Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Current Concepts in the Molecular Mechanisms and Management of Diabetic Neuropathy by Pharmacotherapeutics and Natural Compounds

Author(s): Shivam*, Asheesh Kumar Gupta and Sushil Kumar

Volume 24, Issue 3, 2024

Published on: 28 March, 2024

Page: [264 - 280] Pages: 17

DOI: 10.2174/0118715249278438240325072758

Price: $65

Abstract

One of the most crippling effects of diabetes mellitus is diabetic neuropathy, which can cause discomfort, loss of movement, and even amputation. Diabetic neuropathy manifests in a variety of ways, ranging from pain to death. Diagnosing diabetic neuropathy can be challenging since it often goes unnoticed for many years following the onset of diabetes. In addition to oxidative stress in neurons, hyperglycemia activates a number of metabolic pathways that are important sources of damage and possible targets for treatment in diabetic neuropathy. Downstream metabolic cascades caused by prolonged hyperglycemia include activation of protein kinase C, increased production of advanced glycation end products, excessive release of cytokines, increased oxidative stress, and injury to peripheral nerves. Despite the fact that these metabolic anomalies are considered the main cause of diabetes-related microvascular issues, the diverse mechanistic processes of neuropathy are characterized by organ-specific histological and biochemical features. Although the symptoms of diabetic neuropathy can be treated, there are few options to correct the underlying problem. Diabetic neuropathy exerts a tremendous financial, psychological, and physical burden on society, emphasizing the need for efficient and focused treatment. The major goal of this review is to shed light on the multiple mechanisms and pathways that contribute to the onset of diabetic neuropathy and to provide readers with a comprehensive understanding of emerging therapeutic strategies to postpone or reverse various forms of diabetic neuropathy. The article discusses available medications and provides the latest guidelines for the treatment of pain and distal symmetric polyneuropathy, including diabetic autonomic neuropathy, which may help the patients control pain well and assess alternatives for treatment that might be more successful in preventing or delaying the course of a disease.

Graphical Abstract

[1]
Agrawal, R.P.; Goswami, J.; Jain, S.; Kochar, D.K. Management of diabetic neuropathy by sodium valproate and glyceryl trinitrate spray: A prospective double-blind randomized placebo-controlled study. Diabetes Res. Clin. Pract., 2009, 83(3), 371-378.
[http://dx.doi.org/10.1016/j.diabres.2008.12.018] [PMID: 19208440]
[2]
Afrazi, S.; Esmaeili-Mahani, S.; Sheibani, V.; Abbasnejad, M. Neurosteroid allopregnanolone attenuates high glucose-induced apoptosis and prevents experimental diabetic neuropathic pain: In vitro and in vivo studies. J. Steroid Biochem. Mol. Biol., 2014, 139, 98-103.
[http://dx.doi.org/10.1016/j.jsbmb.2013.10.010] [PMID: 24176764]
[3]
Bansal, D.; Gudala, K.; Muthyala, H.; Esam, H.P.; Nayakallu, R.; Bhansali, A. Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. J. Diabetes Investig., 2014, 5(6), 714-721.
[http://dx.doi.org/10.1111/jdi.12223] [PMID: 25422773]
[4]
Shivam; Kumar, G.A.; Kumar, S. Review on in-vitro techniques and in-vivo animals models for screening diabetes and diabetic complications. Curr. Diabetes Rev., 2024, 20(1), e130423215734.
[5]
Kamenov, Z.A.; Parapunova, R.A.; Georgieva, R.T. Earlier development of diabetic neuropathy in men than in women with type 2 diabetes mellitus. Gend. Med., 2010, 7(6), 600-615.
[http://dx.doi.org/10.1016/j.genm.2010.11.001] [PMID: 21195360]
[6]
Coppey, L.J.; Shevalye, H.; Obrosov, A.; Davidson, E.P.; Yorek, M.A. Determination of peripheral neuropathy in high‐fat diet fed low‐dose streptozotocin‐treated female C57Bl/6J mice and Sprague–Dawley rats. J. Diabetes Investig., 2018, 9(5), 1033-1040.
[http://dx.doi.org/10.1111/jdi.12814] [PMID: 29412513]
[7]
Várkonyi, T.; Kempler, P. Diabetic neuropathy: New strategies for treatment. Diabetes Obes. Metab., 2008, 10(2), 99-108.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00741.x] [PMID: 17593238]
[8]
Singh Grewal, A.; Bhardwaj, S.; Pandita, D.; Lather, V.; Singh Sekhon, B. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev. Med. Chem., 2015, 16(2), 120-162.
[http://dx.doi.org/10.2174/1389557515666150909143737] [PMID: 26349493]
[9]
Diabetic neuropathy and treatment strategy – New challenges and applications. In: Smart Drug Delivery System; Bayram, E.; Sezer, A.D.; Elçioğlu, H.K.b., Eds.; InTech, 2016.
[10]
Bektas, N.; Arslan, R.; Ozturk, Y. Zonisamide: Antihyperalgesic efficacy, the role of serotonergic receptors on efficacy in a rat model for painful diabetic neuropathy. Life Sci., 2014, 95(1), 9-13.
[http://dx.doi.org/10.1016/j.lfs.2013.12.012] [PMID: 24361360]
[11]
Bhattacharjee, N.; Barma, S.; Konwar, N.; Dewanjee, S.; Manna, P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur. J. Pharmacol., 2016, 791, 8-24.
[http://dx.doi.org/10.1016/j.ejphar.2016.08.022] [PMID: 27568833]
[12]
Bansal, V.; Kalita, J.; Misra, U.K. Diabetic neuropathy. Postgrad. Med. J., 2006, 82(964), 95-100.
[http://dx.doi.org/10.1136/pgmj.2005.036137] [PMID: 16461471]
[13]
Misra, U.; Kalita, J.; Nair, P. Diagnostic approach to peripheral neuropathy. Ann. Indian Acad. Neurol., 2008, 11(2), 89-97.
[http://dx.doi.org/10.4103/0972-2327.41875] [PMID: 19893645]
[14]
Jensen, T.S.; Karlsson, P.; Gylfadottir, S.S.; Andersen, S.T.; Bennett, D.L.; Tankisi, H.; Finnerup, N.B.; Terkelsen, A.J.; Khan, K.; Themistocleous, A.C.; Kristensen, A.G.; Itani, M.; Sindrup, S.H.; Andersen, H.; Charles, M.; Feldman, E.L.; Callaghan, B.C. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain, 2021, 144(6), 1632-1645.
[http://dx.doi.org/10.1093/brain/awab079] [PMID: 33711103]
[15]
Duque, A.; Mediano, M.F.F.; De Lorenzo, A.; Rodrigues, L.F., Jr Cardiovascular autonomic neuropathy in diabetes: Pathophysiology, clinical assessment and implications. World J. Diabetes, 2021, 12(6), 855-867.
[http://dx.doi.org/10.4239/wjd.v12.i6.855] [PMID: 34168733]
[16]
Tracy, J.A.; Dyck, P.J.B. The spectrum of diabetic neuropathies. Phys. Med. Rehabil. Clin. N. Am., 2008, 19(1), 1-26.
[http://dx.doi.org/10.1016/j.pmr.2007.10.010] [PMID: 18194747]
[17]
Dewanjee, S.; Das, S.; Das, A.K.; Bhattacharjee, N.; Dihingia, A.; Dua, T.K.; Kalita, J.; Manna, P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur. J. Pharmacol., 2018, 833, 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[18]
Malik, R.A. Pathology of human diabetic neuropathy. Handb. Clin. Neurol., 2014, 126, 249-259.
[http://dx.doi.org/10.1016/B978-0-444-53480-4.00016-3] [PMID: 25410227]
[19]
Rota, E.; Morelli, N. Entrapment neuropathies in diabetes mellitus. World J. Diabetes, 2016, 7(17), 342-353.
[http://dx.doi.org/10.4239/wjd.v7.i17.342] [PMID: 27660694]
[20]
Lajmi, H.; Hmaied, W.; Ben Jalel, W.; Chelly, Z.; Ben Yakhlef, A.; Ben Zineb, F.; El Fekih, L. Oculomotor palsy in diabetics. J. Fr. Ophtalmol., 2018, 41(1), 45-49.
[http://dx.doi.org/10.1016/j.jfo.2017.06.010] [PMID: 29290461]
[21]
Moutran-Barroso, H.; Kreinter-Rosembaun, H.; Zafra-Sierra, M.P.; Ramírez-Arquez, E.; Martínez-Rubio, C. Multiple cranial neuropathy: Clinical findings in a case series of 142 patients. Mult. Scler. Relat. Disord., 2022, 65, 103997.
[http://dx.doi.org/10.1016/j.msard.2022.103997] [PMID: 35816954]
[22]
Iqbal, Z.; Azmi, S.; Yadav, R.; Ferdousi, M.; Kumar, M.; Cuthbertson, D.J.; Lim, J.; Malik, R.A.; Alam, U. diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin. Ther., 2018, 40(6), 828-849.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.001] [PMID: 29709457]
[23]
Veves, A. Diagnosis of diabetic neuropathy. In: Clinical Management of Diabetic Neuropathy; Veves, A., Ed.; Humana Press: Totowa, NJ, 1998; pp. 61-75.
[http://dx.doi.org/10.1007/978-1-4612-1816-6_4]
[24]
Tavee, J. Nerve conduction studies: Basic concepts. In: Handbook of Clinical Neurology. 160; Levin, K.H.; Chauvel, P., Eds.; Elsevier, 2019; pp. 217-224.
[25]
Feldman, E.L.; Stevens, M.J.; Greene, D.A. Pathogenesis of diabetic neuropathy. Clin. Neurosci., 1997, 4(6), 365-370.
[PMID: 9358981]
[26]
Galiero, R.; Caturano, A.; Vetrano, E.; Beccia, D.; Brin, C.; Alfano, M.; Di Salvo, J.; Epifani, R.; Piacevole, A.; Tagliaferri, G.; Rocco, M.; Iadicicco, I.; Docimo, G.; Rinaldi, L.; Sardu, C.; Salvatore, T.; Marfella, R.; Sasso, F.C. Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options. Int. J. Mol. Sci., 2023, 24(4), 3554.
[http://dx.doi.org/10.3390/ijms24043554] [PMID: 36834971]
[27]
Oates, P.J. Polyol pathway and diabetic peripheral neuropathy. Int. Rev. Neurobiol., 2002, 50, 325-392.
[http://dx.doi.org/10.1016/S0074-7742(02)50082-9] [PMID: 12198816]
[28]
Hussain, N.; Adrian, T.E. Diabetic neuropathy: Update on pathophysiological mechanism and the possible involvement of glutamate pathways. Curr. Diabetes Rev., 2017, 13(5), 488-497.
[PMID: 27341846]
[29]
Schleicher, E.D.; Weigert, C. Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int., 2000, 58, S13-S18.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07703.x] [PMID: 10997685]
[30]
Figueroa-Romero, C.; Sadidi, M.; Feldman, E.L. Mechanisms of disease: The oxidative stress theory of diabetic neuropathy. Rev. Endocr. Metab. Disord., 2008, 9(4), 301-314.
[http://dx.doi.org/10.1007/s11154-008-9104-2] [PMID: 18709457]
[31]
Jubaidi, F.F.; Zainalabidin, S.; Taib, I.S.; Abdul Hamid, Z.; Mohamad Anuar, N.N.; Jalil, J.; Mohd Nor, N.A.; Budin, S.B. The role of PKC-MAPK signalling pathways in the development of hyperglycemia-induced cardiovascular complications. Int. J. Mol. Sci., 2022, 23(15), 8582.
[http://dx.doi.org/10.3390/ijms23158582] [PMID: 35955714]
[32]
Shakeel, M. Recent advances in understanding the role of oxidative stress in diabetic neuropathy. Diabetes Metab. Syndr., 2015, 9(4), 373-378.
[http://dx.doi.org/10.1016/j.dsx.2014.04.029] [PMID: 25470637]
[33]
Babizhayev, M.A.; Strokov, I.A.; Nosikov, V.V.; Savel’yeva, E.L.; Sitnikov, V.F.; Lankin, V.Z.; Lankin, V.Z. The role of oxidative stress in diabetic neuropathy: generation of free radical species in the glycation reaction and gene polymorphisms encoding antioxidant enzymes to genetic susceptibility to diabetic neuropathy in population of type I diabetic patients. Cell Biochem. Biophys., 2015, 71(3), 1425-1443.
[http://dx.doi.org/10.1007/s12013-014-0365-y] [PMID: 25427889]
[34]
Sztanek, F.; Molnárné Molnár, Á.; Balogh, Z. The role of oxidative stress in the development of diabetic neuropathy. Orv. Hetil., 2016, 157(49), 1939-1946.
[http://dx.doi.org/10.1556/650.2016.30609] [PMID: 27917671]
[35]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[36]
Mizukami, H.; Osonoi, S.; Takaku, S.; Yamagishi, S.I.; Ogasawara, S.; Sango, K.; Chung, S.; Yagihashi, S. Role of glucosamine in development of diabetic neuropathy independent of the aldose reductase pathway. Brain Commun., 2020, 2(2), fcaa168.
[http://dx.doi.org/10.1093/braincomms/fcaa168] [PMID: 33305258]
[37]
Pacher, P.; Szabó, C. Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme. Antioxid. Redox Signal., 2005, 7(11-12), 1568-1580.
[http://dx.doi.org/10.1089/ars.2005.7.1568] [PMID: 16356120]
[38]
Chanda, D.; Ray, S.; Chakraborti, D.; Sen, S.; Mitra, A. Interleukin-6 levels in patients with diabetic polyneuropathy. Cureus, 2022, 14(2), e21952.
[http://dx.doi.org/10.7759/cureus.21952] [PMID: 35155045]
[39]
Suri, S.; Mitra, P.; Abhilasha, A.; Saxena, I.; Garg, M.K.; Bohra, G.K.; Sharma, P. Role of interleukin-2 and interleukin-18 in newly diagnosed type 2 diabetes mellitus. J. Basic Clin. Physiol. Pharmacol., 2022, 33(2), 185-190.
[http://dx.doi.org/10.1515/jbcpp-2020-0272] [PMID: 33711216]
[40]
Pop-Busui, R.; Kellogg, A.; Cheng, H. Cyclooxygenase-2 pathway as a potential therapeutic target in diabetic peripheral neuropathy. Curr. Drug Targets, 2008, 9(1), 68-76.
[http://dx.doi.org/10.2174/138945008783431691] [PMID: 18220714]
[41]
Vincent, A.M.; Hayes, J.M.; McLean, L.L.; Vivekanandan-Giri, A.; Pennathur, S.; Feldman, E.L. Dyslipidemia-induced neuropathy in mice: The role of oxLDL/LOX-1. Diabetes, 2009, 58(10), 2376-2385.
[http://dx.doi.org/10.2337/db09-0047] [PMID: 19592619]
[42]
Lu, L.; Liu, L.P.; Gui, R.; Dong, H.; Su, Y.R.; Zhou, X.H.; Liu, F.X. Discovering common pathogenetic processes between COVID-19 and sepsis by bioinformatics and system biology approach. Front. Immunol., 2022, 13, 975848.
[http://dx.doi.org/10.3389/fimmu.2022.975848] [PMID: 36119022]
[43]
Cernea, S.; Raz, I. Management of diabetic neuropathy. Metabolism, 2021, 123, 154867.
[http://dx.doi.org/10.1016/j.metabol.2021.154867] [PMID: 34411554]
[44]
Jalgaonkar, M.P.; Parmar, U.M.; Kulkarni, Y.A.; Oza, M.J. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol. Res., 2022, 175, 106014.
[http://dx.doi.org/10.1016/j.phrs.2021.106014] [PMID: 34856334]
[45]
Singh, M.; Kapoor, A.; Bhatnagar, A. Physiological and pathological roles of aldose reductase. Metabolites, 2021, 11(10), 655.
[http://dx.doi.org/10.3390/metabo11100655] [PMID: 34677370]
[46]
Mehta, K.; Behl, T.; Kumar, A.; Uddin, M.S.; Zengin, G.; Arora, S. Deciphering the neuroprotective role of glucagon-like peptide-1 agonists in diabetic neuropathy: Current perspective and future directions. Curr. Protein Pept. Sci., 2021, 22(1), 4-18.
[http://dx.doi.org/10.2174/1389203721999201208195901] [PMID: 33292149]
[47]
Adeshara, K.A.; Diwan, A.G.; Tupe, R.S. Diabetes and complications: Cellular signaling pathways, current understanding and targeted therapies. Curr. Drug Targets, 2016, 17(11), 1309-1328.
[http://dx.doi.org/10.2174/1389450117666151209124007] [PMID: 26648059]
[48]
Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; Monda, M.; Giordano, A.; Sasso, F.C. Oxidative stress in type 2 diabetes: Impacts from pathogenesis to lifestyle modifications. Curr. Issues Mol. Biol., 2023, 45(8), 6651-6666.
[http://dx.doi.org/10.3390/cimb45080420] [PMID: 37623239]
[49]
Sanna, M.D.; Quattrone, A.; Ghelardini, C.; Galeotti, N. PKC-mediated HuD–GAP43 pathway activation in a mouse model of antiretroviral painful neuropathy. Pharmacol. Res., 2014, 81, 44-53.
[http://dx.doi.org/10.1016/j.phrs.2014.02.004] [PMID: 24565699]
[50]
Singh, R.; Kaur, N.; Kishore, L.; Kumar Gupta, G. Management of diabetic complications: A chemical constituents based approach. J. Ethnopharmacol., 2013, 150(1), 51-70.
[http://dx.doi.org/10.1016/j.jep.2013.08.051] [PMID: 24041460]
[51]
Hu, L.Y.; Mi, W.L.; Wu, G.C.; Wang, Y.Q.; Mao-Ying, Q.L. Prevention and treatment for chemotherapy-induced peripheral neuropathy: Therapies based on CIPN mechanisms. Curr. Neuropharmacol., 2019, 17(2), 184-196.
[http://dx.doi.org/10.2174/1570159X15666170915143217] [PMID: 28925884]
[52]
Souza Monteiro de Araujo, D.; Nassini, R.; Geppetti, P.; De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets, 2020, 24(10), 997-1008.
[http://dx.doi.org/10.1080/14728222.2020.1815191] [PMID: 32838583]
[53]
Takeuchi, M.; Takino, J.; Yamagishi, S. Involvement of the toxic AGEs (TAGE)-RAGE system in the pathogenesis of diabetic vascular complications: A novel therapeutic strategy. Curr. Drug Targets, 2010, 11(11), 1468-1482.
[http://dx.doi.org/10.2174/1389450111009011468] [PMID: 20583971]
[54]
Alkholifi, F.K.; Aodah, A.H.; Foudah, A.I.; Alam, A. Exploring the therapeutic potential of berberine and tocopherol in managing diabetic neuropathy: A comprehensive approach towards alleviating chronic neuropathic pain. Biomedicines, 2023, 11(6), 1726.
[http://dx.doi.org/10.3390/biomedicines11061726] [PMID: 37371821]
[55]
Negi, G.; Kumar, A.; Sharma, S.S. Concurrent targeting of nitrosative stress–PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem. Biophys. Res. Commun., 2010, 391(1), 102-106.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.010] [PMID: 19900402]
[56]
Lu, Y.; Zhang, P.; Zhang, Q.; Yang, C.; Qian, Y.; Suo, J.; Tao, X.; Zhu, J. Duloxetine attenuates paclitaxel-induced peripheral nerve injury by inhibiting p53-related pathways. J. Pharmacol. Exp. Ther., 2020, 373(3), 453-462.
[http://dx.doi.org/10.1124/jpet.120.265082] [PMID: 32238452]
[57]
Røikjer, J.; Mørch, C.D.; Ejskjaer, N. Diabetic peripheral neuropathy: Diagnosis and treatment. Curr. Drug Saf., 2021, 16(1), 2-16.
[http://dx.doi.org/10.2174/1574886315666200731173113] [PMID: 32735526]
[58]
Akbar, S.; Subhan, F.; Akbar, A.; Habib, F.; Shahbaz, N.; Ahmad, A.; Wadood, A.; Salman, S. Targeting anti-inflammatory pathways to treat diabetes-induced neuropathy by 6-hydroxyflavanone. Nutrients, 2023, 15(11), 2552.
[http://dx.doi.org/10.3390/nu15112552] [PMID: 37299516]
[59]
Ullah, R.; Ali, G.; Rasheed, A.; Subhan, F.; Khan, A.; Ahsan Halim, S.; Al-Harrasi, A. The 7-Hydroxyflavone attenuates chemotherapy-induced neuropathic pain by targeting inflammatory pathway. Int. Immunopharmacol., 2022, 107, 108674.
[http://dx.doi.org/10.1016/j.intimp.2022.108674] [PMID: 35276461]
[60]
Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; Martins, N.; Cho, W.C.; Sharifi-Rad, J. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules, 2019, 9(8), 356.
[http://dx.doi.org/10.3390/biom9080356] [PMID: 31405030]
[61]
El-Nahas, M.R.; Elkannishy, G.; Abdelhafez, H.; Elkhamisy, E.T.; El-Sehrawy, A.A. Oral alpha lipoic acid treatment for symptomatic diabetic peripheral neuropathy: A randomized double-blinded placebo-controlled study. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1531-1534.
[http://dx.doi.org/10.2174/1871530320666200506081407] [PMID: 32370731]
[62]
Han, Y.; Wang, M.; Shen, J.; Zhang, Z.; Zhao, M.; Huang, J.; Chen, Y.; Chen, Z.; Hu, Y.; Wang, Y. Differential efficacy of methylcobalamin and alpha-lipoic acid treatment on symptoms of diabetic peripheral neuropathy. Minerva Endocrinol., 2018, 43(1), 11-18.
[PMID: 27901334]
[63]
Karaganis, S.; Song, X.J. B vitamins as a treatment for diabetic pain and neuropathy. J. Clin. Pharm. Ther., 2021, 46(5), 1199-1212.
[http://dx.doi.org/10.1111/jcpt.13375] [PMID: 33565138]
[64]
Javed, S.; Petropoulos, I.N.; Alam, U.; Malik, R.A. Treatment of painful diabetic neuropathy. Ther. Adv. Chronic Dis., 2015, 6(1), 15-28.
[http://dx.doi.org/10.1177/2040622314552071] [PMID: 25553239]
[65]
Ziegler, D.; Edmundson, S.; Gurieva, I.; Mankovsky, B.; Papanas, N.; Strokov, I. Predictors of response to treatment with actovegin for 6 months in patients with type 2 diabetes and symptomatic polyneuropathy. J. Diabetes Complications, 2017, 31(7), 1181-1187.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.03.012] [PMID: 28438471]
[66]
Di Stefano, G.; Di Lionardo, A.; Galosi, E.; Truini, A.; Cruccu, G. Acetyl-L-carnitine in painful peripheral neuropathy: A systematic review. J. Pain Res., 2019, 12, 1341-1351.
[http://dx.doi.org/10.2147/JPR.S190231] [PMID: 31118753]
[67]
Gabbay, K.H. Aldose reductase inhibition in the treatment of diabetic neuropathy: Where are we in 2004? Curr. Diab. Rep., 2004, 4(6), 405-408.
[http://dx.doi.org/10.1007/s11892-004-0047-z] [PMID: 15539002]
[68]
Hamada, Y.; Nakamura, J. Clinical potential of aldose reductase inhibitors in diabetic neuropathy. Treat. Endocrinol., 2004, 3(4), 245-255.
[http://dx.doi.org/10.2165/00024677-200403040-00006] [PMID: 16026107]
[69]
Mosenzon, O.; Del Prato, S.; Schechter, M.; Leiter, L.A.; Ceriello, A.; DeFronzo, R.A.; Raz, I. From glucose lowering agents to disease/diabetes modifying drugs: A “SIMPLE” approach for the treatment of type 2 diabetes. Cardiovasc. Diabetol., 2021, 20(1), 92.
[http://dx.doi.org/10.1186/s12933-021-01281-y] [PMID: 33910583]
[70]
Khdour, M.R. Treatment of diabetic peripheral neuropathy: A review. J. Pharm. Pharmacol., 2020, 72(7), 863-872.
[http://dx.doi.org/10.1111/jphp.13241] [PMID: 32067247]
[71]
Patel, R.; Dickenson, A.H. Mechanisms of the gabapentinoids and α2δ ‐1 calcium channel subunit in neuropathic pain. Pharmacol. Res. Perspect., 2016, 4(2), e00205.
[http://dx.doi.org/10.1002/prp2.205] [PMID: 27069626]
[72]
Shahid, M.; Subhan, F.; Ahmad, N.; Sewell, R.D.E. Efficacy of a topical gabapentin gel in a cisplatin paradigm of chemotherapy-induced peripheral neuropathy. BMC Pharmacol. Toxicol., 2019, 20(1), 51.
[http://dx.doi.org/10.1186/s40360-019-0329-3] [PMID: 31462283]
[73]
Ali, G.; Subhan, F.; Abbas, M.; Zeb, J.; Shahid, M.; Sewell, R.D.E. A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: Validation using topical and systemic gabapentin. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(11), 1129-1140.
[http://dx.doi.org/10.1007/s00210-015-1145-y] [PMID: 26134846]
[74]
Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Database Syst. Rev., 2019, 1(1), CD007076.
[PMID: 30673120]
[75]
Iseppon, F.; Luiz, A.P.; Linley, J.E.; Wood, J.N. Pregabalin silences oxaliplatin-activated sensory neurons to relieve cold allodynia. eNeuro, 2023, 10(2), ENEURO.0395-22.2022.
[http://dx.doi.org/ 10.1523/ENEURO.0395-22.2022] [PMID: 36720644 ]
[76]
Tetsunaga, T.; Tetsunaga, T.; Nishida, K.; Misawa, H.; Takigawa, T.; Yamane, K.; Tsuji, H.; Takei, Y.; Ozaki, T. Short-term outcomes of mirogabalin in patients with peripheral neuropathic pain: A retrospective study. J. Orthop. Surg. Res., 2020, 15(1), 191.
[http://dx.doi.org/10.1186/s13018-020-01709-3] [PMID: 32456647]
[77]
Staudt, M.D.; Prabhala, T.; Sheldon, B.L.; Quaranta, N.; Zakher, M.; Bhullar, R.; Pilitsis, J.G.; Argoff, C.E. Current strategies for the management of painful diabetic neuropathy. J. Diabetes Sci. Technol., 2022, 16(2), 341-352.
[http://dx.doi.org/10.1177/1932296820951829] [PMID: 32856490]
[78]
Wang, Y.X.; Mao, X.F.; Li, T.F.; Gong, N.; Zhang, M.Z. Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition. Sci. Rep., 2017, 7(1), 43137.
[http://dx.doi.org/10.1038/srep43137] [PMID: 28230181]
[79]
Staurengo-Ferrari, L.; Bonet, I.J.M.; Araldi, D.; Green, P.G.; Levine, J.D. Neuroendocrine stress axis-dependence of duloxetine analgesia (Anti-Hyperalgesia) in chemotherapy-induced peripheral neuropathy. J. Neurosci., 2022, 42(3), 405-415.
[http://dx.doi.org/10.1523/JNEUROSCI.1691-21.2021] [PMID: 34880120]
[80]
Gallagher, H.C.; Gallagher, R.M.; Butler, M.; Buggy, D.J.; Henman, M.C. Venlafaxine for neuropathic pain in adults. Cochrane Database Syst. Rev., 2015, 2015(8), CD011091.
[PMID: 26298465]
[81]
Randolph, A.C.; Lin, Y.L.; Volpi, E.; Kuo, Y.F. Tricyclic antidepressant and/or γ‐aminobutyric acid–analog use is associated with fall risk in diabetic peripheral neuropathy. J. Am. Geriatr. Soc., 2019, 67(6), 1174-1181.
[http://dx.doi.org/10.1111/jgs.15779] [PMID: 30694557]
[82]
Bedini, A.; Cuna, E.; Baiula, M.; Spampinato, S. Quantitative systems pharmacology and biased agonism at opioid receptors: A potential avenue for improved analgesics. Int. J. Mol. Sci., 2022, 23(9), 5114.
[http://dx.doi.org/10.3390/ijms23095114] [PMID: 35563502]
[83]
Javed, S.; Alam, U.; Malik, R.A. Treating diabetic neuropathy: Present strategies and emerging solutions. Rev. Diabet. Stud., 2015, 12(1-2), 63-83.
[http://dx.doi.org/10.1900/RDS.2015.12.63] [PMID: 26676662]
[84]
Carmichael, J.; Fadavi, H.; Ishibashi, F.; Shore, A.C.; Tavakoli, M. Advances in screening, early diagnosis and accurate staging of diabetic neuropathy. Front. Endocrinol., 2021, 12, 671257.
[http://dx.doi.org/10.3389/fendo.2021.671257] [PMID: 34122344]
[85]
Preston, F.G.; Riley, D.R.; Azmi, S.; Alam, U. Painful diabetic peripheral neuropathy: Practical guidance and challenges for clinical management. Diabetes Metab. Syndr. Obes., 2023, 16, 1595-1612.
[http://dx.doi.org/10.2147/DMSO.S370050] [PMID: 37288250]
[86]
Oh, J. Clinical spectrum and diagnosis of diabetic neuropathies. Korean J. Intern. Med., 2020, 35(5), 1059-1069.
[http://dx.doi.org/10.3904/kjim.2020.202] [PMID: 32921007]
[87]
de Oliveira Lima, R.A.; Piemonte, G.A.; Nogueira, C.R.; Dos Santos Nunes-Nogueira, V. Efficacy of exercise on balance, fear of falling, and risk of falls in patients with diabetic peripheral neuropathy: A systematic review and meta-analysis. Arch. Endocrinol. Metab., 2021, 65(2), 198-211.
[PMID: 33905633]
[88]
Ellis, R.J.; Toperoff, W.; Vaida, F.; van den Brande, G.; Gonzales, J.; Gouaux, B.; Bentley, H.; Atkinson, J.H. Smoked medicinal cannabis for neuropathic pain in HIV: A randomized, crossover clinical trial. Neuropsychopharmacology, 2009, 34(3), 672-680.
[http://dx.doi.org/10.1038/npp.2008.120] [PMID: 18688212]
[89]
Feng, L.; Liu, W.K.; Deng, L.; Tian, J.X.; Tong, X.L. Clinical efficacy of aconitum-containing traditional Chinese medicine for diabetic peripheral neuropathic pain. Am. J. Chin. Med., 2014, 42(1), 109-117.
[http://dx.doi.org/10.1142/S0192415X14500074] [PMID: 24467538]
[90]
Kono, T.; Hata, T.; Morita, S.; Munemoto, Y.; Matsui, T.; Kojima, H.; Takemoto, H.; Fukunaga, M.; Nagata, N.; Shimada, M.; Sakamoto, J.; Mishima, H. Goshajinkigan oxaliplatin neurotoxicity evaluation (GONE): A phase 2, multicenter, randomized, double-blind, placebo-controlled trial of goshajinkigan to prevent oxaliplatin-induced neuropathy. Cancer Chemother. Pharmacol., 2013, 72(6), 1283-1290.
[http://dx.doi.org/10.1007/s00280-013-2306-7] [PMID: 24121454]
[91]
Qiu, H.Q.; Xu, Y.; Jin, G.L.; Yang, J.; Liu, M.; Li, S.P.; Yu, C.X. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol. Pain, 2015, 11, s12990-015-0050.
[http://dx.doi.org/10.1186/s12990-015-0050-1] [PMID: 26255228]
[92]
Kandhare, A.D.; Raygude, K.S.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia, 2012, 83(4), 650-659.
[http://dx.doi.org/10.1016/j.fitote.2012.01.010] [PMID: 22343014]
[93]
Wang, M.L.; Yu, G.; Yi, S.P.; Zhang, F.Y.; Wang, Z.T.; Huang, B.; Su, R.B.; Jia, Y.X.; Gong, Z.H. Antinociceptive effects of incarvillateine, a monoterpene alkaloid from Incarvillea sinensis and possible involvement of the adenosine system. Sci. Rep., 2015, 5(1), 16107.
[http://dx.doi.org/10.1038/srep16107] [PMID: 26527075]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy