Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

RGIE: A Gene Selection Method Related to Radiotherapy Resistance in Head and Neck Squamous Cell Carcinoma

Author(s): Qingzhe Meng, Dunhui Liu, Junhong Huang, Xinjie Yang, Huan Li, Zihui Yang, Jun Wang, Wanpeng Gao, Yahui Li, Rong Liu, Liying Yang* and Jianhua Wei*

Volume 17, Issue 4, 2024

Published on: 26 March, 2024

Page: [341 - 355] Pages: 15

DOI: 10.2174/0118744710282465240315053136

Price: $65

Abstract

Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible.

Methods: We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features.

Results: Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR).

Conclusion: RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.

[1]
Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers, 2020, 6(1), 92.
[http://dx.doi.org/10.1038/s41572-020-00224-3] [PMID: 33243986]
[2]
Pulte, D.; Brenner, H. Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis. Oncologist, 2010, 15(9), 994-1001.
[http://dx.doi.org/10.1634/theoncologist.2009-0289] [PMID: 20798198]
[3]
Koyfman, S.A.; Ismaila, N.; Crook, D.; D’Cruz, A.; Rodriguez, C.P.; Sher, D.J.; Silbermins, D.; Sturgis, E.M.; Tsue, T.T.; Weiss, J.; Yom, S.S.; Holsinger, F.C. Management of the neck in squamous cell carcinoma of the oral cavity and oropharynx: ASCO clinical practice guideline. J. Clin. Oncol., 2019, 37(20), 1753-1774.
[http://dx.doi.org/10.1200/JCO.18.01921] [PMID: 30811281]
[4]
Holländer-Mieritz, C.; Johansen, J.; Johansen, C.; Vogelius, I.R.; Kristensen, C.A.; Pappot, H. Comparing the patients’ subjective experiences of acute side effects during radiotherapy for head and neck cancer with four different patient-reported outcomes questionnaires. Acta Oncol., 2019, 58(5), 603-609.
[http://dx.doi.org/10.1080/0284186X.2018.1563713] [PMID: 30698098]
[5]
Visvanathan, A.; Patil, V.; Arora, A.; Hegde, A.S.; Arivazhagan, A.; Santosh, V.; Somasundaram, K. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 2018, 37(4), 522-533.
[http://dx.doi.org/10.1038/onc.2017.351] [PMID: 28991227]
[6]
Diehn, M; Cho, RW; Lobo, NA; Kalisky, T; Dorie, MJ; Kulp, AN Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 2009, 458(7239), 780-783.
[7]
Koll, T.T.; Feis, S.S.; Wright, M.H.; Teniola, M.M.; Richardson, M.M.; Robles, A.I.; Bradsher, J.; Capala, J.; Varticovski, L. HSP90 inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with base excision and ATM-mediated DNA repair. Mol. Cancer Ther., 2008, 7(7), 1985-1992.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2104] [PMID: 18645008]
[8]
Zeng, Y.; Jie, X.; Wu, B.; Wu, G.; Liu, L.; Xu, S. IQGAP3 interacts with Rad17 to recruit the Mre11-Rad50-Nbs1 complex and contributes to radioresistance in lung cancer. Cancer Lett., 2020, 493, 254-265.
[http://dx.doi.org/10.1016/j.canlet.2020.08.042] [PMID: 32896617]
[9]
Zhou, S.; Ye, W.; Shao, Q.; Zhang, M.; Liang, J. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit. Rev. Oncol. Hematol., 2013, 88(3), 706-715.
[http://dx.doi.org/10.1016/j.critrevonc.2013.09.001] [PMID: 24126138]
[10]
Cao, K.; Chen, Y.; Zhao, S.; Huang, Y.; Liu, T.; Liu, H.; Li, B.; Cui, J.; Cai, J.; Bai, C.; Yang, Y.; Gao, F. Sirt3 promoted DNA damage repair and radioresistance through ATM-Chk2 in non-small cell lung cancer cells. J. Cancer, 2021, 12(18), 5464-5472.
[http://dx.doi.org/10.7150/jca.53173] [PMID: 34405009]
[11]
Gou, W.; Yu, X.; Wu, S.; Wu, H.; Chang, H.; Chen, L.; Wei, H.; Bi, C.; Ning, H.; Wu, Y.; Hou, W.; Zuo, D.; Li, Y. Targeted inhibition of acidic nucleoplasmic DNA-binding protein 1 enhances radiosensitivity of non-small cell lung cancer. Cancer Lett., 2022, 530, 100-109.
[http://dx.doi.org/10.1016/j.canlet.2022.01.020] [PMID: 35065237]
[12]
Erbe, R.; Gore, J.; Gemmill, K.; Gaykalova, D.A.; Fertig, E.J. The use of machine learning to discover regulatory networks controlling biological systems. Mol. Cell, 2022, 82(2), 260-273.
[http://dx.doi.org/10.1016/j.molcel.2021.12.011] [PMID: 35016036]
[13]
Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 2018, 15(1), 41-51.
[PMID: 29275361]
[14]
He, B.; Bergenstråhle, L.; Stenbeck, L.; Abid, A.; Andersson, A.; Borg, Å.; Maaskola, J.; Lundeberg, J.; Zou, J. Integrating spatial gene expression and breast tumour morphology via deep learning. Nat. Biomed. Eng., 2020, 4(8), 827-834.
[http://dx.doi.org/10.1038/s41551-020-0578-x] [PMID: 32572199]
[15]
Amrane, M.; Oukid, S.; Gagaoua, I.; Ensari, T. Eds.; Breast cancer classification using machine learning. 2018 electric electronics, computer science, biomedical engineerings’ meeting (EBBT); IEEE, 2018.
[16]
Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 2015, 13, 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005] [PMID: 25750696]
[17]
Osareh, A.; Shadgar, B. Machine learning techniques to diagnose breast cancer.2010 5th international symposium on health informatics and bioinformatics; Ankara, Turkey, 20-22 April, 2010, pp. 114-120.
[18]
Aromolaran, O.; Aromolaran, D.; Isewon, I.; Oyelade, J. Machine learning approach to gene essentiality prediction: A review. Brief. Bioinform., 2021, 22(5), bbab128.
[http://dx.doi.org/10.1093/bib/bbab128] [PMID: 33842944]
[19]
Cordell, H.J. Detecting gene–gene interactions that underlie human diseases. Nat. Rev. Genet., 2009, 10(6), 392-404.
[http://dx.doi.org/10.1038/nrg2579] [PMID: 19434077]
[20]
Park, M; Lee, JW; Park, T; Lee, S Gene-gene interaction analysis for the survival phenotype based on the Kaplan-Meier median estimate. BioMed Res Int., 2020.
[http://dx.doi.org/10.1155/2020/5282345]
[21]
Mani, R.; St Onge, R.P.; Hartman, J.L., IV; Giaever, G.; Roth, F.P. Defining genetic interaction. Proc. Natl. Acad. Sci. USA, 2008, 105(9), 3461-3466.
[http://dx.doi.org/10.1073/pnas.0712255105] [PMID: 18305163]
[22]
Madhukar, N.S.; Elemento, O.; Pandey, G. Prediction of genetic interactions using machine learning and network properties. Front. Bioeng. Biotechnol., 2015, 3, 172.
[http://dx.doi.org/10.3389/fbioe.2015.00172] [PMID: 26579514]
[23]
Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In: Machine Learning: ECML-94. ECML 1994; Lecture Notes in Computer ScienceSpringer: Berlin, Heidelberg, 1994; pp. 171-182.
[24]
Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS One, 2010, 5(9), e12776.
[http://dx.doi.org/10.1371/journal.pone.0012776] [PMID: 20927193]
[25]
Price, K.A.R.; Cohen, E.E. Current treatment options for metastatic head and neck cancer. Curr. Treat. Options Oncol., 2012, 13(1), 35-46.
[http://dx.doi.org/10.1007/s11864-011-0176-y] [PMID: 22252884]
[26]
Heineman, T.E.; Kuan, E.C.; St John, M.A. When should surveillance imaging be performed after treatment for head and neck cancer? Laryngoscope, 2017, 127(3), 533-534.
[http://dx.doi.org/10.1002/lary.26268] [PMID: 28185273]
[27]
Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; Machtay, M.; Ensley, J.F.; Chao, K.S.C.; Schultz, C.J.; Lee, N.; Fu, K.K. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med., 2004, 350(19), 1937-1944.
[http://dx.doi.org/10.1056/NEJMoa032646] [PMID: 15128893]
[28]
Risso, D.; Schwartz, K.; Sherlock, G.; Dudoit, S. GC-content normalization for RNA-Seq data. BMC Bioinformatics, 2011, 12(1), 480.
[http://dx.doi.org/10.1186/1471-2105-12-480] [PMID: 22177264]
[29]
Risso, D. EDASeq: Exploratory data analysis and normalization for RNA-Seq., 2011. Available from: https://bioconductor.org/packages/devel/bioc/vignettes/EDASeq/inst/doc/EDASeq.html
[30]
Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res., 2002, 16, 321-357.
[http://dx.doi.org/10.1613/jair.953]
[31]
Stokes, M.E.; Visweswaran, S. Application of a spatially-weighted Relief algorithm for ranking genetic predictors of disease. BioData Min., 2012, 5(1), 20.
[http://dx.doi.org/10.1186/1756-0381-5-20] [PMID: 23198930]
[32]
De Lobel, L.; Geurts, P.; Baele, G.; Castro-Giner, F.; Kogevinas, M.; Van Steen, K. A screening methodology based on Random Forests to improve the detection of gene–gene interactions. Eur. J. Hum. Genet., 2010, 18(10), 1127-1132.
[http://dx.doi.org/10.1038/ejhg.2010.48] [PMID: 20461113]
[33]
Ditterrich, T. Machine learning research: Four current direction. AI Mag., 1997, 4, 97-136.
[34]
Kira, K.; Rendell, L.A. A practical approach to feature selection. Machine learning proceedings 1992; Elsevier, 1992, pp. 249-256.
[http://dx.doi.org/10.1016/B978-1-55860-247-2.50037-1]
[35]
Greene, C.S.; Penrod, N.M.; Kiralis, J.; Moore, J.H. Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions. BioData Min., 2009, 2(1), 5.
[http://dx.doi.org/10.1186/1756-0381-2-5] [PMID: 19772641]
[36]
McKinney, B.A.; White, B.C.; Grill, D.E.; Li, P.W.; Kennedy, R.B.; Poland, G.A.; Oberg, A.L. ReliefSeq: A gene-wise adaptive-K nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data. PLoS One, 2013, 8(12), e81527.
[http://dx.doi.org/10.1371/journal.pone.0081527] [PMID: 24339943]
[37]
Moore, J.H.; White, B.C. Tuning ReliefF for genome-wide genetic analysis.Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science; , 2007, 4447, pp. 166-175.
[http://dx.doi.org/10.1007/978-3-540-71783-6_16]
[38]
Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn., 2003, 53(1/2), 23-69.
[http://dx.doi.org/10.1023/A:1025667309714]
[39]
Breiman, L. Random forests. Mach. Learn., 2001, 45(1), 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[40]
Boulesteix, A.L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 2012, 2(6), 493-507.
[http://dx.doi.org/10.1002/widm.1072]
[41]
Qi, Y. Random forest for bioinformatics; Ensemble machine learning: Methods and applications, , 2012; pp. 307-323.
[http://dx.doi.org/10.1007/978-1-4419-9326-7_11]
[42]
The effect of data sampling when using random forest on imbalanced bioinformatics data. Dittman, D.J.; Khoshgoftaar, T.M. Napolitano, A., Eds.; 2015 IEEE International Conference on Information Reuse and Integration, San Francisco, CA, USA13-15 August2015, pp. 457-463.
[43]
Touw, W.G.; Bayjanov, J.R.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.; van Hijum, S.A.F.T. Data mining in the life sciences with random forest: A walk in the park or lost in the jungle? Brief. Bioinform., 2013, 14(3), 315-326.
[http://dx.doi.org/10.1093/bib/bbs034] [PMID: 22786785]
[44]
Kursa, M.B. Robustness of random forest-based gene selection methods. BMC Bioinformatics, 2014, 15(1), 8.
[http://dx.doi.org/10.1186/1471-2105-15-8] [PMID: 24410865]
[45]
Fraiwan, L.; Lweesy, K.; Khasawneh, N.; Wenz, H.; Dickhaus, H. Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Comput. Methods Programs Biomed., 2012, 108(1), 10-19.
[http://dx.doi.org/10.1016/j.cmpb.2011.11.005] [PMID: 22178068]
[46]
An, S.Q.; He, K.; Liu, F.; Ding, Q.S.; Wei, Y.L.; Xia, Z.L.; Duan, X.P.; Huang, R.; Li, B.W.; Wang, H.H.; Tian, Y.; Xiang, G.A.; Li, W.X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X.; An, S-Q.; He, K.; Liu, F.; Ding, Q-S.; Wei, Y-L.; Xia, Z-L.; Duan, X-P.; Huang, R.; Li, B-W.; Wang, H-H.; Tian, Y.; Xiang, G-A.; Li, W-X. Low microRNA150 expression is associated with activated carcinogenic pathways and a poor prognosis in patients with breast cancer. Oncol. Rep., 2021, 45(3), 1235-1248.
[http://dx.doi.org/10.3892/or.2021.7945] [PMID: 33650672]
[47]
Chen, X.; Wang, Q.L.; Zhang, M.H. Identifying key genes inglaucoma based on a benchmarked dataset and the gene regulatory network. Exp. Ther. Med., 2017, 14(4), 3651-3657.
[http://dx.doi.org/10.3892/etm.2017.4931] [PMID: 29067091]
[48]
Harrington, S.A.; Backhaus, A.E.; Singh, A.; Hassani-Pak, K.; Uauy, C. The wheat GENIE3 network provides biologically-relevant information in polyploid wheat. G3: Genes, Genomes. G3, 2020, 10(10), 3675-3686.
[http://dx.doi.org/10.1534/g3.120.401436] [PMID: 32747342]
[49]
Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet., 2018, 19(S1)(Suppl. 1), 65.
[http://dx.doi.org/10.1186/s12863-018-0633-8] [PMID: 30255764]
[50]
Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit., 2019, 91, 216-231.
[http://dx.doi.org/10.1016/j.patcog.2019.02.023]
[51]
Chen, K.; Xu, H.; Lei, Y.; Lio, P.; Li, Y.; Guo, H.; Ali Moni, M. Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance. Brief. Bioinform., 2021, 22(6), bbab100.
[http://dx.doi.org/10.1093/bib/bbab100] [PMID: 33971668]
[52]
Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; McDermott, M.G.; Monteiro, C.D.; Gundersen, G.W.; Ma’ayan, A. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res., 2016, 44(W1), W90-W97.
[http://dx.doi.org/10.1093/nar/gkw377] [PMID: 27141961]
[53]
Huang, J.; Meng, Q.; Liu, R.; Li, H.; Li, Y.; Yang, Z.; Wang, Y.; Wanyan, C.; Yang, X.; Wei, J. The development of radioresistant oral squamous carcinoma cell lines and identification of radiotherapy-related biomarkers. Clin. Transl. Oncol., 2023, 25(10), 3006-3020.
[http://dx.doi.org/10.1007/s12094-023-03169-7] [PMID: 37029240]
[54]
Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat., 2001, 29(5), 1189-1232.
[http://dx.doi.org/10.1214/aos/1013203451]
[55]
Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl., 1998, 13(4), 18-28.
[http://dx.doi.org/10.1109/5254.708428]
[56]
LaValley, M.P. Logistic regression. Circulation, 2008, 117(18), 2395-2399.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.682658] [PMID: 18458181]
[57]
Peterson, L. K-nearest neighbor. Scholarpedia J., 2009, 4(2), 1883.
[http://dx.doi.org/10.4249/scholarpedia.1883]
[58]
Hanchuan, Peng; Fuhui, Long; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238.
[http://dx.doi.org/10.1109/TPAMI.2005.159] [PMID: 16119262]
[59]
Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J. Detecting novel associations in large data sets. Science, 2011, 334(6062), 1518-1524.
[60]
Wang, Y.; Wu, N.; Sun, D.; Sun, H.; Tong, D.; Liu, D.; Pang, B.; Li, S.; Wei, J.; Dai, J.; Liu, Y.; Bai, J.; Geng, J.; Fu, S.; Jin, Y. NUBPL, a novel metastasis‐related gene, promotes colorectal carcinoma cell motility by inducing epithelial–mesenchymal transition. Cancer Sci., 2017, 108(6), 1169-1176.
[http://dx.doi.org/10.1111/cas.13243] [PMID: 28346728]
[61]
Moody, L.; Chen, H.; Pan, Y.X. Considerations for feature selection using gene pairs and applications in large-scale dataset integration, novel oncogene discovery, and interpretable cancer screening. BMC Med. Genomics, 2020, 13(S10)(Suppl. 10), 148.
[http://dx.doi.org/10.1186/s12920-020-00778-x] [PMID: 33087122]
[62]
Maity, A.; McKenna, W.G.; Muschel, R.J. The molecular basis for cell cycle delays following ionizing radiation: A review. Radiother. Oncol., 1994, 31(1), 1-13.
[http://dx.doi.org/10.1016/0167-8140(94)90408-1] [PMID: 8041894]
[63]
Skvortsova, I.; Debbage, P.; Kumar, V.; Skvortsov, S. Eds.; Radiation resistance: Cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Seminars in cancer biology; Elsevier, 2015.
[64]
Yoshida, G.J.; Saya, H. Therapeutic strategies targeting cancer stem cells. Cancer Sci., 2016, 107(1), 5-11.
[http://dx.doi.org/10.1111/cas.12817] [PMID: 26362755]
[65]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[66]
Kim, W.; Youn, H.; Kang, C.; Youn, B. Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis, 2015, 20(9), 1242-1252.
[http://dx.doi.org/10.1007/s10495-015-1141-1] [PMID: 26033480]
[67]
Lynam-Lennon, N.; Reynolds, J.V.; Pidgeon, G.P.; Lysaght, J.; Marignol, L.; Maher, S.G. Alterations in DNA repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiat. Res., 2010, 174(6a), 703-711.
[http://dx.doi.org/10.1667/RR2295.1] [PMID: 21128793]
[68]
Igney, F.H.; Krammer, P.H. Death and anti-death: Tumourresistance to apoptosis. Nat. Rev. Cancer, 2002, 2(4), 277-288.
[http://dx.doi.org/10.1038/nrc776] [PMID: 12001989]
[69]
Zheng, A.; Song, X.; Zhang, L.; Zhao, L.; Mao, X.; Wei, M.; Jin, F. Long non-coding RNA LUCAT1/miR-5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 305.
[http://dx.doi.org/10.1186/s13046-019-1315-8] [PMID: 31300015]
[70]
Feng, Q.; Li, S.; Ma, H.M.; Yang, W.T.; Zheng, P.S. LGR6 activates the Wnt/β-catenin signaling pathway and forms a β-catenin/TCF7L2/LGR6 feedback loop in LGR6high cervical cancer stem cells. Oncogene, 2021, 40(42), 6103-6114.
[http://dx.doi.org/10.1038/s41388-021-02002-1] [PMID: 34489551]
[71]
Wang, Y.; Chi, H.; Xu, F.; He, Z.; Li, Z.; Wu, F.; Li, Y.; Zhang, G.; Peng, X.; Yu, S.; Yang, J.; Zhang, W.; Yang, X. Cadmium chloride-induced apoptosis of HK-2 cells via interfering with mitochondrial respiratory chain. Ecotoxicol. Environ. Saf., 2022, 236, 113494.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113494] [PMID: 35413622]
[72]
Chen, P.; Wang, B.; Mo, Q.; Wu, P.; Fang, Y.; Tian, Y.; Jin, X.; Gao, Y.; Wu, Y.; Cao, Y.; Zhang, Y.; Xi, L.; Wang, S.; Hu, J.; Ma, D.; Zhou, J.; Gao, Q.; Chen, G. The LIV-1-GRPEL1 axis adjusts cell fate during anti-mitotic agent-damaged mitosis. EBioMedicine, 2019, 49, 26-39.
[http://dx.doi.org/10.1016/j.ebiom.2019.09.054] [PMID: 31636012]
[73]
Gao, Y.; Mao, Y.; Lu, S.; Tan, L.; Li, G.; Chen, J.; Huang, D.; Zhang, X.; Qiu, Y.; Liu, Y. Magnetic resonance imaging‐based radiogenomics analysis for predicting prognosis and gene expression profile in advanced nasopharyngeal carcinoma. Head Neck, 2021, 43(12), 3730-3742.
[http://dx.doi.org/10.1002/hed.26867] [PMID: 34516714]
[74]
Cui, F.; Hou, J.; Huang, C.; Sun, X.; Zeng, Y.; Cheng, H.; Wang, H.; Li, C. C‐Myc regulates radiation‐induced G2/M cell cyclearrest and cell death in human cervical cancer cells. J. Obstet. Gynaecol. Res., 2017, 43(4), 729-735.
[http://dx.doi.org/10.1111/jog.13261] [PMID: 28150398]
[75]
Zhao, Y.; Tao, L.; Yi, J.; Song, H.; Chen, L. The role of canonical Wnt signaling in regulating radioresistance. Cell. Physiol. Biochem., 2018, 48(2), 419-432.
[http://dx.doi.org/10.1159/000491774] [PMID: 30021193]
[76]
Wu, X.; Wu, M.Y.; Jiang, M.; Zhi, Q.; Bian, X.; Xu, M.D.; Gong, F.R.; Hou, J.; Tao, M.; Shou, L.M.; Duan, W.; Chen, K.; Shen, M.; Li, W. TNF-α sensitizes chemotherapy and radiotherapy against breast cancer cells. Cancer Cell Int., 2017, 17(1), 13.
[http://dx.doi.org/10.1186/s12935-017-0382-1] [PMID: 28127258]
[77]
Rey, S.; Schito, L.; Koritzinsky, M.; Wouters, B.G. Molecular targeting of hypoxia in radiotherapy. Adv. Drug Deliv. Rev., 2017, 109, 45-62.
[http://dx.doi.org/10.1016/j.addr.2016.10.002] [PMID: 27771366]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy