Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Ag-TiO2 Photovoltaic Synergistic Field-catalyzed Degradation Performance of Tetracycline

Author(s): Qirui Wang, Xian Liu, Ziqi Qin, Xiang Ge, Chengcheng Li, Lei Zhu* and Xun Wang*

Volume 20, Issue 7, 2024

Published on: 19 March, 2024

Page: [471 - 483] Pages: 13

DOI: 10.2174/0115734110300566240314051129

Price: $65

Abstract

Background: Tetracycline (TC), a commonly used antibiotic, is extensively utilized in the medical sector, leading to a significant annual discharge of tetracycline effluent into the water system, which harms both human health and the environment.

Objective: A novel technique was developed to address the issues of photogenerated carrier complexation and photocatalyst immobilization. Compared to traditional photocatalytic photoelectrodes, the suspended catalyst used in the photovoltaic synergy field is more stable and increases the solidliquid contact area between the catalyst and the pollutant.

Methods: This paper uses sol-gel-prepared Ag-TiO2 materials for the photoelectric synergistic fieldcatalyzed degradation of TC. The study examined how the Ag doping ratio, calcination conditions, catalyst injection, pH, electrolytes, and electrolyte injection affected photoelectric synergistic fieldcatalyzed degradation. The experiments were performed in a photocomposite field with a constant 50 mA current and a 357 nm UV lamp for 60 minutes. The composites underwent characterization using XRD, TEM, and XPS techniques.

Results: Ag-TiO2 photoelectric synergistic field-catalyzed reaction with 357 nm ultraviolet lamp irradiation for 60 min and a constant current of 50 mA degraded 5 mg/LTC under preparation conditions of molar doping ratio of Ti: Ag=100:0.5, roasting temperature of 500 °C, and roasting time of 2 h. The photoelectric synergistic field-catalyzed degradation process achieved a degradation rate of 90.49% for 5 mg/L TC, surpassing the combined degradation rates of electrocatalysis and photocatalysis. The quenching experiments demonstrated that the degradation rate of TC decreased from 90.49% in the absence of a quencher to 53.23%, 42.58%, and 74.52%. The presence of •OH had a more significant impact than h+ and •O2-.

Conclusion: The findings suggest that Ag-TiO2 significantly enhanced the efficacy of photoelectric synergistic field-catalyzed degradation and can be employed to treat high-saline and lowconcentration TC. This establishes a benchmark for using photoelectrocatalytic materials based on titanium in treating organic wastewater.

Graphical Abstract

[1]
Delucchi, M.A.; Jacobson, M.Z. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies. Energy Policy, 2011, 39(3), 1170-1190.
[http://dx.doi.org/10.1016/j.enpol.2010.11.045]
[2]
Arif, M.; Muhmood, T.; Zhang, M.; Amjad Majeed, M.; Honglin, Y.; Liu, X.; Wang, X. Highly visible-light active, eco-friendly artificial enzyme and 3D Bi4Ti3O12 biomimetic nanocomposite for efficient photocatalytic tetracycline hydrochloride degradation and Cr(VI) reduction. Chem. Eng. J., 2022, 434, 134491.
[http://dx.doi.org/10.1016/j.cej.2021.134491]
[3]
Arif, M.; Mahsud, A.; Ali, A.; Liao, S.; Xia, J.; Xiao, H.; Azam, M.; Muhmood, T.; Lu, Z.; Chen, Y. Unraveling the synergy of interface engineering α-MnO2/Bi2WO6 heterostructures and defective active sites for superdurable photocatalysis: Mechanistic insights into charge separation/transfer. Chem. Eng. J., 2023, 475, 146458.
[http://dx.doi.org/10.1016/j.cej.2023.146458]
[4]
Xu, L.; Zhang, H.; Xiong, P.; Zhu, Q.; Liao, C.; Jiang, G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ., 2021, 753, 141975.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141975] [PMID: 33207448]
[5]
Saadati, F.; Keramati, N.; Ghazi, M.M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Crit. Rev. Environ. Sci. Technol., 2016, 46(8), 757-782.
[http://dx.doi.org/10.1080/10643389.2016.1159093]
[6]
Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res., 2019, 169, 483-493.
[http://dx.doi.org/10.1016/j.envres.2018.11.040] [PMID: 30530088]
[7]
Wang, Y.J.; Jia, D.A.; Sun, R.J.; Zhu, H.W.; Zhou, D.M. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ. Sci. Technol., 2008, 42(9), 3254-3259.
[http://dx.doi.org/10.1021/es702641a] [PMID: 18522102]
[8]
Jafari Ozumchelouei, E.; Hamidian, A.H.; Zhang, Y.; Yang, M. Physicochemical properties of antibiotics: A review with an emphasis on detection in the aquatic environment. Water Environ. Res., 2020, 92(2), 177-188.
[http://dx.doi.org/10.1002/wer.1237] [PMID: 31505071]
[9]
Liu, Y.; Gan, X.; Zhou, B.; Xiong, B.; Li, J.; Dong, C.; Bai, J.; Cai, W. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J. Hazard. Mater., 2009, 171(1-3), 678-683.
[http://dx.doi.org/10.1016/j.jhazmat.2009.06.054] [PMID: 19577843]
[10]
Bai, J.; Liu, Y.; Li, J.; Zhou, B.; Zheng, Q.; Cai, W. A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B, 2010, 98(3-4), 154-160.
[http://dx.doi.org/10.1016/j.apcatb.2010.05.024]
[11]
Wu, S.; Hu, Y.H. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics. Chem. Eng. J., 2021, 409, 127739.
[http://dx.doi.org/10.1016/j.cej.2020.127739]
[12]
Zeng, M.; Li, Y.; Mao, M.; Bai, J.; Ren, L.; Zhao, X. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal., 2015, 5(6), 3278-3286.
[http://dx.doi.org/10.1021/acscatal.5b00292]
[13]
Li, Z.; Li, M.; Tang, J.; Zhang, Q.; Jiang, Y.; Li, H. A novel method hybrid photo-electrocatalytic oxidation for the treatment of 3,4-dimethyaniline wastewater: Degradation mechanism and synergistic effect. J. Water Process Eng., 2020, 38, 101619.
[http://dx.doi.org/10.1016/j.jwpe.2020.101619]
[14]
Song, Y.; Tian, J.; Gao, S.; Shao, P.; Qi, J.; Cui, F. Photodegradation of sulfonamides by g-C 3 N 4 under visible light irradiation: Effectiveness, mechanism and pathways. Appl. Catal. B, 2017, 210, 88-96.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.059]
[15]
Wang, W.; Niu, Q.; Zeng, G.; Zhang, C.; Huang, D.; Shao, B.; Zhou, C.; Yang, Y.; Liu, Y.; Guo, H.; Xiong, W.; Lei, L.; Liu, S.; Yi, H.; Chen, S.; Tang, X. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl. Catal. B, 2020, 273, 119051.
[http://dx.doi.org/10.1016/j.apcatb.2020.119051]
[16]
Li, Z.; Li, H.; Zeng, X.; Liu, S.; Yang, Y. Adsorption and photodegradation of tetracycline by mannose-grafted chitosan composite films: Performance, mechanism and availability. Chem. Eng. J., 2023, 458, 141455.
[http://dx.doi.org/10.1016/j.cej.2023.141455]
[17]
Varma, R.S.; Thorat, N.; Fernandes, R.; Kothari, D.C.; Patel, N.; Miotello, A. Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catal. Sci. Technol., 2016, 6(24), 8428-8440.
[http://dx.doi.org/10.1039/C6CY01605G]
[18]
Peng, K.; Liu, X.; Wu, X.; Yu, H.; He, J.; Chen, K.; Zhu, L.; Wang, X. Study on the preparation of molecularly imprinted ZrO2-TiO2 photocatalyst and the degradation performance of hydroquinone. Environ. Sci. Pollut. Res. Int., 2023, 30(35), 83575-83586.
[http://dx.doi.org/10.1007/s11356-023-28295-1] [PMID: 37344713]
[19]
Pap, Z.; Karácsonyi, É.; Cegléd, Z.; Dombi, A.; Danciu, V.; Popescu, I.C.; Baia, L.; Oszkó, A.; Mogyorósi, K. Dynamic changes on the surface during the calcination of rapid heat treated TiO2 photocatalysts. Appl. Catal. B, 2012, 111-112, 595-604.
[http://dx.doi.org/10.1016/j.apcatb.2011.11.012]
[20]
Nguyen, C.H.; Tran, T.T.V.; Tran, M.L.; Juang, R.S. Facile synthesis of reusable Ag/TiO2 composites for efficient removal of antibiotic oxytetracycline under UV and solar light irradiation. J. Taiwan Inst. Chem. Eng., 2023, 145, 104825.
[http://dx.doi.org/10.1016/j.jtice.2023.104825]
[21]
Abbad, S.; Guergouri, K.; Gazaout, S.; Djebabra, S.; Zertal, A.; Barille, R.; Zaabat, M. Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J. Environ. Chem. Eng., 2020, 8(3), 103718.
[http://dx.doi.org/10.1016/j.jece.2020.103718]
[22]
Ingo, G.M.; Dirè, S.; Babonneau, F. XPS studies of SiO2-TiO2 powders prepared by sol-gel process. Appl. Surf. Sci., 1993, 70-71, 230-234.
[http://dx.doi.org/10.1016/0169-4332(93)90433-C]
[23]
Bai, L.; Wei, M.; Hong, E.; Shan, D.; Liu, L.; Yang, W.; Tang, X.; Wang, B. Study on the controlled synthesis of Zr/TiO2/SBA-15 nanophotocatalyst and its photocatalytic performance for industrial dye reactive red X–3B. Mater. Chem. Phys., 2020, 246, 122825.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122825]
[24]
Zhang, X.; Wang, J.; Hu, W.; Zhang, K.; Sun, B.; Tian, G.; Jiang, B.; Pan, K.; Zhou, W. Facile strategy to fabricate uniform black TiO2 nanothorns/graphene/black TiO2 nanothorns sandwichlike nanosheets for excellent solar‐driven photocatalytic performance. ChemCatChem, 2016, 8(20), 3240-3246.
[http://dx.doi.org/10.1002/cctc.201600934]
[25]
Zhang, H.; Wang, G.; Chen, D.; Lv, X.; Li, J. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem. Mater., 2008, 20(20), 6543-6549.
[http://dx.doi.org/10.1021/cm801796q]
[26]
Tang, J. Study on the mechanism of 3,4-DMA degradation by hybrid photoelectrocatalytic oxidation in high chlorine wastewater.. Dissertation thesis; Wuhan University of Technology, 2022.
[27]
Mesones, S.; Mena, E.; López-Muñoz, M.J.; Adán, C.; Marugán, J. Synergistic and antagonistic effects in the photoelectrocatalytic disinfection of water with TiO2 supported on activated carbon as a bipolar electrode in a novel 3D photoelectrochemical reactor. Separ. Purif. Tech., 2020, 247, 117002.
[http://dx.doi.org/10.1016/j.seppur.2020.117002]
[28]
Lamers, M.; Fiechter, S.; Friedrich, D.; Abdi, F.F.; van de Krol, R. Formation and suppression of defects during heat treatment of Bi-VO 4 photoanodes for solar water splitting. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(38), 18694-18700.
[http://dx.doi.org/10.1039/C8TA06269B]
[29]
Han, L. Preparation of TiO2 -based heterojunction by sol-gel method and its photoelectrocatalytic degradation of dye wastewater.. Dissertation thesis; Chongqing University, 2021.
[30]
Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal., 2012, 2(8), 1765-1772.
[http://dx.doi.org/10.1021/cs3003098]
[31]
Liu, Y.X.; Zhang, X.; Guo, L.; Wu, F.; Deng, N.S. Photodegradation of bisphenol A in the montmorillonite KSF suspended solutions. Ind. Eng. Chem. Res., 2008, 47(19), 7141-7146.
[http://dx.doi.org/10.1021/ie800169c]
[32]
Yang, M.; Yang, Q.; Zhong, J.; Huang, S.; Li, J.; Song, J.; Burda, C. Enhanced photocatalytic performance of Ag 2 O/BiOF composite photocatalysts originating from efficient interfacial charge separation. Appl. Surf. Sci., 2017, 416, 666-671.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.206]
[33]
Zeng, Q.; Xie, X.; Wang, X.; Wang, Y.; Lu, G.; Pui, D.Y.H.; Sun, J. Enhanced photocatalytic performance of Ag@TiO2 for the gaseous acetaldehyde photodegradation under fluorescent lamp. Chem. Eng. J., 2018, 341, 83-92.
[http://dx.doi.org/10.1016/j.cej.2018.02.015]
[34]
Ao, X.; Sun, W.; Li, S.; Yang, C.; Li, C.; Lu, Z. Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chem. Eng. J., 2019, 361, 1053-1062.
[http://dx.doi.org/10.1016/j.cej.2018.12.133]
[35]
Zheng, W.; Liu, Y.; Liu, F.; Wang, Y.; Ren, N.; You, S. Atomic hydrogen in electrocatalytic systems: Generation, identification, and environmental applications. Water Res., 2022, 223, 118994.
[http://dx.doi.org/10.1016/j.watres.2022.118994] [PMID: 36007400]
[36]
Zhang, L.; Wang, Y.; Su, P.; Mao, R.; Zhao, J. Photo-electrocatalytic degradation of chlorinated organics via atomic hydrogen reduction and hydroxyl radical oxidation by Fe and P co-doped carbon aerogel cathode. J. Clean. Prod., 2021, 298, 126808.
[http://dx.doi.org/10.1016/j.jclepro.2021.126808]
[37]
Shao, C.; Zhang, J.; Liu, Y.; Jiang, Y.; Jia, Y.; Li, G.; Sun, Z. Effective degradation of tetracycline by Pd/AG/ITO electrode: Electrode preparation, characterization, kinetics, degradation mechanism and toxicity assessment. J. Environ. Chem. Eng., 2023, 11(5), 110344.
[http://dx.doi.org/10.1016/j.jece.2023.110344]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy