Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Fuzzy Modeling to Personalized Nutritional Menu

In Press, (this is not the final "Version of Record"). Available online 21 March, 2024
Author(s): Karim El Moutaouakil*, Abdellah Ahourag, Fatima Belhabib, Aayah Hammoumi, Alina-Mihaela Patriciu, Saliha Chellak and Hicham Baizri
Published on: 21 March, 2024

DOI: 10.2174/0115734013293555240319070046

Price: $95

Abstract

Background: While most healthy diets can help control the progression of disease, they can fail in the long term for many factors. Patients abandon the diet altogether after a while because it is too restrictive or the foods are unappealing; still, others engage in less physical activity because they consume fewer calories. What's more, almost all plans are based on optimization models. These models produce statistical diets offering limited choices to users, and a small substitution can call the whole diet into question.

Objective: This article develops an intelligent system for generating flexible nutritional menus that each person can adopt to their environment and dietary preferences (food availability, price, patient eating habits, etc.). The system implements mathematical fuzzy optimization models and constraint satisfaction programming.

Methods and Materials: First, the Moroccon foods were decomposed using fuzzy Cmeans. Next, the artificial foods, formed by the centers, were introduced into a fuzzy mathematical optimization diet model, which controlled the total glycemic load and met the World Health Organization (WHO) and Dietary Guidelines for Americans (GDA) recommendations (requirements for personalized menu). Then, we used a genetic algorithm strategy to generate optimal serving sizes and to build a nutritional menu based on the groups formed. To help patients choose customized diets, the menu was transformed into a constraint satisfaction programming model.

Results: The proposed strategy was applied to Moroccan foods, experimental results show that all diets offer a wide range of choices to users and that substitutions comply with WHO and GDA recommendations.

Conclusion: The suggested scheme has been applied to Moroccan foods; experimental findings demonstrate that all diets provide users with a wide variety of options that keeps consumers on their diet.

[1]
Diet and physical activity: A public health priority. World health organization. 2021. Available from : https://journals.sagepub. com/doi/pdf/10.1177/156482650402500310(Accessed on 27 March 2014).
[2]
WHO and FAO announce global initiative to promote consumption of fruit and vegetables. World Health Organization. 2003. Available from: https://www.who.int/news/item/11-11-2003-who-and-fao-announce-global-initiative-to-promote-consumption-of-fruit-and-vegetables(Accessed on 25 August 2004).
[3]
Food information to consumers: Legislation. 2021. Available from : https://food.ec.europa.eu/safety/labelling-and-nutrition/food-information-consumers-legislation_en(Accessed on 24 November 2017).
[4]
Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J.L. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 2006, 367(9524), 1747-1757.
[http://dx.doi.org/10.1016/S0140-6736(06)68770-9] [PMID: 16731270]
[5]
Hebden, L.; O’Leary, F.; Rangan, A.; Singgih Lie, E.; Hirani, V.; Allman-Farinelli, M. Fruit consumption and adiposity status in adults: A systematic review of current evidence. Crit. Rev. Food Sci. Nutr., 2017, 57(12), 2526-2540.
[http://dx.doi.org/10.1080/10408398.2015.1012290] [PMID: 26115001]
[6]
Robert, H.; Shmerling, M.D. When dieting doesn’t work. In: In: Linear Programming and Extensions Princeton University Press; Harvard Health Publishing , 2020.
[7]
OreSkovié P, Kljusuri JG. Computer generated vegan menus: The importance of food composition data base choice. J. Food Compos. Anal., 2015, 37, 112-118.
[http://dx.doi.org/10.1016/j.jfca.2014.07.002]
[8]
Masset, G.; Monsivais, P.; Maillot, M.; Darmon, N.; Drewnowski, A. Diet optimization methods can help translate dietary guidelines into a cancer prevention food plan. J. Nutr., 2009, 139(8), 1541-1548.
[http://dx.doi.org/10.3945/jn.109.104398] [PMID: 19535422]
[9]
Donati, M.; Menozzi, D.; Zighetti, C.; Rosi, A.; Zinetti, A.; Scazzina, F. Towards a sustainable diet combining economic, environmental and nutritional objectives. Appetite, 2016, 106, 48-57.
[http://dx.doi.org/10.1016/j.appet.2016.02.151] [PMID: 26921487]
[10]
Farrokhi, A.; Farahbakhsh, R.; Rezazadeh, J.; Minerva, R. Application of Internet of Things and artificial intelligence for smart fitness: A survey. Comput. Netw., 2021, 189, 107859.
[http://dx.doi.org/10.1016/j.comnet.2021.107859]
[11]
Van Mierlo, K.; Rohmer, S.; Gerdessen, J.C. A model for composing meat replacers: Reducing the environmental impact of our food consumption pattern while retaining its nutritional value. J. Clean. Prod., 2017, 165, 930-950.
[http://dx.doi.org/10.1016/j.jclepro.2017.07.098]
[12]
Taniguchi, E. Concepts of city logistics for sustainable and live able cities. Procedia Soc. Behav. Sci., 2014, 151, 310-317.
[http://dx.doi.org/10.1016/j.sbspro.2014.10.029]
[13]
Koenen, M.F.; Balvert, M.; Fleuren, H. Bi-objective goal programming for balancing costs vs. nutritional adequacy. Front. Nutr., 2022, 9, 1056205.
[http://dx.doi.org/10.3389/fnut.2022.1056205] [PMID: 36590216]
[14]
Bas, E. A robust optimization approach to diet problem with overall glycemic load as objective function. Appl. Math. Model., 2014, 38(19-20), 4926-4940.
[http://dx.doi.org/10.1016/j.apm.2014.03.049]
[15]
El Moutaouakil, K.; Ahourag, A.; Chakir, S. Hybrid firefly genetic algorithm and integral fuzzy quadratic programming to an optimal Moroccan diet. Mathe Mod Comput, 2023, 10(2), 338-350.
[http://dx.doi.org/10.23939/mmc2023.02.338]
[16]
El moutaouakil K, Ahourag A, Chellak S, Cheggour M, Baizri H, Bahri A. Quadratic programming and triangular numbers ranking to an optimal moroccan diet with minimal glycemic load. Statistics, Optimization &. Inf. Comput., 2023, 11(1), 85-94.
[http://dx.doi.org/10.19139/soic-2310-5070-1541]
[17]
El Moutaouakil, K.; Ahourag, A.; Chellak, S.; Baïzri, H.; Cheggour, M. Fuzzy deep daily nutrients requirements representation. Revu Intel Arti, 2022, 36(2), 263-269.
[http://dx.doi.org/10.18280/ria.360210]
[18]
El Moutaouakil, K.; Saliha, C.; Hicham, B. Optimal fuzzy deep daily nutrients requirements representation: Application to optimal Morocco diet problem. Mathe Mod Comput, 2022, 9(3), 607-615.
[http://dx.doi.org/10.23939/mmc2022.03.607]
[19]
O’Brien, K.O.; Zavaleta, N.; Caulfield, L.E.; Wen, J.; Abrams, S.A. Prenatal iron supplements impair zinc absorption in pregnant Peruvian women. J. Nutr., 2000, 130(9), 2251-2255.
[http://dx.doi.org/10.1093/jn/130.9.2251] [PMID: 10958820]
[20]
Weaver, C.M.; Gordon, C.M.; Janz, K.F. The national osteoporosis foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int., 2016, 27(4), 1281-1386.
[http://dx.doi.org/10.1007/s00198-015-3440-3] [PMID: 26856587]
[21]
Zimmer mann MB, Chassard C, Rohner F. The effects of iron fortification on the gut microbiotain African children: A randomized controlled trial in Cote d’Ivoire. Am. J. Clin. Nutr., 2010, 92, 1406-1415.
[http://dx.doi.org/10.3945/ajcn.110.004564]
[22]
El Moutaouakil, K.E.; El Ouissari, A.E.; Palade, V. Multi-objective optimization for controlling the dynamics of the diabetic population. Mathematics, 2023, 11(13), 2957.
[http://dx.doi.org/10.3390/math11132957]
[23]
El Moutaouakil, K.; Palade, V.; Safouan, S.; Charroud, A. FP-Conv-CM: Fuzzy probabilistic convolution C-Means. Mathematics, 2023, 11(8), 1931.
[http://dx.doi.org/10.3390/math11081931]
[24]
Ahourag, A; El Moutaouakil, K; Chellak, S; Baizri, H; Cheggour, M Multi-criteria optimization for optimal nutrition of Moroccan diabetics:* Note: Sub-titles are not captured in Xplore and should not be used. In: In 2022 InternationaConference on Intelligent Systems and Computer Vision; , 2022; pp. 1-6.
[25]
Ahourag, A.; El Moutaouakil, K.; Cheggour, M.; Chellak, S.; Baizri, H. Multiobjective optimization to optimal moroccan diet using genetic algorithm. Intern J Eng Mode, 2023, 36(1), 67-79.
[http://dx.doi.org/10.31534/engmod.2023.1.ri.05a]
[26]
El Moutaouakil, K.; Saliha, C.; Hicham, B.; Mouna, C. Intelligent local search optimization methods to optimal morocco regime; IntechOpen, 2023.
[http://dx.doi.org/10.5772/intechopen.105600]
[27]
Nama, S.; Sharma, S.; Saha, A.K.; Gandomi, A.H. A quantum mutation-based backtracking search algorithm. Artif. Intell. Rev., 2022, 55, 3019-3073.
[28]
Kim, J.H.; Kim, K.H.; Yoo, S.H. Evaluating and ranking the mining damage prevention programs in South Korea: An application of the fuzzy set theory. Resour. Policy, 2022, 78, 102873.
[http://dx.doi.org/10.1016/j.resourpol.2022.102873]
[29]
El Moutaouakil, K.; Cheggour, S.; Chellak, H. Metaheuristics optimization algorithm to an optimal moroccan diet. 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), Guiyang, China 23-25 July2021, pp. 364-368.
[http://dx.doi.org/10.1109/ICNISC54316.2021.00072]
[30]
U.S. department of health and human services & U.S. department of agriculture. Dietary guidelines for Americans 2005. Available from: http://www.health.gov/dietaryguidelines/dga2005/document/pdf/DGA2005.pdf
[31]
Bas, E. A three-step methodology for GI classification, GL estimation of foods by fuzzy c-means classification and fuzzy pattern recognition, and an LP-based diet model for glycaemic control. Food Res. Int., 2016, 83, 1-13.
[http://dx.doi.org/10.1016/j.foodres.2016.02.009]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy