J Trace Elem Miner, 2023, 3, 100051.
[18]
Yao, D.; Kouassi, K.; Erba, D.; Scazzina, F.; Pellegrini, N.; Casiraghi, M. Nutritive evaluation of the bambara groundnut Ci12 Landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] produced in côte d’ivoire. Int. J. Mol. Sci., 2015, 16(9), 21428-21441.
[http://dx.doi.org/10.3390/ijms160921428] [PMID: 26370971]
[19]
Tan, X.L.; Ali, A.S.; Goh, E.V.; Mustafa, M.; Chai, H.H.; Ho, W.K.; Mayes, S.; Mabhaudhi, T.; Azam-Ali, S.; Massawe, F. Bambara groundnut: An underutilized leguminous crop for global food security and nutrition. Front. Nutr., 2020, 7, 601496.
[http://dx.doi.org/10.3389/fnut.2020.601496] [PMID: 33363196]
[20]
Herring, C.M.; Bazer, F.W.; Johnson, G.A.; Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med., 2018, 243(6), 525-533.
[http://dx.doi.org/10.1177/1535370218758275] [PMID: 29466875]
[21]
Yang, J.; Chang, Q.; Tian, X.; Zhang, B.; Zeng, L.; Yan, H.; Dang, S.; Li, Y.H. Dietary protein intake during pregnancy and birth weight among Chinese pregnant women with low intake of protein. Nutr. Metab., 2022, 19(1), 43.
[http://dx.doi.org/10.1186/s12986-022-00678-0] [PMID: 35790993]
[22]
Zarkos, J.; Addai, D.; Tolekova, A. Low protein diets for pregnant women and its association with insulin secretion and resistance. Open Access Maced. J. Med. Sci., 2019, 7(4), 686-689.
[http://dx.doi.org/10.3889/oamjms.2019.081] [PMID: 30894934]
[23]
Samuel, R.S.; Moehn, S.; Pencharz, P.B.; Ball, R.O. Dietary lysine requirement of sows increases in late gestation1. J. Anim. Sci., 2012, 90(13), 4896-4904.
[http://dx.doi.org/10.2527/jas.2011-4583] [PMID: 23048137]
[24]
Matthews, D.E. Review of lysine metabolism with a focus on humans. J. Nutr., 2020, 150(S1), 2548S-2555S.
[http://dx.doi.org/10.1093/jn/nxaa224] [PMID: 33000162]
[25]
Endrinikapoulos, A.; Afifah, D.N.; Mexitalia, M.; Andoyo, R.; Hatimah, I.; Nuryanto, N. Study of the importance of protein needs for catch-up growth in Indonesian stunted children: A narrative review. SAGE Open Med., 2023, 11, 20503121231165562.
[http://dx.doi.org/10.1177/20503121231165562] [PMID: 37101818]
[26]
Pasunooti, K.K.; Yang, R.; Vedachalam, S.; Gorityala, B.K.; Liu, C.F.; Liu, X.W. Synthesis of 4-mercapto-l-lysine derivatives: Potential building blocks for sequential native chemical ligation. Bioorg. Med. Chem. Lett., 2009, 19(22), 6268-6271.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.107] [PMID: 19833511]
[27]
Yang, Q.Q.; Suen, P.K.; Zhang, C.Q.; Mak, W.S.; Gu, M.H.; Liu, Q.Q.; Sun, S.S.M. Improved growth performance, food efficiency, and lysine availability in growing rats fed with lysine-biofortified rice. Sci. Rep., 2017, 7(1), 1389.
[http://dx.doi.org/10.1038/s41598-017-01555-0] [PMID: 28465621]
[28]
Putra, L.V.D.; Agustono, U.; Kenconojati, S.H. The effect of adding lysine in commercial feed on growth rate, feed efficiency, and feed convertion ratio to tambaqui (Colossoma Macropomum). IOP Conf. Ser. Earth Environ. Sci., 2019, 236, 012076.
[http://dx.doi.org/10.1088/1755-1315/236/1/012076]
[29]
Wang, W.; Xu, Y.; Chi, S.; Yang, P.; Mai, K.; Song, F. Dietary lysine regulates body growth performance via the nutrient-sensing signaling pathways in largemouth bass (Micropterus salmoides). Front. Mar. Sci., 2020, 7, 595682.
[http://dx.doi.org/10.3389/fmars.2020.595682]
[30]
Cho, S.B.; Han, I.K.; Kim, Y.Y.; Park, S.K.; Hwang, O.H.; Choi, C.W.; Yang, S.H.; Park, K.H.; Choi, D.Y.; Yoo, Y.H. Effect of lysine to digestible energy ratio on growth performance and carcass characteristics in finishing pigs. Asian-Australas. J. Anim. Sci., 2012, 25(11), 1582-1587.
[http://dx.doi.org/10.5713/ajas.2012.12311] [PMID: 25049520]
[31]
Hu, X.; Huo, B.; Yang, J.; Wang, K.; Huang, L.; Che, L.; Feng, B.; Lin, Y.; Xu, S.; Zhuo, Y.; Wu, C.; Wu, D.; Fang, Z. Effects of dietary lysine levels on growth performance, nutrient digestibility, serum metabolites, and meat quality of baqing pigs. Animals, 2022, 12(15), 1884.
[http://dx.doi.org/10.3390/ani12151884] [PMID: 35892534]
[32]
Hasan, M.S.; Crenshaw, M.A.; Liao, S.F. Dietary lysine affects amino acid metabolism and growth performance, which may not involve the GH/IGF-1 axis, in young growing pigs1. J. Anim. Sci., 2020, 98(1), skaa004.
[http://dx.doi.org/10.1093/jas/skaa004] [PMID: 31922564]
[33]
Rao, V.; Poonia, A. Protein characteristics, amino acid profile, health benefits and methods of extraction and isolation of proteins from some pseudocereals—A review. Food Prod. Process. Nutr., 2023, 5(1), 37.
[http://dx.doi.org/10.1186/s43014-023-00154-z]
[34]
Mihan, J.A.; Luhovyy, B.L.; Khoury, E.D.; Anderson, G.H. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients, 2011, 3(5), 574-603.
[http://dx.doi.org/10.3390/nu3050574] [PMID: 22254112]
[35]
Geraedts, M.C.P.; Troost, F.J.; Saris, W.H.M. Gastrointestinal targets to modulate satiety and food intake. Obes. Rev., 2011, 12(6), 470-477.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00788.x] [PMID: 20880099]
[36]
Latorre, R.; Sternini, C.; De Giorgio, R.; Meerveld, G.V.B. Enteroendocrine cells: A review of their role in brain–gut communication. Neurogastroenterol. Motil., 2016, 28(5), 620-630.
[http://dx.doi.org/10.1111/nmo.12754] [PMID: 26691223]
[37]
Ahmed, M.; Ahmed, S. Functional, diagnostic and therapeutic aspects of gastrointestinal hormones. Gastroenterol. Res., 2019, 12(5), 233-244.
[http://dx.doi.org/10.14740/gr1219] [PMID: 31636773]
[38]
Klok, M.D.; Jakobsdottir, S.; Drent, M.L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes. Rev., 2007, 8(1), 21-34.
[http://dx.doi.org/10.1111/j.1467-789X.2006.00270.x] [PMID: 17212793]
[39]
Smith, A.; Woodside, B.; Abizaid, A. Ghrelin and the control of energy balance in females. Front. Endocrinol., 2022, 13, 904754.
[http://dx.doi.org/10.3389/fendo.2022.904754] [PMID: 35909536]
[40]
Yurci, A.; Güngör, D.N.; Güngör, K.; Hatırnaz, Ş. Correlation of serum leptin and ghrelin levels with endocrine and reproductive parameters in women with clomiphene citrate resistant polycystic ovary syndrome. Turk J Soc Obstet Gynecol, 2022, 19(2), 124-129.
[http://dx.doi.org/10.4274/tjod.galenos.2022.84883] [PMID: 35770481]
[41]
Caminos, J.E.; Sempere, T.M.; Gaytán, F.; Criado, S.J.E.; Barreiro, M.L.; Nogueiras, R.; Casanueva, F.F.; Aguilar, E.; Diéguez, C. Expression of ghrelin in the cyclic and pregnant rat ovary. Endocrinology, 2003, 144(4), 1594-1602.
[http://dx.doi.org/10.1210/en.2002-221058] [PMID: 12639944]
[42]
Dupont, J.; Maillard, V.; Castel, C.S.; Ramé, C.; Froment, P. Ghrelin in female and male reproduction. Int. J. Pept., 2010, 2010, 1-8.
[http://dx.doi.org/10.1155/2010/158102] [PMID: 20700403]
[43]
Tütüncü, Ş.; İlhan, T.; Özfiliz, N. Immunohistochemical expression of ghrelin in capsaicin-treated rat ovaries during the different developmental periods. J. Veter. Res., 2016, 17(1), 50-54.
[PMID: 27656230]
[44]
Nakahara, K.; Nakagawa, M.; Baba, Y.; Sato, M.; Toshinai, K.; Date, Y.; Nakazato, M.; Kojima, M.; Miyazato, M.; Kaiya, H.; Hosoda, H.; Kangawa, K.; Murakami, N. Maternal ghrelin plays an important role in rat fetal development during pregnancy. Endocrinology, 2006, 147(3), 1333-1342.
[http://dx.doi.org/10.1210/en.2005-0708] [PMID: 16339208]
[45]
Saylan, F.; Köken, G.; Cosar, E.; Köken, T.; Saylan, A.; Arıöz, D.T.; Şahin, F.; Köken, R.; Yılmazer, M. Maternal and fetal leptin and ghrelin levels: Relationship with fetal growth. Arch. Gynecol. Obstet., 2011, 284(2), 327-329.
[http://dx.doi.org/10.1007/s00404-010-1651-6] [PMID: 20830483]
[46]
Cortelazzi, D.; Cappiello, V.; Morpurgo, P.S.; Ronzoni, S.; De Santis, N.M.S.; Cetin, I.; Peccoz, B.P.; Spada, A. Circulating levels of ghrelin in human fetuses. Eur. J. Endocrinol., 2003, 149(2), 111-116.
[http://dx.doi.org/10.1530/eje.0.1490111] [PMID: 12887287]
[47]
Sato, T.; Ida, T.; Shiimura, Y.; Matsui, K.; Oishi, K.; Kojima, M. Insights into the regulation of offspring growth by maternally derived ghrelin. Front. Endocrinol., 2022, 13, 852636.
[http://dx.doi.org/10.3389/fendo.2022.852636] [PMID: 35250893]
[48]
Budak, E.; Fernández Sánchez, M.; Bellver, J.; Cerveró, A.; Simón, C.; Pellicer, A. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system. Fertil. Steril., 2006, 85(6), 1563-1581.
[http://dx.doi.org/10.1016/j.fertnstert.2005.09.065] [PMID: 16759918]
[49]
Fuglsang, J. Ghrelin in pregnancy and lactation. Vitam. Horm., 2007, 77, 259-284.
[http://dx.doi.org/10.1016/S0083-6729(06)77011-X] [PMID: 17983860]
[50]
Allbrand, M.; Åman, J.; Lodefalk, M. Placental ghrelin and leptin expression and cord blood ghrelin, adiponectin, leptin, and C-peptide levels in severe maternal obesity. J. Matern. Fetal Neonatal Med., 2018, 31(21), 2839-2846.
[http://dx.doi.org/10.1080/14767058.2017.1358262] [PMID: 28783996]
[51]
Fuglsang, J.; Skjærbæk, C.; Espelund, U.; Frystyk, J.; Fisker, S.; Flyvbjerg, A.; Ovesen, P. Ghrelin and its relationship to growth hormones during normal pregnancy. Clin. Endocrinol., 2005, 62(5), 554-559.
[http://dx.doi.org/10.1111/j.1365-2265.2005.02257.x] [PMID: 15853824]
[52]
Gualillo, O.; Caminos, J.E.; Blanco, M.; Caballero, G.T.; Kojima, M.; Kangawa, K.; Dieguez, C.; Casanueva, F.F. Ghrelin, a novel placental-derived hormone. Endocrinology, 2001, 142(2), 788-794.
[http://dx.doi.org/10.1210/endo.142.2.7987] [PMID: 11159851]
[53]
Kharbanda, C.; Bansal, S.; Aneja, P. Role and significance of ghrelin and leptin in hunger, satiety, and energy homeostasis. J Sci Soc, 2022, 49(1), 12.
[54]
Faas, M.M.; Melgert, B.N.; de Vos, P. A brief review on how pregnancy and sex hormones interfere with taste and food intake. Chemosens. Percept., 2010, 3(1), 51-56.
[http://dx.doi.org/10.1007/s12078-009-9061-5] [PMID: 20352054]
[55]
de Fluiter, K.S.; Kerkhof, G.F.; van Beijsterveldt, I.A.L.P.; Breij, L.M.; van der Zee, V.V.L.C.; Mulder, M.T.; Berkeveld, A.M.; Koelega, H.A.C.S. Appetite-regulating hormone trajectories and relationships with fat mass development in term-born infants during the first 6 months of life. Eur. J. Nutr., 2021, 60(7), 3717-3725.
[http://dx.doi.org/10.1007/s00394-021-02533-z] [PMID: 33768316]
[56]
Marić, G.; Gazibara, T.; Zaletel, I.; Borović, L.M.; Tomanović, N.; Ćirić, M.; Puškaš, N. The role of gut hormones in appetite regulation (review). Acta Physiol. Hung., 2014, 101(4), 395-407.
[http://dx.doi.org/10.1556/APhysiol.101.2014.4.1] [PMID: 25532952]
[57]
Cummings, D.E.; Foster, K.E. Ghrelin-leptin tango in body-weight regulation. Gastroenterology, 2003, 124(5), 1532-1535.
[http://dx.doi.org/10.1016/S0016-5085(03)00350-0] [PMID: 12730891]
[58]
Schellekens, H.; Dinan, T.G.; Cryan, J.F. Taking two to tango: A role for ghrelin receptor heterodimerization in stress and reward. Front. Neurosci., 2013, 7, 148.
[http://dx.doi.org/10.3389/fnins.2013.00148] [PMID: 24009547]
[59]
Hajishizari, S.; Imani, H.; Mehranfar, S.; Saeed Yekaninejad, M.; Mirzababaei, A.; Clark, C.C.T.; Mirzaei, K. The association of appetite and hormones (leptin, ghrelin, and Insulin) with resting metabolic rate in overweight/ obese women: A case–control study. BMC Nutr., 2022, 8(1), 37.
[http://dx.doi.org/10.1186/s40795-022-00531-w] [PMID: 35484608]
[60]
Lacroix, M.; Battista, M.C.; Doyon, M.; Moreau, J.; Patenaude, J.; Guillemette, L.; Ménard, J.; Ardilouze, J.L.; Perron, P.; Hivert, M.F. Higher maternal leptin levels at second trimester are associated with subsequent greater gestational weight gain in late pregnancy. BMC Pregnancy Childbirth, 2016, 16(1), 62.
[http://dx.doi.org/10.1186/s12884-016-0842-y] [PMID: 27004421]
[61]
Pérez, P.A.; Jiménez, S.F.; Maymó, J.; Dueñas, J.L.; Varone, C.; Margalet, S.V. Role of leptin in female reproduction. Clin Chem Lab Med, 2015, 53(1), 15-28.
[http://dx.doi.org/10.1515/cclm-2014-0387] [PMID: 25014521]
[62]
Obeidat, R.A.; Abdo, N.; Sakee, B.; Alghazo, S.; Jbarah, O.F.; Hazaimeh, E.A.; Albeitawi, S. Maternal and fetal serum leptin levels and their association with maternal and fetal variables and labor: A cross-sectional study. Ann. Med. Surg., 2021, 72, 103050.
[http://dx.doi.org/10.1016/j.amsu.2021.103050] [PMID: 34815864]
[63]
Domali, E.; Messinis, I.E. Leptin in pregnancy. J. Matern. Fetal Neonatal Med., 2002, 12(4), 222-230.
[http://dx.doi.org/10.1080/jmf.12.4.222.230] [PMID: 12572590]
[64]
Henson, M.C.; Castracane, V.D. Leptin in pregnancy: An update. Biol. Reprod., 2006, 74(2), 218-229.
[http://dx.doi.org/10.1095/biolreprod.105.045120] [PMID: 16267210]
[65]
Fakor, F.; Sharami, S.H.; Milani, F.; Mirblouk, F.; Kazemi, S.; Pourmarzi, D.; Ebrahimi, H.; Heirati, D.S.F. The association between level of maternal serum leptin in the third trimester and the occurrence of moderate preterm labor. J. Turk. Ger. Gynecol. Assoc., 2016, 17(4), 182-185.
[http://dx.doi.org/10.5152/jtgga.2016.16121] [PMID: 27990085]
[66]
Stefaniak, M.; Gajzlerska, D.E. Maternal serum and cord blood leptin concentrations at delivery in normal pregnancies and in pregnancies complicated by intrauterine growth restriction. Obes. Facts, 2022, 15(1), 62-69.
[http://dx.doi.org/10.1159/000519609] [PMID: 34872096]
[67]
Schanton, M.; Maymó, J.L.; Pérez, P.A.; Margalet, S.V.; Varone, C.L. Involvement of leptin in the molecular physiology of the placenta. Reproduction, 2018, 155(1), R1-R12.
[http://dx.doi.org/10.1530/REP-17-0512] [PMID: 29018059]
[68]
Toro, A.R.; Maymó, J.L.; Ibarbalz, F.M.; Pérez, A.P.; Maskin, B.; Faletti, A.G. Leptin is an anti-apoptotic effector in placental cells involving p53 downregulation. Villunger A, editor. PLoS One, 2014, 9(6), e99187.
[http://dx.doi.org/10.1371/journal.pone.0099187]
[69]
Pérez-Pérez, A.; Maymó, J.; Gambino, Y.; Dueñas, J.L.; Goberna, R.; Varone, C.; Sánchez-Margalet, V. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells. Biol. Reprod., 2009, 81(5), 826-832.
[http://dx.doi.org/10.1095/biolreprod.109.076513] [PMID: 19553602]
[70]
Magariños, M.P.; Sánchez-Margalet, V.; Kotler, M.; Calvo, J.C.; Varone, C.L. Leptin promotes cell proliferation and survival of trophoblastic cells. Biol. Reprod., 2007, 76(2), 203-210.
[http://dx.doi.org/10.1095/biolreprod.106.051391] [PMID: 17021346]
[71]
Childs, G.V.; Odle, A.K.; MacNicol, M.C.; MacNicol, A.M. The importance of leptin to reproduction. Endocrinology, 2021, 162(2), bqaa204.
[http://dx.doi.org/10.1210/endocr/bqaa204] [PMID: 33165520]
[72]
Chou, S.H.; Mantzoros, C. 20 YEARS OF LEPTIN: Role of leptin in human reproductive disorders. J. Endocrinol., 2014, 223(1), T49-T62.
[http://dx.doi.org/10.1530/JOE-14-0245] [PMID: 25056118]
[73]
Moschos, S.; Chan, J.L.; Mantzoros, C.S. Leptin and reproduction: a review. Fertil. Steril., 2002, 77(3), 433-444.
[http://dx.doi.org/10.1016/S0015-0282(01)03010-2] [PMID: 11872190]
[74]
Stefaniak, M.; Gajzlerska, D.E.; Mazurkiewicz, B.; Majewska, G.W. Maternal serum and cord blood leptin concentrations at delivery. PLoS One, 2019, 14(11), e0224863.
[http://dx.doi.org/10.1371/journal.pone.0224863] [PMID: 31697751]
[75]
Pérez-Pérez, A.; Toro, A.; García, V.T.; Maymó, J.; Guadix, P.; Dueñas, J.L.; Sánchez, F.M.; Varone, C.; Margalet, S.V. Leptin action in normal and pathological pregnancies. J. Cell. Mol. Med., 2018, 22(2), 716-727.
[http://dx.doi.org/10.1111/jcmm.13369] [PMID: 29160594]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy