Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Mini-Review Article

Assessing Blood-brain Barrier Function in the Context of Pain Management

Author(s): Farshad Hassanzadeh Kiabi, Saeed Gharooee Ahangar and Siavash Beiranvand*

Volume 24, Issue 3, 2024

Published on: 20 March, 2024

Page: [243 - 248] Pages: 6

DOI: 10.2174/0118715249283159240316091312

Price: $65

Abstract

One essential component of the neurovascular system is known as the blood-brain barrier (BBB). This highly effective biological barrier plays a pivotal role in regulating the brain's internal microenvironment and carefully controlling the passage of various chemicals into and out of the brain. Notably, it serves as a safeguard for the brain, particularly when it comes to the selective transportation of drugs like opioids and non-steroidal anti-inflammatory medications (NSAIDs), which are commonly used in the management of chronic pain. It's important to note that during the development of chronic pain, the activation of microglia and astrocytes can potentially disrupt or damage the integrity of the BBB. In this comprehensive review, we aim to delve into the intricate interplay between the blood-brain barrier and the transportation of pain-relieving drugs, shedding light on the challenges and mechanisms involved in this process.

Next »
[1]
Pardridge, W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2005, 2(1), 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[2]
Yang, Z. A review of nanoparticle functionality and toxicity on the central nervous system. J. R. Soc. Interface, 2010, 7(S4), S411-S422.
[http://dx.doi.org/10.1098/rsif.2010.0158.focus]
[3]
van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updat., 2015, 19, 1-12.
[http://dx.doi.org/10.1016/j.drup.2015.02.002] [PMID: 25791797]
[4]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[5]
Alvarez, J.I. The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 2011, 334(6063), 1727-1731.
[http://dx.doi.org/10.1126/science.1206936]
[6]
Obermeier, B.; Daneman, R.; Ransohoff, R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med., 2013, 19(12), 1584-1596.
[http://dx.doi.org/10.1038/nm.3407] [PMID: 24309662]
[7]
Beiranvand, S.; Kiabi, H.F. Application of bone morphogenetic protein in spinal fusion surgery. In: Minimally Invasive Spine Surgery - Advances and Innovations; IntechOpen, 2021.
[8]
Beiranvand, S.; Sorori, M.M. Pain management using nanotechnology approaches. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 462-468.
[http://dx.doi.org/10.1080/21691401.2018.1553885] [PMID: 30688094]
[9]
Kadry, H.; Noorani, B.; Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS, 2020, 17(1), 69.
[http://dx.doi.org/10.1186/s12987-020-00230-3] [PMID: 33208141]
[10]
Liebner, S.; Czupalla, C.J.; Wolburg, H. Current concepts of blood-brain barrier development. Int. J. Dev. Biol., 2011, 55(4-5), 467-476.
[http://dx.doi.org/10.1387/ijdb.103224sl] [PMID: 21769778]
[11]
Abbott, N.J. Dynamics of CNS barriers: Evolution, differentiation, and modulation. Cell. Mol. Neurobiol., 2005, 25(1), 5-23.
[http://dx.doi.org/10.1007/s10571-004-1374-y] [PMID: 15962506]
[12]
Viscusi, E.R.; Viscusi, A.R. Blood–brain barrier: Mechanisms governing permeability and interaction with peripherally acting μ-opioid receptor antagonists. Reg. Anesth. Pain Med., 2020, 45(9), 688-695.
[http://dx.doi.org/10.1136/rapm-2020-101403] [PMID: 32723840]
[13]
DosSantos, M.F.; Afonso, H.R.C.; Lima, R.L.; DaSilva, A.F.; Moura-Neto, V. The role of the blood–brain barrier in the development and treatment of migraine and other pain disorders. Front. Cell. Neurosci., 2014, 8, 302.
[14]
Vallejo, R.; Tilley, D.M.; Vogel, L.; Benyamin, R. The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract., 2010, 10(3), 167-184.
[http://dx.doi.org/10.1111/j.1533-2500.2010.00367.x] [PMID: 20384965]
[15]
Wolka, A.M.; Huber, J.D.; Davis, T.P. Pain and the blood–brain barrier: Obstacles to drug delivery. Adv. Drug Deliv. Rev., 2003, 55(8), 987-1006.
[http://dx.doi.org/10.1016/S0169-409X(03)00100-5] [PMID: 12935941]
[16]
Saeidiborojeni, H.; Asl, M.F.; Shabrandy, A.; Ahangar, S.G. Dynamic control and timely correction of blood glucose levels in diabetic patients undergoing traumatic spinal vertebral fracture surgery to reduce surgery site infection. Int. J. Surg. Open., 2023, 54100618
[http://dx.doi.org/10.1016/j.ijso.2023.100618]
[17]
Gloth, F.M., III Pharmacological management of persistent pain in older persons: focus on opioids and nonopioids. J. Pain, 2011, 12(S3), S14-S20.
[http://dx.doi.org/10.1016/j.jpain.2010.11.006] [PMID: 21296028]
[18]
Strazielle, N.; Egea, G.J.F. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol. Pharm., 2013, 10(5), 1473-1491.
[http://dx.doi.org/10.1021/mp300518e] [PMID: 23298398]
[19]
Wilhelm, I.; Fazakas, C.; Krizbai, I. In vitro models of the blood-brain barrier. Acta Neurobiol. Exp., 2011, 71(1), 113-128.
[http://dx.doi.org/10.55782/ane-2011-1828] [PMID: 21499332]
[20]
Beiranvand, S.; Moradkhani, M.; Hill, M.; Miller, N.G.; Terrien, B.; Espinoza, D.; Stehman, C.; Etheridge, M.; Campbell, S.; Erdman, A.; Daraee, H. Bupivacaine versus liposomal bupivacaine for pain control. Drug Res., 2018, 68(7), 365-369.
[http://dx.doi.org/10.1055/s-0043-121142] [PMID: 29108087]
[21]
Ronaldson, P.T.; Davis, T.P. Targeting blood–brain barrier changes during inflammatory pain: An opportunity for optimizing CNS drug delivery. Ther. Deliv., 2011, 2(8), 1015-1041.
[http://dx.doi.org/10.4155/tde.11.67] [PMID: 22468221]
[22]
Tournier, N.; Declèves, X.; Saubaméa, B.; Scherrmann, J.M.; Cisternino, S. Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: Implications for neuropsychopharmacology. Curr. Pharm. Des., 2011, 17(26), 2829-2842.
[http://dx.doi.org/10.2174/138161211797440203] [PMID: 21827411]
[23]
Wolburg, H.; Noell, S.; Mack, A.; Buchholz, W.K.; Becker, F.P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res., 2009, 335(1), 75-96.
[http://dx.doi.org/10.1007/s00441-008-0658-9] [PMID: 18633647]
[24]
Mariano, C.; Sasaki, H.; Brites, D.; Brito, M.A. A look at tricellulin and its role in tight junction formation and maintenance. Eur. J. Cell Biol., 2011, 90(10), 787-796.
[http://dx.doi.org/10.1016/j.ejcb.2011.06.005] [PMID: 21868126]
[25]
Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185.
[http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[26]
Huang, Y.N.; Tsai, R.Y.; Lin, S.L.; Chien, C.C.; Cherng, C.H.; Wu, C.T.; Yeh, C.C.; Wong, C.S. Amitriptyline attenuates astrocyte activation and morphine tolerance in rats: Role of the PSD-95/NR1/nNOS/PKCγ signaling pathway. Behav. Brain Res., 2012, 229(2), 401-411.
[http://dx.doi.org/10.1016/j.bbr.2012.01.044] [PMID: 22309983]
[27]
Potschka, H. Role of CNS efflux drug transporters in antiepileptic drug delivery: Overcoming CNS efflux drug transport. Adv. Drug Deliv. Rev., 2012, 64(10), 943-952.
[http://dx.doi.org/10.1016/j.addr.2011.12.007] [PMID: 22210135]
[28]
Seelbach, M.J.; Brooks, T.A.; Egleton, R.D.; Davis, T.P. Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: A role for P‐glycoprotein. J. Neurochem., 2007, 102(5), 1677-1690.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04644.x] [PMID: 17697052]
[29]
de Groot, D.J.A.; van der Deen, M.; Le, T.K.P.; Regeling, A.; de Jong, S.; de Vries, E.G.E. Indomethacin induces apoptosis via a MRP1-dependent mechanism in doxorubicin-resistant small-cell lung cancer cells overexpressing MRP1. Br. J. Cancer, 2007, 97(8), 1077-1083.
[http://dx.doi.org/10.1038/sj.bjc.6604010] [PMID: 17940500]
[30]
Parepally, J.M.R.; Mandula, H.; Smith, Q.R. Brain uptake of nonsteroidal anti-inflammatory drugs: Ibuprofen, flurbiprofen, and indomethacin. Pharm. Res., 2006, 23(5), 873-881.
[http://dx.doi.org/10.1007/s11095-006-9905-5] [PMID: 16715377]
[31]
Summ, O.; Evers, S. Mechanism of action of indomethacin in indomethacin-responsive headaches. Curr. Pain Headache Rep., 2013, 17(4), 327.
[http://dx.doi.org/10.1007/s11916-013-0327-x] [PMID: 23423598]
[32]
Huber, J.D.; Hau, V.S.; Borg, L.; Campos, C.R.; Egleton, R.D.; Davis, T.P. Blood-brain barrier tight junctions are altered during a 72-h exposure to λ-carrageenan-induced inflammatory pain. Am. J. Physiol. Heart Circ. Physiol., 2002, 283(4), H1531-H1537.
[http://dx.doi.org/10.1152/ajpheart.00027.2002] [PMID: 12234806]
[33]
Huber, J.D.; Witt, K.A.; Hom, S.; Egleton, R.D.; Mark, K.S.; Davis, T.P. Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression. Am. J. Physiol. Heart Circ. Physiol., 2001, 280(3), H1241-H1248.
[http://dx.doi.org/10.1152/ajpheart.2001.280.3.H1241] [PMID: 11179069]
[34]
Brooks, T.A.; Ocheltree, S.M.; Seelbach, M.J.; Charles, R.A.; Nametz, N.; Egleton, R.D.; Davis, T.P. Biphasic cytoarchitecture and functional changes in the BBB induced by chronic inflammatory pain. Brain Res., 2006, 1120(1), 172-182.
[http://dx.doi.org/10.1016/j.brainres.2006.08.085] [PMID: 17007822]
[35]
McCaffrey, G.; Staatz, W.D.; Quigley, C.A.; Nametz, N.; Seelbach, M.J.; Campos, C.R.; Brooks, T.A.; Egleton, R.D.; Davis, T.P. Tight junctions contain oligomeric protein assembly critical for maintaining blood–brain barrier integrity in vivo. J. Neurochem., 2007, 103(6), 2540-2555.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04943.x] [PMID: 17931362]
[36]
Ronaldson, P.T.; Finch, J.D.; Demarco, K.M.; Quigley, C.E.; Davis, T.P. Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. J. Pharmacol. Exp. Ther., 2011, 336(3), 827-839.
[http://dx.doi.org/10.1124/jpet.110.174151]
[37]
Lochhead, J.J.; McCaffrey, G.; Covarrubias, S.L.; Finch, J.D.; DeMarco, K.M.; Quigley, C.E.; Davis, T.P.; Ronaldson, P.T. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(3), H582-H593.
[http://dx.doi.org/10.1152/ajpheart.00889.2011] [PMID: 22081706]
[38]
Brooks, T.A.; Nametz, N.; Charles, R.; Davis, T.P. Diclofenac attenuates the regional effect of lambda-carrageenan on blood-brain barrier function and cytoarchitecture. J. Pharmacol. Exp. Ther., 2008, 325(2), 665-673.
[http://dx.doi.org/10.1124/jpet.107.135632] [PMID: 18305016]
[39]
Brooks, T.A.; Hawkins, B.T.; Huber, J.D.; Egleton, R.D.; Davis, T.P. Chronic inflammatory pain leads to increased blood-brain barrier permeability and tight junction protein alterations. Am. J. Physiol. Heart Circ. Physiol., 2005, 289(2), H738-H743.
[http://dx.doi.org/10.1152/ajpheart.01288.2004] [PMID: 15792985]
[40]
Rezaee, M.M.; Kazemi, S.; Kazemi, M.T.; Gharooee, S.; Yazdani, E.; Gharooee, H.; Shiran, M.R.; Moghadamnia, A.A. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. Daru, 2014, 22(1), 8.
[http://dx.doi.org/10.1186/2008-2231-22-8] [PMID: 24398010]
[41]
Labianca, R. Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain. Clin. Drug Investig., 2012, 32(S1), 53-63.
[http://dx.doi.org/10.2165/11630080-000000000-00000]
[42]
Candelario-Jalil, E.; Taheri, S.; Yang, Y.; Sood, R.; Grossetete, M.; Estrada, E.Y.; Fiebich, B.L.; Rosenberg, G.A. Cyclooxygenase inhibition limits blood-brain barrier disruption following intracerebral injection of tumor necrosis factor-alpha in the rat. J. Pharmacol. Exp. Ther., 2007, 323(2), 488-498.
[http://dx.doi.org/10.1124/jpet.107.127035] [PMID: 17704356]
[43]
Beggs, S.; Liu, X.J.; Kwan, C.; Salter, M.W. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier Mol. Pain, 2010, 6, 1744-8069-6-74.
[http://dx.doi.org/10.1186/1744-8069-6-74] [PMID: 21044346]
[44]
Sanchez-Covarrubias, L.; Slosky, L.M.; Thompson, B.J.; Zhang, Y.; Laracuente, M.L.; DeMarco, K.M.; Ronaldson, P.T.; Davis, T.P. P-glycoprotein modulates morphine uptake into the CNS: a role for the non-steroidal anti-inflammatory drug diclofenac. PLoS One, 2014, 9(2)e88516
[http://dx.doi.org/10.1371/journal.pone.0088516] [PMID: 24520393]
[45]
McCaffrey, G.; Staatz, W.D.; Sanchez-Covarrubias, L.; Finch, J.D.; DeMarco, K.; Laracuente, M.L.; Ronaldson, P.T.; Davis, T.P. P‐glycoprotein trafficking at the blood–brain barrier altered by peripheral inflammatory hyperalgesia. J. Neurochem., 2012, 122(5), 962-975.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07831.x] [PMID: 22716933]
[46]
Huber, J.D.; Campos, C.R.; Mark, K.S.; Davis, T.P. Alterations in blood-brain barrier ICAM-1 expression and brain microglial activation after λ-carrageenan-induced inflammatory pain. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(2), H732-H740.
[http://dx.doi.org/10.1152/ajpheart.00747.2005] [PMID: 16199477]
[47]
Campos, C.R.; Ocheltree, S.M.; Hom, S.; Egleton, R.D.; Davis, T.P. Nociceptive inhibition prevents inflammatory pain induced changes in the blood–brain barrier. Brain Res., 2008, 1221, 6-13.
[http://dx.doi.org/10.1016/j.brainres.2008.05.013] [PMID: 18554577]
[48]
Xanthos, D.N.; Püngel, I.; Wunderbaldinger, G.; Sandkühler, J. Effects of peripheral inflammation on the blood-spinal cord barrier. Mol. Pain, 2012, 8(1), 1744-8069-8-44.
[http://dx.doi.org/10.1186/1744-8069-8-44] [PMID: 22713725]
[49]
Hasanzadeh-kiabi, F.; Negahdari, B. Applications of drug anesthesia in control chronic pain. J. Invest. Surg., 2019, 32(3), 232-237.
[http://dx.doi.org/10.1080/08941939.2017.1397230] [PMID: 29256718]
[50]
Kiabi, H.F. Nano-drug for pain medicine. Drug Res., 2018, 68(5), 245-249.
[http://dx.doi.org/10.1055/s-0043-120661] [PMID: 29100265]
[51]
kiabi, H.F.; Negahdari, B. Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 994-1000.
[http://dx.doi.org/10.1080/21691401.2017.1354303] [PMID: 28720004]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy