Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Research Article

Enhancing Intrinsic Electrocatalytic Activity of Pt/C Nanoparticles for Oxygen Reduction Reaction in Acidic Media by Microwave-Assisted Synthesis

Author(s): Marianela Lopez Romero, Edgar Jesus Borja Arco*, Lorena Magallon Cacho and Jeannete Ramirez Aparicio

Volume 11, Issue 1, 2024

Published on: 18 March, 2024

Page: [51 - 57] Pages: 7

DOI: 10.2174/0122133356300269240215073712

Price: $65

Abstract

This study is focused on the enhancement of the intrinsic electrocatalytic activity of Pt nanoparticles supported on C (Pt/C NPs) towards Oxygen Reduction Reaction (ORR) in acidic media. The goal was to investigate the effect of microwave-assisted synthesis on the electrocatalytic performance of Pt/C NPs towards ORR. Thus, Pt/C NPs were synthesized using a microwave-assisted method and by a conventional heating method; structural and morphological characteristics were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical studies were performed using the rotating disk electrode technique to evaluate the ORR performance. Microwave-assisted synthesis produced Pt/C NPs with a smaller particle size (6.3 ± 0.2 nm) than conventionally synthesized nanoparticles (8.6 ± 0.3 nm). Electrochemical analysis showed that the microwave-synthesized Pt/C NPs exhibited higher mass activity (4.6 ± 0.8 mA ⋅ g-1Pt) for ORR compared to conventionally synthesized nanoparticles (1.9 ± 0.4 mA⋅mA⋅g-1Pt). These results demonstrate that microwave-assisted synthesis enhances the intrinsic electrocatalytic activity of Pt/C NPs for ORR in acidic media. These findings have important implications for the development of efficient electrocatalysts for fuel cell applications.

Background: The synthesis and characterization of platinum nanoparticles on C are crucial for advancing electrocatalysis, particularly in the context of potential applications in fuel cells. This study builds on previous research, focusing on two distinct synthesis methods to enhance our understanding of their impact on nanoparticle properties and electrocatalytic performance.

Objective: To investigate the synthesis efficiency, structural characteristics, and electrocatalytic activities of platinum nanoparticles on C using microwave-assisted heating and conventional synthesis reactor heating. The objective is to discern any significant differences in particle size, structure, and electrocatalytic performance between the two synthesis methods.

Methods: The synthesis involved a comparative analysis of platinum nanoparticles using microwaveassisted and conventional heating methods. Chemical composition analysis verified the synthesis efficiency, and structural and morphological characterizations were performed using X-ray Diffraction and Transmission Electron Microscopy. Electrochemical studies employed the rotating disk electrode technique, with activation and evaluation conducted through cyclic voltammetry, and the oxygen reduction reaction studied via linear sweep voltammetry in an acidic media (0.5 mol⋅L-1 H2SO4).

Results: Well-supported platinum nanoparticles with a face-centered cubic structure were obtained on C using both synthesis methods. However, microwave-synthesized particles (6.3 ± 0.2 nm) exhibited a smaller size compared to conventionally synthesized particles (8.6 ± 0.3 nm). Electrochemical assessment revealed superior mass activity for microwave-synthesized material (4.6 ± 0.8 mA ⋅g-1Pt), outperforming commercial Pt nanoparticles (3.0 ± 0.3 mA ⋅ g-1Pt) and conventionally synthesized material (1.9 ± 0.4 mA ⋅ mA ⋅ g-1Pt).

Conclusion: This study concludes that microwave-assisted synthesis yields platinum nanoparticles on C with enhanced electrocatalytic performance, as evidenced by the smaller particle size and superior mass activity compared to conventionally synthesized material and commercial Pt nanoparticles. These findings highlight the potential of microwave-synthesized Pt nanoparticles for applications in fuel cells.

Graphical Abstract

[1]
Taner, T. Introductory Chapter: An Overview of PEM Fuel Cell Technology; Proton Exchange Membrane Fuel Cell, InTech, 2018.
[http://dx.doi.org/10.5772/intechopen.71544]
[2]
Fan, L.; Tu, Z.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep., 2021, 7, 8421-8446.
[http://dx.doi.org/10.1016/j.egyr.2021.08.003]
[3]
Singh, R.; Oberoi, A.S.; Singh, T. Factors influencing the performance of PEM fuel cells: A review on performance parameters, water management, and cooling techniques. Int. J. Energy Res., 2022, 46(4), 3810-3842.
[http://dx.doi.org/10.1002/er.7437]
[4]
Olbrich, W.; Kadyk, T.; Sauter, U.; Eikerling, M. Review—wetting phenomena in catalyst layers of PEM fuel cells: Novel approaches for modeling and materials research. J. Electrochem. Soc., 2022, 169(5), 054521.
[http://dx.doi.org/10.1149/1945-7111/ac6e8b]
[5]
Wang, Y.; Ruiz Diaz, D.F.; Chen, K.S.; Wang, Z.; Adroher, X.C. Materials, technological status, and fundamentals of PEM fuel cells - A review. Mater. Today, 2020, 32, 178-203.
[http://dx.doi.org/10.1016/j.mattod.2019.06.005]
[6]
Hooshyari, K.; Amini Horri, B.; Abdoli, H.; Fallah Vostakola, M.; Kakavand, P.; Salarizadeh, P. A review of recent developments and advanced applications of high-temperature polymer electrolyte membranes for pem fuel cells. Energies, 2021, 14(17), 5440.
[http://dx.doi.org/10.3390/en14175440]
[7]
Karanfil, G. Importance and applications of DOE/optimization methods in PEM fuel cells: A review. Int. J. Energy Res., 2020, 44(1), 4-25.
[http://dx.doi.org/10.1002/er.4815]
[8]
Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(5), 1808-1825.
[http://dx.doi.org/10.1039/C6TA08580F]
[9]
Ioroi, T.; Siroma, Z.; Yamazaki, S.; Yasuda, K. Electrocatalysts for PEM fuel cells. Adv. Energy Mater., 2019, 9(23), 1801284.
[http://dx.doi.org/10.1002/aenm.201801284]
[10]
Borbáth, I.; Zelenka, K.; Vass, Á.; Pászti, Z.; Szijjártó, G.P.; Sebestyén, Z.; Sáfrán, G.; Tompos, A. CO tolerant Pt electrocatalysts for PEM fuel cells with enhanced stability against electrocorrosion. Int. J. Hydrogen Energy, 2021, 46(25), 13534-13547.
[http://dx.doi.org/10.1016/j.ijhydene.2020.08.002]
[11]
Farid, I; Chutia, J; Bailung, H Co-sputtered low platinum loaded PtTi binary electrocatalysts for Proton Exchange Membrane (PEM) fuel cells. J. Chem. Sci., 2022, 134.
[12]
Glibin, V.P.; Cherif, M.; Vidal, F.; Dodelet, J.P.; Zhang, G.; Sun, S. Non-PGM electrocatalysts for PEM fuel cells: Thermodynamic stability and DFT evaluation of fluorinated FeN 4 -based ORR catalysts. J. Electrochem. Soc., 2019, 166(7), F3277-F3286.
[http://dx.doi.org/10.1149/2.0341907jes]
[13]
Charalampopoulos, G.; Maniatis, I.; Daletou, M. Non-PGM cathode electrocatalysts for PEM fuel cells. ECS Trans., 2023, 112(4), 335-341.
[http://dx.doi.org/10.1149/11204.0335ecst]
[14]
Chen, A.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev., 2010, 110(6), 3767-3804.
[http://dx.doi.org/10.1021/cr9003902] [PMID: 20170127]
[15]
Podleschny, P.; Rost, U.; Muntean, R.; Marginean, G.; Heinzel, A.; Peinecke, V.; Radev, I.; Muhler, M.; Brodmann, M. Investigation of carbon nanofiber-supported electrocatalysts with ultra-low platinum loading for the use in PEM fuel cells. Fuel Cells, 2018, 18(5), 586-593.
[http://dx.doi.org/10.1002/fuce.201700220]
[16]
Palma, V.; Vaiano, V.; Matarangolo, M.; Anello, G. Comparison of Pt/C electrocatalyst deposition methods for PEM fuel cells. Chem. Eng. Trans., 2018, 70, 1525-1530.
[http://dx.doi.org/10.3303/CET1870255]
[17]
Pushkareva, I.V.; Pushkarev, A.S.; Kalinichenko, V.N.; Chumakov, R.G.; Soloviev, M.A.; Liang, Y.; Millet, P.; Grigoriev, S.A. Reduced graphene oxide-supported pt-based catalysts for pem fuel cells with enhanced activity and stability. Catalysts, 2021, 11(2), 256.
[http://dx.doi.org/10.3390/catal11020256]
[18]
Karadeniz, S.; Ayas, N. Microwave-assisted synthesis of Pt/C catalyst at high temperatures for PEM fuel cells. Int. J. Hydrogen Energy, 2024, 52, 1564-1576.
[http://dx.doi.org/10.1016/j.ijhydene.2023.09.147]
[19]
Ortiz-Herrera, J.C.; Cruz-Martínez, H.; Solorza-Feria, O.; Medina, D.I. Recent progress in carbon nanotubes support materials for Pt-based cathode catalysts in PEM fuel cells. Int. J. Hydrogen Energy, 2022, 47(70), 30213-30224.
[http://dx.doi.org/10.1016/j.ijhydene.2022.03.218]
[20]
Félix-Navarro, R.M.; Beltrán-Gastélum, M.; Reynoso-Soto, E.A.; Paraguay-Delgado, F.; Alonso-Nuñez, G.; Flores-Hernández, J.R. Bimetallic Pt-Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction. Renew. Energy, 2016, 87, 31-41.
[http://dx.doi.org/10.1016/j.renene.2015.09.060]
[21]
Beom Cho, S.; He, C.; Sankarasubramanian, S.; Singh Thind, A.; Parrondo, J.; Hachtel, J.A.; Borisevich, A.Y.; Idrobo, J.C.; Xie, J.; Ramani, V.; Mishra, R. Metal-nitrogen-carbon cluster-decorated titanium carbide is a durable and inexpensive oxygen reduction reaction electrocatalyst. ChemSusChem, 2021, 14(21), 4680-4689.
[http://dx.doi.org/10.1002/cssc.202101341 ] [PMID: 34383996]
[22]
Alonso-Lemus, I.L.; Lardizabal, D.; de la Torre Saenz, L.; Sanchez-Castro, M.E.; Rodríguez-Varela, F.J. Development of free-metal electrocatalyst from inexpensive sources of carbon: A novel electrode material for cathode reaction in PEM fuel cells. ECS Trans., 2015, 69(17), 637-642.
[http://dx.doi.org/10.1149/06917.0637ecst]
[23]
Barkholtz, H.; Chong, L.; Kaiser, Z.; Xu, T.; Liu, D.J. Highly active non-PGM catalysts prepared from metal organic frameworks. Catalysts, 2015, 5(2), 955-965.
[http://dx.doi.org/10.3390/catal5020955]
[24]
Goswami, C.; Hazarika, K.K.; Bharali, P. Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater. Sci. Energy Technol., 2018, 1(2), 117-128.
[http://dx.doi.org/10.1016/j.mset.2018.06.005]
[25]
Kim, D.; Zussblatt, N.P.; Chung, H.T.; Becwar, S.M.; Zelenay, P.; Chmelka, B.F. Highly graphitic mesoporous Fe,N-doped carbon materials for oxygen reduction electrochemical catalysts. ACS Appl. Mater. Interfaces, 2018, 10(30), 25337-25349.
[http://dx.doi.org/10.1021/acsami.8b06009 ] [PMID: 30036030]
[26]
Güneş, S.; Güldür, F.Ç. Synthesis of OMC supported Pt catalysts and the effect of the metal loading technique on their PEM fuel cell performances. Chem. Eng. Commun., 2020, 207(7), 961-971.
[http://dx.doi.org/10.1080/00986445.2019.1635464]
[27]
Pillai, S.R.; Sonawane, S.H.; Gumfekar, S.P.; Suryawanshi, P.L.; Ashokkumar, M.; Potoroko, I. Continuous flow synthesis of nanostructured bimetallic Pt-Mo/C catalysts in milli-channel reactor for PEM fuel cell application. Mater. Chem. Phys., 2019, 237, 121854.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121854]
[28]
Kang, Y.; Wang, J.; Wei, Y.; Wu, Y.; Xia, D.; Gan, L. Engineering nanoporous and solid core-shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res., 2022, 15(7), 6148-6155.
[http://dx.doi.org/10.1007/s12274-022-4238-1]
[29]
Liu, Q.; Li, Y.; Zheng, L.; Shang, J.; Liu, X.; Yu, R.; Shui, J. Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells. Adv. Energy Mater., 2020, 10(20), 2000689.
[http://dx.doi.org/10.1002/aenm.202000689]
[30]
Liu, H.; Zhao, J.; Li, X. Controlled synthesis of carbon-supported pt-based electrocatalysts for proton exchange membrane fuel cells. Electrochemical Energy Rev., 2022, 5(4), 13.
[http://dx.doi.org/10.1007/s41918-022-00173-3] [PMID: 36212026]
[31]
Zhu, Y.J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev., 2014, 114(12), 6462-6555.
[http://dx.doi.org/10.1021/cr400366s] [PMID: 24897552]
[32]
Collins, M.J., Jr Future trends in microwave synthesis. Future Med. Chem., 2010, 2(2), 151-155.
[http://dx.doi.org/10.4155/fmc.09.133] [PMID: 21426181]
[33]
Sharma, R.; Wang, Y.; Li, F.; Chamier, J.; Andersen, S.M. Particle size-controlled growth of carbon-supported platinum nanoparticles (Pt/C) through water-assisted polyol synthesis. ACS Omega, 2019, 4(13), 15711-15720.
[http://dx.doi.org/10.1021/acsomega.9b02351] [PMID: 31572874]
[34]
Jaimes-Paez, C.D.; Vences-Alvarez, E.; Salinas-Torres, D.; Morallón, E.; Rangel-Mendez, J.R.; Cazorla-Amorós, D. Microwave-assisted synthesis of carbon-supported Pt nanoparticles for their use as electrocatalysts in the oxygen reduction reaction and hydrogen evolution reaction. Electrochim. Acta, 2023, 464, 142871.
[http://dx.doi.org/10.1016/j.electacta.2023.142871]
[35]
Sun, F.; Su, R.; Zhou, Y.; Li, H.; Meng, F.; Luo, Y.; Zhang, S.; Zhang, W.; Zha, B.; Zhang, S.; Huo, F. Synthesis of high-loading Pt/C electrocatalysts using a surfactant-assisted microwave discharge method for oxygen reduction reactions. ACS Appl. Mater. Interfaces, 2022, 14(36), 41079-41085.
[http://dx.doi.org/10.1021/acsami.2c11910] [PMID: 36043465]
[36]
Nie, N.; Zhang, D.; Wang, Z.; Qin, Y.; Zhai, X.; Yang, B.; Lai, J.; Wang, L. Superfast synthesis of densely packed and ultrafine Pt-Lanthanide@KB via solvent-free microwave as efficient hydrogen evolution electrocatalysts. Small, 2021, 17(36), 2102879.
[http://dx.doi.org/10.1002/smll.202102879] [PMID: 34337859]
[37]
Sharma, R.; Gyergyek, S.; Andersen, S.M. Microwave-assisted scalable synthesis of Pt/C: Impact of the microwave irradiation and carrier solution polarity on nanoparticle formation and aging of the support carbon. ACS Appl. Energy Mater., 2022, 5(1), 705-716.
[http://dx.doi.org/10.1021/acsaem.1c03189]
[38]
Nair, A.S.; Jafri, R.I. A facile one-step microwave synthesis of Pt deposited on N & P co-doped graphene intercalated carbon black - An efficient cathode electrocatalyst for PEM fuel cell. Int. J. Hydrogen Energy, 2023, 48(9), 3653-3664.
[http://dx.doi.org/10.1016/j.ijhydene.2022.10.210]
[39]
Lebègue, E.; Baranton, S.; Coutanceau, C. Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. J. Power Sources, 2011, 196(3), 920-927.
[http://dx.doi.org/10.1016/j.jpowsour.2010.08.107]
[40]
Hu, X.; Song, P.; Yang, X.; Wang, C.; Wang, J.; Tang, Y.; Zhang, J.; Mao, Z. One-step microwave-assisted synthesis of carbon-supported ternary Pt-Sn-Rh alloy nanoparticles for fuel cells. J. Taiwan Inst. Chem. Eng., 2020, 115, 272-278.
[http://dx.doi.org/10.1016/j.jtice.2020.10.008]
[41]
Sharma, R.; Wang, Y.; Li, F.; Chamier, J.; Andersen, S.M. Synthesis of a Pt/C electrocatalyst from a user-friendly Pt precursor (Ammonium Hexachloroplatinate) through microwave-assisted polyol synthesis. ACS Appl. Energy Mater., 2019, 2(9), 6875-6882.
[http://dx.doi.org/10.1021/acsaem.9b01336]
[42]
Hsieh, C-T.; Hung, W.M.; Chen, W.Y.; Lin, J.Y. Microwave-assisted polyol synthesis of Pt-Zn electrocatalysts on carbon nanotube electrodes for methanol oxidation. Int. J. Hydrogen Energy, 2011, 36(4), 2765-2772.
[http://dx.doi.org/10.1016/j.ijhydene.2010.11.030]
[43]
Sharma, R.; Gyergyek, S.; Chamier, J.; Morgen, P.; Andersen, S.M. Pt/C electrocatalyst durability enhancement by inhibition of Pt nanoparticle growth through microwave pretreatment of carbon support. ChemElectroChem, 2021, 8(6), 1183-1195.
[http://dx.doi.org/10.1002/celc.202100226]
[45]
Liao, L.W.; Li, M.F.; Kang, J.; Chen, D.; Chen, Y.X.; Ye, S. Electrode reaction induced pH change at the Pt electrode/electrolyte interface and its impact on electrode processes. J. Electroanal. Chem., 2013, 688, 207-215.
[http://dx.doi.org/10.1016/j.jelechem.2012.08.031]
[46]
Haque, M.A.; Rahman, M.M.; Islam, F.; Sulong, A.B.; Shyuan, L.K.; Rosli, R.; Chakraborty, A.K.; Haider, J. Kinetics of oxygen reduction reaction of polymer-coated MWCNT-Supported Pt-based electrocatalysts for high-temperature PEM fuel cell. Energies, 2023, 16(3), 1537.
[http://dx.doi.org/10.3390/en16031537]
[47]
Akther, J.; Pickup, P.G. Oxidation of formic acid, methanol, and ethanol at surface-modified Pt/C catalysts. ECS Trans., 2020, 97(7), 939-948.
[http://dx.doi.org/10.1149/09707.0939ecst]
[48]
Rodes, A.; Zamakhchari, M.A. Electrochemical behaviour of Pt(100) in various acidic media: Part II. On the relation between the voltammetric profiles induced by anion specific adsorption studied with a transfer technique preserving surface cleanliness and structure. J. Electroanalytical Chem., 1991, 338(1-2), 317-338.
[49]
Shen, D.; Liu, Y.; Yang, G.; Yu, H.; Peng, F. Mechanistic insights into cyclic voltammograms on Pt(111): Kinetics simulations. ChemPhysChem, 2019, 20(21), 2791-2798.
[http://dx.doi.org/10.1002/cphc.201900804 ] [PMID: 31509325]
[50]
Waenkaew, P.; Saipanya, S.; Maturost, S.; Themsirimongkon, S.; Somsunan, R.; Promsawan, N. Enhanced catalytic efficiency of bimetallic Pt-Pd on PAMPs-modified graphene oxide for formic acid oxidation. Int. J. Hydrogen Energy, 2022, 47(36), 16189-16200.
[http://dx.doi.org/10.1016/j.ijhydene.2022.03.094]
[51]
Safo, I.A.; Dosche, C.; Oezaslan, M. TEM, FTIR and electrochemistry study: Desorption of PVP from Pt nanocubes. Z. Phys. Chem., 2018, 232(9-11), 1319-1333.
[http://dx.doi.org/10.1515/zpch-2018-1147]
[52]
Cheng, Z.; Luo, J.J.; Yan, L.Y.; Tian, G.X.; Zhang, R.H.; Chen, L. Facile loading of ultrafine Pt nanoparticles on white carbon black for the enhanced methanol oxidation reaction. Ionics, 2024.
[http://dx.doi.org/10.1007/s11581-024-05371-1]
[53]
Hu, Y.; Jensen, J.O.; Bretzler, P.; Cleemann, L.N.; Yu, J.; Li, Q. Revealing the genuine stability of the reference Pt/C electrocatalyst toward the ORR. Electrochim. Acta, 2021, 391, 138963.
[http://dx.doi.org/10.1016/j.electacta.2021.138963]
[54]
The US Department of Energy (DOE). Multi-year research, development, and demonstration plan: Fuel cells section n.d. Available from: https://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf (Accessed January 31, 2024)
[55]
Xia, Y.F.; Guo, P.; Li, J.Z.; Zhao, L.; Sui, X.L.; Wang, Y.; Wang, Z.B. How to appropriately assess the oxygen reduction reaction activity of platinum group metal catalysts with rotating disk electrode. iScience, 2021, 24(9), 103024.
[http://dx.doi.org/10.1016/j.isci.2021.103024] [PMID: 34585108]
[56]
Zeng, Z.; Küspert, S.; Balaghi, S.E.; Hussein, H.E.M.; Ortlieb, N.; Knäbbeler-Buß, M.; Hügenell, P.; Pollitt, S.; Hug, N.; Melke, J.; Fischer, A. Ultra high mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction. Small, 2023, 19(29), 2205885.
[http://dx.doi.org/10.1002/smll.202205885] [PMID: 36950754]
[57]
Nagata, T.; Oda, A.; Yamamoto, Y.; Ichihashi, R.; Sawabe, K.; Satsuma, A. High Pt-mass activity of PtIV1/β-MnO 2 surface for low-temperature oxidation of CO under O 2 -rich conditions. Catal. Sci. Technol., 2022, 12(9), 2749-2754.
[http://dx.doi.org/10.1039/D2CY00677D]
[58]
Choi, K.J.; Kim, S.K. A Pt cathode with high mass activity for proton exchange membrane water electrolysis. Int. J. Hydrogen Energy, 2023, 48(3), 849-863.
[http://dx.doi.org/10.1016/j.ijhydene.2022.09.308]
[59]
Manivannan, N.; Kumawat, A.S.; Vasantha, V.S. Investigation of oxygen reduction reaction activity on Pt-Fe/C catalyst. Ionics, 2023, 29(9), 3703-3711.
[http://dx.doi.org/10.1007/s11581-023-05073-0]
[60]
Chen, H.Y.T.; Chou, J.P.; Lin, C.Y.; Hu, C.W.; Yang, Y.T.; Chen, T.Y. Heterogeneous Cu-Pd binary interface boosts stability and mass activity of atomic Pt clusters in the oxygen reduction reaction. Nanoscale, 2017, 9(21), 7207-7216.
[http://dx.doi.org/10.1039/C7NR01224A] [PMID: 28513715]
[61]
Shi, W.; Park, A.H.; Kwon, Y.U. Scalable synthesis of (Pd,Cu)@Pt core-shell catalyst with high ORR activity and durability. J. Electroanal. Chem., 2022, 918, 116451.
[http://dx.doi.org/10.1016/j.jelechem.2022.116451]
[62]
Sohn, Y.; Jung, N.; Lee, M.J.; Lee, S.; Nahm, K.S.; Kim, P.; Jong Yoo, S. Preparation of porous PtAuCu@Pt core-shell catalyst for application to oxygen reduction. J. Ind. Eng. Chem., 2019, 79, 210-216.
[http://dx.doi.org/10.1016/j.jiec.2019.06.039]
[63]
Park, H.; Kim, D.K.; Kim, H.; Oh, S.; Jung, W.S.; Kim, S.K. Binder-coated electrodeposited PtNiCu catalysts for the oxygen reduction reaction in high-temperature polymer electrolyte membrane fuel cells. Appl. Surf. Sci., 2020, 510, 145444.
[http://dx.doi.org/10.1016/j.apsusc.2020.145444]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy