Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Glycogen: A Novel Biopolymer Catalyst for the One-Pot Synthesis of Spirooxindoles, Spiro-Acenaphthylenes, and Spiro-2-Aminopyrans Derivatives under Mild Conditions

Author(s): Nahid Ahmadi*, Malek Taher Maghsoodlou, Mahmoud Nassiri and Forough Jalili Milani*

Volume 11, Issue 4, 2024

Published on: 21 March, 2024

Page: [369 - 378] Pages: 10

DOI: 10.2174/0122133461280455240305061938

Price: $65

Abstract

Background: Glycogen, a naturally occurring macromolecule, in its granular form and without any post-modification was found to be an efficient and eco-friendly bifunctional heterogeneous organocatalyst.

Objective: This catalyst can be useful for the domino synthesis of various spiropyren annulated derivatives through three-component condensation of isathin, malononitrile, and diverse 1,3-dicarbonyl compounds, activated CH-acids, through Knoevenagel-Michael-annulation sequence under mild conditions.

Method: Corresponding spiro derivatives were obtained in high to excellent yields after 5-15 min stirring in 2 mL EtOH and 60°C in the presence of 0.01 g of glycogen, equimolar amounts of isatin/ acenaphthoquinone/ninhydrin, malononitrile, and 1,3-dicarbonyl compounds.

Results: FTIR and 1H NMR spectroscopic showed there isn't any catalyst in the media and desired products were obtained in excellent purity.

Conclusion: Avoiding any transition metal, one-pot, and multicomponent procedure catalyzed by a biopolymer, broad substrate scope, and operational simplicity are essential features of this methodology for the preparation of medicinally important compounds.

[1]
Chatterjee, R.; Bhukta, S.; Dandela, R. Ionic LIQUID‐ASSISTED synthesis of 2‐AMINO‐3‐CYANO‐4 H ‐chromenes: A sustainable overview. J. Heterocycl. Chem., 2022, 59(4), 633-654.
[http://dx.doi.org/10.1002/jhet.4417]
[2]
Ziarani, G.M.; Mohtasham, N.H.; Lashgari, N.; Badiei, A.; Amanlou, M.; Bazl, R. Convenient one-pot synthesis of spirooxindole-4 H -pyrans in the presence of SBA-Pr-NH2 and evaluation of their urease inhibitory activities. 2013, 2, 487-498.
[3]
Menegazzo, F.; Signoretto, M.; Marchese, D.; Pinna, F.; Manzoli, M. Structure–activity relationships of Au/ZrO2 catalysts for 5-hydroxymethylfurfural oxidative esterification: Effects of zirconia sulphation on gold dispersion, position and shape. J. Catal., 2015, 326, 1-8.
[http://dx.doi.org/10.1016/j.jcat.2015.03.006]
[4]
Saluja, P.; Aggarwal, K.; Khurana, J.M. One-pot synthesis of biologically important spiro-2-amino-4h-pyrans, spiroacenaphthylenes, and spirooxindoles using DBU as a green and recyclable. Synth. Commun., 2013, 43(24), 3239-3246.
[5]
Zhu, S.L.; Ji, S.J.; Zhang, Y. A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron, 2007, 63(38), 9365-9372.
[http://dx.doi.org/10.1016/j.tet.2007.06.113]
[6]
Borad, M.A.; Jethava, D.J.; Bhoi, M.N.; Patel, C.N.; Pandya, H.A.; Patel, H.D. Novel isoniazid-spirooxindole derivatives: Design, synthesis, biological evaluation, in silico ADMET prediction and computational studies. J. Mol. Struct., 2020, 1222, 128881.
[http://dx.doi.org/10.1016/j.molstruc.2020.128881]
[7]
Patravale, A.A.; Gore, A.H.; Kolekar, G.B.; Deshmukh, M.B.; Choudhari, P.B.; Bhatia, M.S.; Prabhu, S.; Jamdhade, M.D.; Patole, M.S.; Anbhule, P.V. Synthesis, biological evaluation and molecular docking studies of some novel indenospiro derivatives as anticancer agents. J. Taiwan Inst. Chem. Eng., 2016, 68, 105-118.
[http://dx.doi.org/10.1016/j.jtice.2016.09.034]
[8]
Saragi, T.P.I.; Spehr, T.; Siebert, A.; Lieker, F.T.; Salbeck, J. Spiro compounds for organic optoelectronics. Chem. Rev., 2007, 107(4), 1011-1065.
[http://dx.doi.org/10.1021/cr0501341] [PMID: 17381160]
[9]
Gao, X.; Wei, M.; Shan, W.; Liu, Q.; Gao, J.; Liu, Y.; Zhu, S.; Yao, H. An oral 2-hydroxypropyl-β-cyclodextrin-loaded spirooxindole-pyrrolizidine derivative restores p53 activity via targeting MDM2 and JNK1/2 in hepatocellular carcinoma. Pharmacol. Res., 2019, 148, 104400.
[http://dx.doi.org/10.1016/j.phrs.2019.104400] [PMID: 31425749]
[10]
Hilton, S.T.; Ho, T.C.T.; Pljevaljcic, G.; Jones, K. A new route to spirooxindoles. Org. Lett., 2000, 2(17), 2639-2641.
[http://dx.doi.org/10.1021/ol0061642] [PMID: 10990416]
[11]
Divar, M.; Zomorodian, K.; Sabet, R.; Moeini, M.; Khabnadideh, S. An efficient method for synthesis of some novel spirooxindole-4h-pyran derivatives. Polycycl. Aromat. Compd., 2021, 41(7), 1549-1562.
[http://dx.doi.org/10.1080/10406638.2019.1686405]
[12]
Mohamadpour, F.; Maghsoodlou, M.T.; Heydari, R.; Lashkari, M. Copper(II) acetate monohydrate: An efficient and eco-friendly catalyst for the one-pot multi-component synthesis of biologically active spiropyrans and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. Res. Chem. Intermed., 2016, 42(12), 7841-7853.
[http://dx.doi.org/10.1007/s11164-016-2565-0]
[13]
Liao, Y.; Huang, X.; Liao, X.; Shi, B. Preparation of fibrous sulfated zirconia (SO42−/ZrO2) solid acid catalyst using collagen fiber as the template and its application in esterification. J. Mol. Catal. Chem., 2011, 347(1-2), 46-51.
[http://dx.doi.org/10.1016/j.molcata.2011.07.009]
[14]
Park, J.H.; Lee, Y.R.; Kim, S.H. A novel synthesis of diverse 2-amino-5-hydroxy-4H-chromene derivatives with a spirooxindole nucleus by Ca(OH)2-mediated three-component reactions of substituted resorcinols with isatins and malononitrile. Tetrahedron, 2013, 69(46), 9682-9689.
[http://dx.doi.org/10.1016/j.tet.2013.09.021]
[15]
Liang, Y.R.; Chen, X.Y.; Wu, Q.; Lin, X.F. Diastereoselective synthesis of spirooxindole derivatives via biocatalytic domino reaction. Tetrahedron, 2015, 71(4), 616-621.
[http://dx.doi.org/10.1016/j.tet.2014.12.027]
[16]
He, Y.; Guo, H.; Tian, J. A simple three-component synthesis of spiro-pyran derivatives. J. Chem. Res., 2011, 35(9), 528-530.
[http://dx.doi.org/10.3184/174751911X13149692358913]
[17]
Khurana, J.M.; Yadav, S. Highly monodispersed PEG-stabilized Ni nanoparticles: Proficient catalyst for the synthesis of biologically important spiropyrans. Aust. J. Chem., 2012, 65(3), 314-319.
[http://dx.doi.org/10.1071/CH11444]
[18]
Jalili-Baleh, L.; Mohammadi, N.; Khoobi, M.; Ma’mani, L.; Foroumadi, A.; Shafiee, A. Synthesis of monospiro-2-amino-4H-pyran derivatives catalyzed by propane-1-sulfonic acid-modified magnetic hydroxyapatite nanoparticles. Helv. Chim. Acta, 2013, 96(8), 1601-1609.
[http://dx.doi.org/10.1002/hlca.201200516]
[19]
Yagnam, S.; Akondi, A.M.; Trivedi, R.; Rathod, B.; Prakasham, R.S.; Sridhar, B. Spirooxindole-fused pyrazolo pyridine derivatives: NiO–SiO2 catalyzed one-pot synthesis and antimicrobial activities. Synth. Commun., 2018, 48(3), 255-266.
[http://dx.doi.org/10.1080/00397911.2017.1393687]
[20]
Gui, H.Z.; Meng, Z.; Xiao, Z.S.; Yang, Z.R.; Wei, Y.; Shi, M. Stereo‐ and regioselective construction of spirooxindoles having continuous spiral rings via asymmetric [3+2] cyclization of 3‐isothiocyanato oxindoles with thioaurone derivatives. Eur. J. Org. Chem., 2020, 2020(42), 6614-6622.
[http://dx.doi.org/10.1002/ejoc.202001146]
[21]
Maheshwar Rao, B.; Reddy, G.N.; Reddy, T.V.; Devi, B.L.A.P.; Prasad, R.B.N.; Yadav, J.S.; Reddy, B.V.S. Carbon–SO3H: A novel and recyclable solid acid catalyst for the synthesis of spiro[4H-pyran-3,3′-oxindoles]. Tetrahedron Lett., 2013, 54(20), 2466-2471.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.089]
[22]
Makarem, S. Three‐component electrosynthesis of spirooxindole‐pyran derivatives through a simple and efficient method. J. Heterocycl. Chem., 2020, 57(4), 1599-1604.
[http://dx.doi.org/10.1002/jhet.3885]
[23]
Mohamadpour, F.; Maghsoodlou, M.T.; Lashkari, M.; Heydari, R.; Hazeri, N. Synthesis of quinolines, spiro[4 H -pyran-oxindoles] and xanthenes under solvent-free conditions. Org. Prep. Proced. Int., 2019, 51(5), 456-476.
[http://dx.doi.org/10.1080/00304948.2019.1653126]
[24]
Zakeri, M.; Nasef, M.M.; Abouzari-Lotf, E.; Moharami, A.; Heravi, M.M. Sustainable alternative protocols for the multicomponent synthesis of spiro-4H-pyrans catalyzed by 4-dimethylaminopyridine. J. Ind. Eng. Chem., 2015, 29, 273-281.
[http://dx.doi.org/10.1016/j.jiec.2015.03.035]
[25]
Wu, C.; Liu, J.; Kui, D.; Lemao, Y.; Yingjie, X.; Luo, X.; Meiyang, X.; Shen, R. Efficient multicomponent synthesis of spirooxindole derivatives catalyzed by copper triflate. Polycycl. Aromat. Compd., 2022, 42(1), 277-289.
[http://dx.doi.org/10.1080/10406638.2020.1726976]
[26]
Jazinizadeh, T.; Maghsoodlou, M.T.; Heydari, R.; Abadi, Y.E.A. Na2EDTA: an efficient, green and reusable catalyst for the synthesis of biologically important spirooxindoles, spiroacenaphthylenes and spiro-2-amino-4H-pyrans under solvent-free conditions. J. Indian Chem. Soc., 2017, 14(10), 2117-2125.
[http://dx.doi.org/10.1007/s13738-017-1148-3]
[27]
Zhu, Y.; Zhou, J.; Jin, S.; Dong, H.; Guo, J.; Bai, X.; Wang, Q.; Bu, Z. Metal-free diastereoselective construction of bridged ketal spirooxindoles via a Michael addition-inspired sequence. Chem. Commun., 2017, 53(81), 11201-11204.
[http://dx.doi.org/10.1039/C7CC05813F] [PMID: 28956556]
[28]
Moghaddam, M.F.; Aghamiri, B. Facile one-pot, multi-component reaction to synthesize spirooxindole-annulated thiopyran derivatives under environmentally benevolent conditions. Heliyon, 2022, 8(9), e10666.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10666] [PMID: 36185147]
[29]
El Kadib, A. Chitosan as a sustainable organocatalyst: A concise overview. ChemSusChem, 2015, 8(2), 217-244.
[http://dx.doi.org/10.1002/cssc.201402718] [PMID: 25470553]
[30]
Centi, G.; Perathoner, S. Catalysis and sustainable (green) chemistry. Catal. Today, 2003, 77(4), 287-297.
[http://dx.doi.org/10.1016/S0920-5861(02)00374-7]
[31]
Clark, J.H. Catalysis for green chemistry. Pure Appl. Chem., 2001, 73(1), 103-111.
[http://dx.doi.org/10.1351/pac200173010103]
[32]
Ezzatzadeh, E.; Amiri, S.S.; Hossaini, Z.; Barani, K.K. Synthesis and evaluation of the antioxidant activity of new spiro-1,2,4-triazine derivatives applying Ag/Fe3O4/CdO@MWCNT MNCs as efficient organometallic nanocatalysts. Front Chem., 2022, 10, 1001707.
[http://dx.doi.org/10.3389/fchem.2022.1001707] [PMID: 36262344]
[33]
Zarnegar, Z.; Safari, J. The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications. Int. J. Biol. Macromol., 2015, 75, 21-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.013] [PMID: 25597431]
[34]
Jermy, B.R.; Ajayi, B.P.; Abussaud, B.A.; Asaoka, S.; Al-Khattaf, S. Oxidative dehydrogenation of n-butane to butadiene over Bi–Ni–O/γ-alumina catalyst. J. Mol. Catal. Chem., 2015, 400, 121-131.
[http://dx.doi.org/10.1016/j.molcata.2015.01.016]
[35]
Ghafuri, H.; Rashidizadeh, A.; Ghorbani, B.; Talebi, M. Nano magnetic sulfated zirconia (Fe3O4@ZrO2/SO42−): An efficient solid acid catalyst for the green synthesis of α-aminonitriles and imines. New J. Chem., 2015, 39(6), 4821-4829.
[http://dx.doi.org/10.1039/C5NJ00314H]
[36]
Negoi, A.; Wuttke, S.; Kemnitz, E.; Macovei, D.; Parvulescu, V.I.; Teodorescu, C.M.; Coman, S.M. One-pot synthesis of menthol catalyzed by a highly diastereoselective Au/MgF2 catalyst. Angew. Chem. Int. Ed., 2010, 49(44), 8134-8138.
[http://dx.doi.org/10.1002/anie.201002090] [PMID: 20857464]
[37]
Liu, X.; Conte, M.; Sankar, M.; He, Q.; Murphy, D.M.; Morgan, D.; Jenkins, R.L.; Knight, D.; Whiston, K.; Kiely, C.J.; Hutchings, G.J. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Appl. Catal. A Gen., 2015, 504, 373-380.
[http://dx.doi.org/10.1016/j.apcata.2015.02.034]
[38]
Safaei, H.R.; Shekouhy, M.; Shirinfeshan, A.; Rahmanpur, S. CaCl2 as a bifunctional reusable catalyst: diversity-oriented synthesis of 4H-pyran library under ultrasonic irradiation. Mol. Divers., 2012, 16(4), 669-683.
[http://dx.doi.org/10.1007/s11030-012-9392-z] [PMID: 22968516]
[39]
Mahé, O.; Brière, J.F.; Dez, I. Chitosan: An upgraded polysaccharide waste for organocatalysis. Eur. J. Org. Chem., 2015, 2015(12), 2559-2578.
[http://dx.doi.org/10.1002/ejoc.201403396]
[40]
Zeng, M.; Qi, C.; Zhang, X. Chitosan microspheres supported palladium heterogeneous catalysts modified with pearl shell powders. Int. J. Biol. Macromol., 2013, 55, 240-245.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.01.016] [PMID: 23376558]
[41]
Wu, S.; Ma, H.; Jia, X.; Zhong, Y.; Lei, Z. Biopolymer-metal complex wool–Pd as a highly active heterogeneous catalyst for Heck reaction in aqueous media. Tetrahedron, 2011, 67(1), 250-256.
[http://dx.doi.org/10.1016/j.tet.2010.10.062]
[42]
Dekamin, M.G.; Peyman, S.Z.; Karimi, Z.; Javanshir, S.; Jamal, N.M.R.; Barikani, M. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol., 2016, 87, 172-179.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.080] [PMID: 26845480]
[43]
Pettignano, A.; Bernardi, L.; Fochi, M.; Geraci, L.; Robitzer, M.; Tanchoux, N.; Quignard, F. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem., 2015, 39(6), 4222-4226.
[http://dx.doi.org/10.1039/C5NJ00349K]
[44]
Boey, P.L.; Ganesan, S.; Maniam, G.P.; Khairuddean, M.; Lee, S.E. A new heterogeneous acid catalyst system for esterification of free fatty acids into methyl esters. Appl. Catal. A Gen., 2012, 433-434, 12-17.
[http://dx.doi.org/10.1016/j.apcata.2012.04.036]
[45]
Sarkar, S. Mechanochemical synthesis and antimicrobial studies of 4-hydroxy-3-thiomethylcoumarins using imidazolium zwitterionic molten salt as an organocatalyst. ACS Sustainable Chem. Eng., 2021, 9(16), 5557-5569.
[http://dx.doi.org/10.1021/acssuschemeng.0c08975]
[46]
Chatterjee, R.; Mahato, S.; Santra, S.; Zyryanov, G.V. Imidazolium zwitterionic molten salt: An efficient organocatalyst under neat conditions at room temperature for the synthesis of dipyrromethanes as well as bis(indolyl)methanes. ChemistrySelect, 2018, 3(21), 5843-5847.
[http://dx.doi.org/10.1002/slct.201800227]
[47]
Jamwal, N.; Sodhi, R.K.; Gupta, P.; Paul, S. Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. Int. J. Biol. Macromol., 2011, 49(5), 930-935.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.08.013] [PMID: 21871916]
[48]
Jovanovic, G.N.; Atwater, J.E.; Plazl, Z.P.; Plazl, I. Dechlorination of polychlorinated phenols on bimetallic Pd/Fe catalyst in a magnetically stabilized fluidized bed. Chem. Eng. J., 2015, 274, 50-60.
[http://dx.doi.org/10.1016/j.cej.2015.03.087]
[49]
Srivastava, A.; Yadav, A.; Samanta, S. Biopolymeric alginic acid: An efficient recyclable green catalyst for the Friedel–Crafts reaction of indoles with isoquinoline-1,3,4-triones in water. Tetrahedron Lett., 2015, 56(44), 6003-6007.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.041]
[50]
Dekamin, M.G.; Azimoshan, M.; Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem., 2013, 15(3), 811-820.
[http://dx.doi.org/10.1039/c3gc36901c]
[51]
Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev., 2012, 41(4), 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J] [PMID: 22033698]
[52]
Nakayama, A.; Yamamoto, K.; Tabata, S. Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J. Biol. Chem., 2001, 276(31), 28824-28828.
[http://dx.doi.org/10.1074/jbc.M102192200] [PMID: 11375985]
[53]
Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem., 2010, 12(2), 231-237.
[http://dx.doi.org/10.1021/cc9001185] [PMID: 20085353]
[54]
Dabiri, M.; Bahramnejad, M.; Baghbanzadeh, M. Ammonium salt catalyzed multicomponent transformation: Simple route to functionalized spirochromenes and spiroacridines. Tetrahedron, 2009, 65(45), 9443-9447.
[http://dx.doi.org/10.1016/j.tet.2009.08.070]
[55]
Wu, C.; Shen, R.; Chen, J.; Hu, C. An efficient method for multicomponent synthesis of spiro[4H-pyran- oxindole] derivatives catalyzed by magnesium perchlorate. Bull. Korean Chem. Soc., 2013, 34(8), 2431-2435.
[http://dx.doi.org/10.5012/bkcs.2013.34.8.2431]
[56]
Zhen, X.; Wan, X.; Zhang, W.; Li, Q.; Negrerie, Z.D.; Du, Y. Synthesis of spirooxindoles from N -arylamide derivatives via oxidative C(sp2)–C(sp3) bond formation mediated by PhI(OMe)2 generated in situ. Org. Lett., 2019, 21(4), 890-894.
[http://dx.doi.org/10.1021/acs.orglett.8b03741] [PMID: 30698442]
[57]
Shanthi, G.; Subbulakshmi, G.; Perumal, P.T. A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron, 2007, 63(9), 2057-2063.
[http://dx.doi.org/10.1016/j.tet.2006.12.042]
[58]
Kerly, B.Y.M. The solubility of glycogen. Biochem. J., 1930, 24(1), 67-76.
[59]
Goli-Jolodar, O.; Shirini, F.; Seddighi, M. An efficient and practical synthesis of specially 2-amino-4H-pyrans catalyzed by C4(DABCO-SO3H)2·4Cl. Dyes Pigments, 2016, 133, 292-303.
[http://dx.doi.org/10.1016/j.dyepig.2016.06.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy