Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Mini-Review Article

Optimal Indications of Radioimmunotherapy in Nuclear Medicine: A Mini-Review

Author(s): Nasim Vahidfar, Hojjat Ahmadzadehfar*, Saeed Farzanefar, Mehrshad Abbasi, Yalda Salehi, Fateme Saboktakin, Mahsa Jahanbin, Mohsen Bakhshi Kashi, Elisabeth Eppard and Hans Jürgen Biersack

Volume 17, Issue 4, 2024

Published on: 19 March, 2024

Page: [320 - 329] Pages: 10

DOI: 10.2174/0118744710295825240308093429

Price: $65

Abstract

Immunotherapy has emerged as a very considerable and potent therapeutic method in which immune inhibitors have gained a lot of attention in the curative field of various cancers. Under certain circumstances, when radiotherapy is accompanied by immunotherapy, the efficacy of the therapeutic procedure increases. Irradiated tumor cells follow a pathway called immunogenic cell death, which targets tumor associated antigens. The application of radiolabeled antibodies under the concept of “radioimmunotherapy” (RIT) makes the synergistic targeted therapeutic effect possible. Since antibodies themselves are cytotoxic, they can kill the cells that not only bind but are within the path length of their radiation emissions. RIT can be categorized as a substantial progress in nuclear medicine. The main concept of RIT includes targeting specified tumor-expressing antibodies. The mentioned purpose is achievable by formulation of radiolabeled antibodies, which could be injected intravenously or directly into the tumor, as well as compartmentally into a body cavity such as the peritoneum, pleura, or intrathecal space. RIT has demonstrated very optimistic therapeutic outcomes in radioresistant solid tumors. Wide ranges of efforts are accomplished in order to improve clinical trial accomplishments. In this review, we intend to summarize the performed studies on RIT and their importance in medicine.

[1]
Kawashima, H. Radioimmunotherapy: A specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. Sci. World J., 2014, 2014, 492061.
[2]
Goldenberg, D.M.; DeLand, F.; Kim, E.; Bennett, S.; Primus, F.J.; van Nagell, J.R., Jr; Estes, N.; DeSimone, P.; Rayburn, P. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N. Engl. J. Med., 1978, 298(25), 1384-1388.
[http://dx.doi.org/10.1056/NEJM197806222982503] [PMID: 349387]
[3]
Pressman, D. Radiolabeled antibodies. Ann. N. Y. Acad. Sci., 1957, 69(4), 644-650.
[http://dx.doi.org/10.1111/j.1749-6632.1957.tb49702.x] [PMID: 13488318]
[4]
Mach, J.P.; Carrel, S.; Forni, M.; Ritschard, J.; Donath, A.; Alberto, P. Tumor localization of radio-labeled antibodies against carcinoembryonic antigen in patients with carcinoma: A critical evaluation. N. Engl. J. Med., 1980, 303(1), 5-10.
[http://dx.doi.org/10.1056/NEJM198007033030102] [PMID: 7189578]
[5]
Fragu, P. How the field of thyroid endocrinology developed in France after World War II. Bull. Hist. Med., 2003, 77(2), 393-414.
[http://dx.doi.org/10.1353/bhm.2003.0063] [PMID: 12955965]
[6]
Pressman, D.; Korngold, L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer, 1953, 6(3), 619-623.
[http://dx.doi.org/10.1002/1097-0142(195305)6:3<619:AID-CNCR2820060319>3.0.CO;2-Y] [PMID: 13042784]
[7]
Barker, P.A.; Flax, M.H.; Lavia, M.F.; Talmage, D.W.; Wissler, R.W. A study of the preparation, localization, and effects of antitumor antibodies labeled with I131. Cancer Res., 1956, 16(8), 761-773.
[PMID: 13364902]
[8]
Sharkey, R.M.; Press, O.W.; Goldenberg, D.M. A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: Prospects for dual-targeted antibody/radioantibody therapy. Blood, 2009, 113(17), 3891-3895.
[http://dx.doi.org/10.1182/blood-2008-11-188896] [PMID: 19182204]
[9]
Sharkey, R.M.; Goldenberg, D.M. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J. Nucl. Med., 2005, 46(1)(Suppl. 1), 115S-127S.
[PMID: 15653660]
[10]
Navarro-Teulon, I.; Lozza, C.; Pèlegrin, A.; Vivès, E.; Pouget, J.P. General overview of radioimmunotherapy of solid tumors. Immunotherapy, 2013, 5(5), 467-487.
[http://dx.doi.org/10.2217/imt.13.34] [PMID: 23638743]
[11]
Goldenberg, D.M. The role of radiolabeled antibodies in the treatment of non-Hodgkin’s lymphoma: The coming of age of radioimmunotherapy. Crit. Rev. Oncol. Hematol., 2001, 39(1-2), 195-201.
[http://dx.doi.org/10.1016/S1040-8428(01)00108-1] [PMID: 11418316]
[12]
Goldenberg, D.M. Targeted therapy of cancer with radiolabeled antibodies. J. Nucl. Med., 2002, 43(5), 693-713.
[PMID: 11994535]
[13]
Boswell, C.A.; Brechbiel, M.W. Development of radioimmunotherapeutic and diagnostic antibodies: An inside-out view. Nucl. Med. Biol., 2007, 34(7), 757-778.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.04.001] [PMID: 17921028]
[14]
Ostuni, E.; Taylor, M.R.G. Commercial and business aspects of alpha radioligand therapeutics. Front. Med., 2023, 9, 1070497.
[http://dx.doi.org/10.3389/fmed.2022.1070497] [PMID: 36816719]
[15]
Martins, C.D.; Kramer-Marek, G.; Oyen, W.J.G. Radioimmunotherapy for delivery of cytotoxic radioisotopes: Current status and challenges. Expert Opin. Drug Deliv., 2018, 15(2), 185-196.
[http://dx.doi.org/10.1080/17425247.2018.1378180] [PMID: 28893110]
[16]
Rösch, F.; Baum, R.P. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: On the way to THERANOSTICS. Dalton Trans., 2011, 40(23), 6104-6111.
[http://dx.doi.org/10.1039/c0dt01504k] [PMID: 21445433]
[17]
Kolsky, K.L.; Joshi, V.; Mausner, L.F.; Srivastava, S.C. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl. Radiat. Isot., 1998, 49(12), 1541-1549.
[http://dx.doi.org/10.1016/S0969-8043(98)00016-5] [PMID: 9745690]
[18]
Müller, C.; Bunka, M.; Haller, S.; Köster, U.; Groehn, V.; Bernhardt, P.; van der Meulen, N.; Türler, A.; Schibli, R. Promising prospects for 44Sc-/47Sc-based theragnostics: Application of 47Sc for radionuclide tumor therapy in mice. J. Nucl. Med., 2014, 55(10), 1658-1664.
[http://dx.doi.org/10.2967/jnumed.114.141614] [PMID: 25034091]
[19]
Połosak, M.; Piotrowska, A.; Krajewski, S.; Bilewicz, A. Stability of 47Sc-complexes with acyclic polyamino-polycarboxylate ligands. J. Radioanal. Nucl. Chem., 2013, 295(3), 1867-1872.
[http://dx.doi.org/10.1007/s10967-012-2188-x] [PMID: 26224932]
[20]
Das, T.; Banerjee, S. Theranostic applications of lutetium-177 in radionuclide therapy. Curr. Radiopharm., 2015, 9(1), 94-101.
[http://dx.doi.org/10.2174/1874471008666150313114644] [PMID: 25771364]
[21]
D’Huyvetter, M.; Vincke, C.; Xavier, C.; Aerts, A.; Impens, N.; Baatout, S.; De Raeve, H.; Muyldermans, S.; Caveliers, V.; Devoogdt, N.; Lahoutte, T. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics, 2014, 4(7), 708-720.
[http://dx.doi.org/10.7150/thno.8156] [PMID: 24883121]
[22]
Carpanese, D.; Ferro-Flores, G.; Ocampo-Garcia, B.; Santos-Cuevas, C.; Salvarese, N.; Figini, M.; Fracasso, G.; De Nardo, L.; Bolzati, C.; Rosato, A.; Meléndez-Alafort, L. Development of 177Lu-scFvD2B as a potential immunotheranostic agent for tumors overexpressing the prostate specific membrane antigen. Sci. Rep., 2020, 10(1), 9313.
[http://dx.doi.org/10.1038/s41598-020-66285-2] [PMID: 31913322]
[23]
Larson, S.M.; Carrasquillo, J.A.; Cheung, N.K.V.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer, 2015, 15(6), 347-360.
[http://dx.doi.org/10.1038/nrc3925] [PMID: 25998714]
[24]
Walter, Y. Advancing Radioimmunotherapy for Brain Tumors Using in Vitro Assays., Master of Science (MS); Creighton University, 2022.
[25]
Laszlo, G.S.; Sandmaier, B.M.; Kehret, A.R.; Orozco, J.J.; Hamlin, D.K.; Dexter, S.L.; Lim, S.Y.T.; Cole, F.M.; Huo, J.; Wilbur, D.S.; Walter, R.B. [ 211 At]astatine-based anti-CD22 radioimmunotherapy for B-cell malignancies. Leuk. Lymphoma, 2023, 64(7), 1335-1339.
[http://dx.doi.org/10.1080/10428194.2023.2210710] [PMID: 37170642]
[26]
Walter, Y.; Hubbard, A.; Benoit, A.; Jank, E.; Salas, O.; Jordan, D.; Ekpenyong, A. Development of in vitro assays for advancing radioimmunotherapy against brain tumors. Biomedicines, 2022, 10(8), 1796.
[http://dx.doi.org/10.3390/biomedicines10081796] [PMID: 35892697]
[27]
Walter, R.B.; Orozco, J. Radioimmunotherapy of Acute Leukemia. In: Nuclear Medicine and Immunology; , 2022; pp. 433-447.
[28]
Roll, W.; Müther, M.; Böning, G.; Delker, A.; Warneke, N.; Gildehaus, F.J.; Schäfers, M.; Stummer, W.; Zeidler, R.; Reulen, H.J.; Stegger, L. First clinical experience with fractionated intracavitary radioimmunotherapy using [177Lu]Lu-6A10-Fab fragments in patients with glioblastoma: A pilot study. EJNMMI Res., 2023, 13(1), 78.
[http://dx.doi.org/10.1186/s13550-023-01029-7] [PMID: 37665396]
[29]
Vahidfar, N.; Aghanejad, A.; Ahmadzadehfar, H.; Farzanehfar, S.; Eppard, E. Theranostic advances in breast cancer in nuclear medicine. Int. J. Mol. Sci., 2021, 22(9), 4597.
[http://dx.doi.org/10.3390/ijms22094597] [PMID: 33925632]
[30]
Sharkey, R.M.; Goldenberg, D.M. Targeted therapy of cancer: New prospects for antibodies and immunoconjugates. CA Cancer J. Clin., 2006, 56(4), 226-243.
[http://dx.doi.org/10.3322/canjclin.56.4.226] [PMID: 16870998]
[31]
Goldsmith, S.J.; Signore, A. An overview of the diagnostic and therapeutic use of monoclonal antibodies in medicine. Q. J. Nucl. Med. Mol. Imaging, 2010, 54(6), 574-581.
[PMID: 21221066]
[32]
Xia, W.; Gerard, C.M.; Liu, L.; Baudson, N.M.; Ory, T.L.; Spector, N.L. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene, 2005, 24(41), 6213-6221.
[http://dx.doi.org/10.1038/sj.onc.1208774] [PMID: 16091755]
[33]
Carter, P.; Presta, L.; Gorman, C.M.; Ridgway, J.B.; Henner, D.; Wong, W.L.; Rowland, A.M.; Kotts, C.; Carver, M.E.; Shepard, H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4285-4289.
[http://dx.doi.org/10.1073/pnas.89.10.4285] [PMID: 1350088]
[34]
Gaykema, S.B. 111In-trastuzumab scintigraphy in HER2-positive metastatic breast cancer patients remains feasible during trastuzumab treatment. Mol. Imaging, 2014, 13(5), 7290.
[35]
Costantini, D.L.; Bateman, K.; McLarty, K.; Vallis, K.A.; Reilly, R.M. Trastuzumab-resistant breast cancer cells remain sensitive to the auger electron-emitting radiotherapeutic agent 111In-NLS-trastuzumab and are radiosensitized by methotrexate. J. Nucl. Med., 2008, 49(9), 1498-1505.
[http://dx.doi.org/10.2967/jnumed.108.051771] [PMID: 18703606]
[36]
Meredith, R.F.; Torgue, J.J.; Rozgaja, T.A.; Banaga, E.P.; Bunch, P.W.; Alvarez, R.D.; Straughn, J.M., Jr; Dobelbower, M.C.; Lowy, A.M. Safety and outcome measures of first-in-human intraperitoneal α radioimmunotherapy with 212Pb-TCMC-trastuzumab. Am. J. Clin. Oncol., 2018, 41(7), 716-721.
[http://dx.doi.org/10.1097/COC.0000000000000353] [PMID: 27906723]
[37]
Crow, D.M.; Williams, L.; Colcher, D.; Wong, J.Y.C.; Raubitschek, A.; Shively, J.E. Combined radioimmunotherapy and chemotherapy of breast tumors with Y-90-labeled anti-Her2 and anti-CEA antibodies with taxol. Bioconjug. Chem., 2005, 16(5), 1117-1125.
[http://dx.doi.org/10.1021/bc0500948] [PMID: 16173788]
[38]
Association, A.D. Economic costs of diabetes in the U.S. in 2012. Diabetes Care, 2013, 36(4), 1033-1046.
[http://dx.doi.org/10.2337/dc12-2625] [PMID: 23468086]
[39]
Ulaner, G.A.; Lyashchenko, S.K.; Riedl, C.; Ruan, S.; Zanzonico, P.B.; Lake, D.; Jhaveri, K.; Zeglis, B.; Lewis, J.S.; O’Donoghue, J.A. First-in-human human epidermal growth factor receptor 2–targeted imaging using 89Zr-Pertuzumab PET/CT: Dosimetry and clinical application in patients with breast cancer. J. Nucl. Med., 2018, 59(6), 900-906.
[http://dx.doi.org/10.2967/jnumed.117.202010] [PMID: 29146695]
[40]
D’Huyvetter, M.; Vos, J.D.; Caveliers, V.; Vaneycken, I.; Heemskerk, J.; Duhoux, F.P.; Fontaine, C.; Vanhoeij, M.; Windhorst, A.D.; Aa, F.; Hendrikse, N.H.; Eersels, J.L.E.; Everaert, H.; Gykiere, P.; Devoogdt, N.; Raes, G.; Lahoutte, T.; Keyaerts, M. Phase I trial of 131I-GMIB-Anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients. J. Nucl. Med., 2021, 62(8), 1097-1105.
[http://dx.doi.org/10.2967/jnumed.120.255679] [PMID: 33277400]
[41]
Ceriani, R.L.; Peterson, J.A.; Blank, E.W.; Lamport, D.T.A. Epitope expression on the breast epithelial mucin. Breast Cancer Res. Treat., 1992, 24(2), 103-113.
[http://dx.doi.org/10.1007/BF01961243] [PMID: 7680246]
[42]
Kramer, E.L.; DeNardo, S.J.; Liebes, L.; Kroger, L.A.; Noz, M.E.; Mizrachi, H.; Salako, Q.A.; Furmanski, P.; Glenn, S.D.; DeNardo, G.L. Radioimmunolocalization of metastatic breast carcinoma using indium-111-methyl benzyl DTPA BrE-3 monoclonal antibody: Phase I study. J. Nucl. Med., 1993, 34(7), 1067-1074.
[PMID: 8315480]
[43]
DeNardo, S.J.; Kramer, E.L.; O’Donnell, R.T.; Richman, C.M.; Salako, Q.A.; Shen, S.; Noz, M.; Glenn, S.D.; Ceriani, R.L.; DeNardo, G.L. Radioimmunotherapy for breast cancer using indium-111/yttrium-90 BrE-3: Results of a phase I clinical trial. J. Nucl. Med., 1997, 38(8), 1180-1185.
[PMID: 9255145]
[44]
Howell, L.P.; Denardo, S.J.; Levy, N.B.; Lund, J.; Denardo, G.L. Immunohistochemical staining of metastatic ductal carcinomas of the breast by monoclonal antibodies used in imaging and therapy: A comparative study. Int. J. Biol. Markers, 1995, 10(3), 129-135.
[http://dx.doi.org/10.1177/172460089501000301] [PMID: 8551054]
[45]
Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schröder, C.P.; Hiltermann, T.J.N.; van der Wekken, A.J.; Groen, H.J.M.; Kwee, T.C.; Elias, S.G.; Gietema, J.A.; Bohorquez, S.S.; de Crespigny, A.; Williams, S.P.; Mancao, C.; Brouwers, A.H.; Fine, B.M.; de Vries, E.G.E. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med., 2018, 24(12), 1852-1858.
[http://dx.doi.org/10.1038/s41591-018-0255-8] [PMID: 30478423]
[46]
Altena, R.; Tzortzakakis, A.; Af Burén, S.; Tran, T.A.; Frejd, F.Y.; Bergh, J.; Axelsson, R. Current status of contemporary diagnostic radiotracers in the management of breast cancer: First steps toward theranostic applications. EJNMMI Res., 2023, 13(1), 43.
[http://dx.doi.org/10.1186/s13550-023-00995-2] [PMID: 37195374]
[47]
Bansal, A.; Pandey, M.K.; Barham, W.; Liu, X.; Harrington, S.M.; Lucien, F.; Dong, H.; Park, S.S.; DeGrado, T.R. Non-invasive immunoPET imaging of PD-L1 using anti-PD-L1-B11 in breast cancer and melanoma tumor model. Nucl. Med. Biol., 2021, 100-101, 4-11.
[http://dx.doi.org/10.1016/j.nucmedbio.2021.05.004] [PMID: 34119742]
[48]
Burvenich, I.J.G.; Goh, Y.W.; Guo, N.; Gan, H.K.; Rigopoulos, A.; Cao, D.; Liu, Z.; Ackermann, U.; Wichmann, C.W.; McDonald, A.F.; Huynh, N.; O’Keefe, G.J.; Gong, S.J.; Scott, F.E.; Li, L.; Geng, W.; Zutshi, A.; Lan, Y.; Scott, A.M. Radiolabelling and preclinical characterization of 89Zr-Df-radiolabelled bispecific anti-PD-L1/TGF-βRII fusion protein bintrafusp alfa. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(10), 3075-3088.
[http://dx.doi.org/10.1007/s00259-021-05251-0] [PMID: 33608805]
[49]
Li, M.; Ehlerding, E.B.; Jiang, D.; Barnhart, T.E.; Chen, W.; Cao, T.; Engle, J.W.; Cai, W. In vivo characterization of PD-L1 expression in breast cancer by immuno-PET with 89Zr-labeled avelumab. Am. J. Transl. Res., 2020, 12(5), 1862-1872.
[PMID: 32509182]
[50]
Jagoda, E.M.; Vasalatiy, O.; Basuli, F.; Opina, A.C.L.; Williams, M.R.; Wong, K.; Lane, K.C.; Adler, S.; Ton, A.T.; Szajek, L.P.; Xu, B.; Butcher, D.; Edmondson, E.F.; Swenson, R.E.; Greiner, J.; Gulley, J.; Eary, J.; Choyke, P.L. Immuno-PET imaging of the programmed cell death-1 ligand (PD-L1) using a zirconium-89 labeled therapeutic antibody, avelumab. Mol. Imaging, 2019, 18.
[http://dx.doi.org/10.1177/1536012119829986] [PMID: 31044647]
[51]
Abbas, N.; Heyerdahl, H.; Bruland, Ø.S.; Borrebæk, J.; Nesland, J.; Dahle, J. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res., 2011, 1(1), 18.
[http://dx.doi.org/10.1186/2191-219X-1-18] [PMID: 22214432]
[52]
Abbas, N.; Heyerdahl, H.; Bruland, O.; Brevik, E.; Dahle, J. Comparing high LET 227Th- and low LET 177Lu-trastuzumab in mice with HER-2 positive SKBR-3 xenografts. Curr. Radiopharm., 2013, 6(2), 78-86.
[http://dx.doi.org/10.2174/18744710113069990017] [PMID: 23551110]
[53]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[54]
Lai, H.Z.; Han, J.R.; Fu, X.; Ren, Y.F.; Li, Z.H.; You, F.M. Targeted approaches to HER2-low breast cancer: Current practice and future directions. Cancers, 2022, 14(15), 3774.
[http://dx.doi.org/10.3390/cancers14153774] [PMID: 35954438]
[55]
Vahidfar, N.; Fallahpoor, M.; Farzanehfar, S.; Divband, G.; Ahmadzadehfar, H. Historical review of pharmacological development and dosimetry of PSMA-based theranostics for prostate cancer. J. Radioanal. Nucl. Chem., 2019, 322(2), 237-248.
[http://dx.doi.org/10.1007/s10967-019-06800-6]
[56]
Luining, W.I.; Cysouw, M.C.F.; Meijer, D.; Hendrikse, N.H.; Boellaard, R.; Vis, A.N.; Oprea-Lager, D.E. Targeting PSMA revolutionizes the role of nuclear medicine in diagnosis and treatment of prostate cancer. Cancers, 2022, 14(5), 1169.
[http://dx.doi.org/10.3390/cancers14051169] [PMID: 35267481]
[57]
El Fakiri, M.; Geis, N.M.; Ayada, N.; Eder, M.; Eder, A.C. PSMA-targeting radiopharmaceuticals for prostate cancer therapy: Recent developments and future perspectives. Cancers, 2021, 13(16), 3967.
[http://dx.doi.org/10.3390/cancers13163967] [PMID: 34439121]
[58]
Manyak, M.J. Indium-111 capromab pendetide in the management of recurrent prostate cancer. Expert Rev. Anticancer Ther., 2008, 8(2), 175-181.
[http://dx.doi.org/10.1586/14737140.8.2.175] [PMID: 18279057]
[59]
Deb, N.; Goris, M.; Trisler, K.; Fowler, S.; Saal, J.; Ning, S.; Becker, M.; Marquez, C.; Knox, S. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin. Cancer Res., 1996, 2(8), 1289-1297.
[PMID: 9816299]
[60]
Wolf, P.; Freudenberg, N.; Bühler, P.; Alt, K.; Schultze-Seemann, W.; Wetterauer, U.; Elsässer-Beile, U. Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate, 2010, 70(5), 562-569.
[http://dx.doi.org/10.1002/pros.21090] [PMID: 19938014]
[61]
Bouchelouche, K.; Choyke, P.L.; Capala, J. Prostate specific membrane antigen- a target for imaging and therapy with radionuclides. Discov. Med., 2010, 9(44), 55-61.
[PMID: 20102687]
[62]
Bandekar, A.; Zhu, C.; Jindal, R.; Bruchertseifer, F.; Morgenstern, A.; Sofou, S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α-particle therapy of cancer. J. Nucl. Med., 2014, 55(1), 107-114.
[http://dx.doi.org/10.2967/jnumed.113.125476] [PMID: 24337602]
[63]
Vallabhajosula, S.; Goldsmith, S.J.; Hamacher, K.A.; Kostakoglu, L.; Konishi, S.; Milowski, M.I.; Nanus, D.M.; Bander, N.H. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. J. Nucl. Med., 2005, 46(5), 850-858.
[PMID: 15872360]
[64]
Shi, J.; Sun, Z.; Gao, Z.; Huang, D.; Hong, H.; Gu, J. Radioimmunotherapy in colorectal cancer treatment: Present and future. Front. Immunol., 2023, 14, 1105180.
[http://dx.doi.org/10.3389/fimmu.2023.1105180] [PMID: 37234164]
[65]
Behr, T.M. Retracted: Radioimmunotherapy of small‐volume disease of metastatic colorectal cancer: Results of a phase II trial with the iodine‐131–labeled humanized anti–carcinoembryonic antigen antibody hMN‐14. Cancer, 2002, 94(S4), 1373-1381.
[66]
Scott, A.M.; Lee, F.T.; Jones, R.; Hopkins, W.; MacGregor, D.; Cebon, J.S.; Hannah, A.; Chong, G. U, P.; Papenfuss, A.; Rigopoulos, A.; Sturrock, S.; Murphy, R.; Wirth, V.; Murone, C.; Smyth, F.E.; Knight, S.; Welt, S.; Ritter, G.; Richards, E.; Nice, E.C.; Burgess, A.W.; Old, L.J. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin. Cancer Res., 2005, 11(13), 4810-4817.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2329] [PMID: 16000578]
[67]
Chong, G.; Lee, F.T.; Hopkins, W.; Tebbutt, N.; Cebon, J.S.; Mountain, A.J.; Chappell, B.; Papenfuss, A.; Schleyer, P. U, P.; Murphy, R.; Wirth, V.; Smyth, F.E.; Potasz, N.; Poon, A.; Davis, I.D.; Saunder, T.; O’Keefe, G.J.; Burgess, A.W.; Hoffman, E.W.; Old, L.J.; Scott, A.M. Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin. Cancer Res., 2005, 11(13), 4818-4826.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2330] [PMID: 16000579]
[68]
Wong, J.Y.; Shibata, S.; Williams, L.E.; Kwok, C.S.; Liu, A.; Chu, D.Z.; Yamauchi, D.M.; Wilczynski, S.; Ikle, D.N.; Wu, A.M.; Yazaki, P.J.; Shively, J.E.; Doroshow, J.H.; Raubitschek, A.A. A Phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin. Cancer Res., 2003, 9(16 Pt 1), 5842-5852.
[PMID: 14676105]
[69]
Board, P.C.G.E. BRCA1 and BRCA2: Cancer risks and management (PDQ®). In: PDQ Cancer Information Summaries; National Cancer Institute: US, 2023.
[70]
Vahidfar, N.; Farzanefar, S.; Ahmadzadehfar, H.; Molloy, E.N.; Eppard, E. A review of nuclear medicine approaches in the diagnosis and the treatment of gynecological malignancies. Cancers, 2022, 14(7), 1779.
[http://dx.doi.org/10.3390/cancers14071779] [PMID: 35406552]
[71]
Modugno, F.; Edwards, R.P. Ovarian cancer: Prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report. Int J Gynecol Cancer, 2012, 22(8), S45-S57.
[http://dx.doi.org/10.1097/IGC.0b013e31826bd1f2]
[72]
Hallqvist, A.; Bergmark, K.; Bäck, T.; Andersson, H.; Dahm-Kähler, P.; Johansson, M.; Lindegren, S.; Jensen, H.; Jacobsson, L.; Hultborn, R.; Palm, S.; Albertsson, P. Intraperitoneal α-Emitting radioimmunotherapy with 211AT in relapsed ovarian cancer: Long-term follow-up with individual absorbed dose estimations. J. Nucl. Med., 2019, 60(8), 1073-1079.
[http://dx.doi.org/10.2967/jnumed.118.220384] [PMID: 30683761]
[73]
Verheijen, R.H. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol., 2006, 24(4), 571-578.
[http://dx.doi.org/10.1200/JCO.2005.02.5973]
[74]
Mukherjee, P.; Madsen, C.; Ginardi, A.; Tinder, T.; Jacobs, F.; Parker, J.; Agrawal, B.; Longenecker, B.; Gendler, S. Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer. J. Immunother., 2003, 26(1), 47-62.
[http://dx.doi.org/10.1097/00002371-200301000-00006] [PMID: 12514429]
[75]
Epenetos, A.A.; Mather, S.; Granowska, M.; Nimmon, C.C.; Hawkins, L.R.; Britton, K.E.; Shepherd, J.; Taylor-Papadimitriou, J.; Durbin, H.; Malpas, J.S.; Bodmer, W.F. Targeting of iodine-123-labelled tumour-associated monoclonal antibodies to ovarian, breast, and gastrointestinal tumours. Lancet, 1982, 320(8306), 999-1004.
[http://dx.doi.org/10.1016/S0140-6736(82)90046-0] [PMID: 6127540]
[76]
Hird, V.; Maraveyas, A.; Snook, D.; Dhokia, B.; Soutter, W.P.; Meares, C.; Stewart, J.S.W.; Mason, P.; Lambert, H.E.; Epenetos, A.A. Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br. J. Cancer, 1993, 68(2), 403-406.
[http://dx.doi.org/10.1038/bjc.1993.349] [PMID: 8347497]
[77]
Epenetos, A.A.; Hird, V.; Lambert, H.; Mason, P.; Coulter, C. Long term survival of patients with advanced ovarian cancer treated with intraperitoneal radioimmunotherapy. Int. J. Gynecol. Cancer, 2000, 10(s1), 44-46.
[http://dx.doi.org/10.1046/j.1525-1438.2000.99510.x] [PMID: 11240732]
[78]
Nicholson, S.; Gooden, C.S.; Hird, V.; Maraveyas, A.; Mason, P.; Lambert, H.E.; Meares, C.F.; Epenetos, A.A. Radioimmunotherapy after chemotherapy compared to chemotherapy alone in the treatment of advanced ovarian cancer: A matched analysis. Oncol. Rep., 1998, 5(1), 223-226.
[http://dx.doi.org/10.3892/or.5.1.223] [PMID: 9458326]
[79]
Andersson, H.; Cederkrantz, E.; Bäck, T.; Divgi, C.; Elgqvist, J.; Himmelman, J.; Horvath, G.; Jacobsson, L.; Jensen, H.; Lindegren, S.; Palm, S.; Hultborn, R. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2--a phase I study. J. Nucl. Med., 2009, 50(7), 1153-1160.
[http://dx.doi.org/10.2967/jnumed.109.062604] [PMID: 19525452]
[80]
Lin, F.I.; Iagaru, A. Current concepts and future directions in radioimmunotherapy. Curr. Drug Discov. Technol., 2010, 7(4), 253-262.
[http://dx.doi.org/10.2174/157016310793360684] [PMID: 21034409]
[81]
Witzig, T.E.; White, C.A.; Gordon, L.I.; Wiseman, G.A.; Emmanouilides, C.; Murray, J.L.; Lister, J.; Multani, P.S. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-hodgkin’s lymphoma. J. Clin. Oncol., 2003, 21(7), 1263-1270.
[http://dx.doi.org/10.1200/JCO.2003.08.043] [PMID: 12663713]
[82]
Goldsmith, S.J. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med, 2010, 40(2), 122-135.
[http://dx.doi.org/10.1053/j.semnuclmed.2009.11.002]
[83]
Bona, C.; Bonilla, F. Textbook of immunology, 2nd ed; Harvard Academy: Amsterdam, 1996.
[84]
Wahl, R.L. Tositumomab and (131)I therapy in non-Hodgkin’s lymphoma. J. Nucl. Med., 2005, 46(1)(Suppl. 1), 128S-140S.
[PMID: 15653661]
[85]
Fisher, R.I.; Kaminski, M.S.; Wahl, R.L.; Knox, S.J.; Zelenetz, A.D.; Vose, J.M.; Leonard, J.P.; Kroll, S.; Goldsmith, S.J.; Coleman, M. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin’s lymphomas. J. Clin. Oncol., 2005, 23(30), 7565-7573.
[http://dx.doi.org/10.1200/JCO.2004.00.9217] [PMID: 16186600]
[86]
Davis, T.A.; Kaminski, M.S.; Leonard, J.P.; Hsu, F.J.; Wilkinson, M.; Zelenetz, A.; Wahl, R.L.; Kroll, S.; Coleman, M.; Goris, M.; Levy, R.; Knox, S.J. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin. Cancer Res., 2004, 10(23), 7792-7798.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0756] [PMID: 15585610]
[87]
Kaminski, M.S.; Zasadny, K.R.; Francis, I.R.; Fenner, M.C.; Ross, C.W.; Milik, A.W.; Estes, J.; Tuck, M.; Regan, D.; Fisher, S.; Glenn, S.D.; Wahl, R.L. Iodine-131-anti-B1 radioimmunotherapy for B-cell lymphoma. J. Clin. Oncol., 1996, 14(7), 1974-1981.
[http://dx.doi.org/10.1200/JCO.1996.14.7.1974] [PMID: 8683227]
[88]
Meredith, R.F.; Knox, S.J. Clinical development of radioimmunotherapy for B-cell non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys, 2006, 66(2), S15-S22.
[http://dx.doi.org/10.1016/j.ijrobp.2006.04.059]
[89]
Wiseman, G.A.; White, C.A.; Stabin, M.; Dunn, W.L.; Erwin, W.; Dahlbom, M.; Raubitschek, A.; Karvelis, K.; Schultheiss, T.; Witzig, T.E.; Belanger, R.; Spies, S.; Silverman, D.H.S.; Berlfein, J.R.; Ding, E.; Grillo-López, A.J. Phase I/II 90 Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur. J. Nucl. Med. Mol. Imaging, 2000, 27(7), 766-777.
[http://dx.doi.org/10.1007/s002590000276] [PMID: 10952488]
[90]
Witzig, T. Final results of a randomized controlled study of the Zevalin (TM) radioimmunotherapy regimen versus a standard course of rituximab immunotherapy for B-cell NHL. Blood, 2000.
[91]
Gordon, L.I.; Witzig, T.; Molina, A.; Czuczman, M.; Emmanouilides, C.; Joyce, R.; Vo, K.; Theuer, C.; Pohlman, B.; Bartlett, N.; Wiseman, G.; Darif, M.; White, C. Yttrium 90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin. Lymphoma, 2004, 5(2), 98-101.
[http://dx.doi.org/10.3816/CLM.2004.n.015] [PMID: 15453924]
[92]
Iagaru, A.; Mittra, E.S.; Ganjoo, K.; Knox, S.J.; Goris, M.L. 131I-Tositumomab (Bexxar) vs. 90Y-Ibritumomab (Zevalin) therapy of low-grade refractory/relapsed non-Hodgkin lymphoma. Mol. Imaging Biol., 2010, 12(2), 198-203.
[http://dx.doi.org/10.1007/s11307-009-0245-9] [PMID: 19543946]
[93]
Jacene, H.A.; Filice, R.; Kasecamp, W.; Wahl, R.L. Comparison of 90Y-ibritumomab tiuxetan and 131I-tositumomab in clinical practice. J. Nucl. Med., 2007, 48(11), 1767-1776.
[http://dx.doi.org/10.2967/jnumed.107.043489] [PMID: 17942813]
[94]
Herrera, F.G.; Irving, M.; Kandalaft, L.E.; Coukos, G. Rational combinations of immunotherapy with radiotherapy in ovarian cancer. Lancet Oncol., 2019, 20(8), e417-e433.
[http://dx.doi.org/10.1016/S1470-2045(19)30401-2] [PMID: 31364594]
[95]
Deutsch, E.; Chargari, C.; Galluzzi, L.; Kroemer, G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol., 2019, 20(8), e452-e463.
[http://dx.doi.org/10.1016/S1470-2045(19)30171-8] [PMID: 31364597]
[96]
Pitroda, S.P.; Chmura, S.J.; Weichselbaum, R.R. Integration of radiotherapy and immunotherapy for treatment of oligometastases. Lancet Oncol., 2019, 20(8), e434-e442.
[http://dx.doi.org/10.1016/S1470-2045(19)30157-3] [PMID: 31364595]
[97]
Hagenbeek, A. Future trends in radioimmunotherapy. Semin Oncol, 2005, 32((1 Suppl 1)), S57-S62.
[http://dx.doi.org/10.1053/j.seminoncol.2005.01.015]
[98]
Kraeber-Bodéré, F. Radioimmunotherapy: from current clinical success to future industrial breakthrough? J. Nucl. Med., 2016, 57(3), 329-331.
[99]
Hess, G. Radioimmunotherapy–still experimental? Rational, proven indications and future trends. Memo, 2008, 1, 193-203.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy