Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Cobalt(III)–porphyrin Complex as an Efficient and Recyclable Homogeneous Catalyst for the Synthesis of Tetrahydro-2-oxa-4-thia-diazapentalen-5-one Derivatives in Aqueous Medium

Author(s): Hany M. Abd El-Lateef*, Thomas Nady A. Eskander, Mohammad Saleh Hussein Alzubi, Mai M. Khalaf and Mahmoud Abd El Aleem Ali Ali El-Remaily*

Volume 28, Issue 6, 2024

Published on: 18 March, 2024

Page: [463 - 471] Pages: 9

DOI: 10.2174/0113852728295698240220081550

Price: $65

Abstract

In this study, we successfully synthesized the CoPHrn complex as an efficient and recyclable catalyst for the one-pot, three-component reaction of aromatic aldehydes, 2,4-thiazolidenedione, and hydroxylamine hydrochloride, leading to the synthesis of tetrahydro- 2-oxa-4-thia-diazapentalen-5-one derivatives under environmentally friendly conditions. The structures of the newly formed compounds were determined through elemental and spectral analyses. This methodology offers significant advantages, including its ecofriendliness, cost-effectiveness, operational simplicity, extensive reusability, and applicability, as well as the easy recovery of the catalyst using straightforward methods. Additionally, a series of tetrahydro-2-oxa-4-thia-diazapentalen-5-one derivatives were successfully synthesized. Notably, this novel procedure demonstrates remarkable benefits in terms of safety, simplicity, stability, mild reaction conditions, short reaction times, excellent yields, and high purity, all achieved without the use of hazardous solvents.

Graphical Abstract

[1]
(a) Stefan, L.; Xu, H.J.; Gros, C.P.; Denat, F.; Monchaud, D. Harnessing nature’s insights: Synthetic small molecules with peroxidase-mimicking DNAzyme properties. Chemistry, 2011, 17(39), 10857-10862.
[http://dx.doi.org/10.1002/chem.201101337] [PMID: 21919091];
(b) Herrmann, W.A.; Kohlpaintner, C.W. Water-soluble ligands, metal complexes, and catalysts: Synergism of homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 1993, 32, 1524-1544.;
(c) Dixneuf, P.; Cadierno, V. Metal-Catalyzed Reactions in Water; Wiley-VCH: Weinheim, 2013.
[http://dx.doi.org/10.1002/9783527656790]
[2]
El-Mawgoud, H.K.A. Synthesis, in-vitro cytotoxicity and antimicrobial evaluations of some novel thiazole based heterocycles. Chem. Pharm. Bull., 2019, 67(12), 1314-1323.
[http://dx.doi.org/10.1248/cpb.c19-00681] [PMID: 31787658]
[3]
(a) Keerthi, K.K.; Ujwaldev, S.M.; Kallikkakam, S.S.; Anilkumar, G. Recent advances in the transition metal catalyzed etherification reactions. Tetrahedron., 2016, 72, 7393e7407.;
(b) Thiyam, M.; Devi, T.R.; Singh, L.W. Synthesis of biologically active 2-thio-5-arylbenzo[4,5]thiazolopyrimido[5,4-d]pyrimidin-4-one derivatives catalyzed by metal proline in water. Indian J. Chem. Br., 2021, 60(9), 1230.
[4]
Li, C.J. Quasi-nature catalysis: Developing C-C bond formations catalyzed by late transition metals in air and water. Acc. Chem. Res., 2002, 35(7), 533-538.
[http://dx.doi.org/10.1021/ar0100125] [PMID: 12118992]
[5]
El-Remaily, M.A.E.A.A.A.; Elhady, O.; Abdou, A.; Alhashmialameer, D.; Eskander, T.N.A.; Abu-Dief, A.M. Development of new 2-(Benzothiazol-2-ylimino)-2,3-dihydro-1H-imidazol-4-ol complexes as a robust catalysts for synthesis of thiazole 6-carbonitrile derivatives supported by DFT studies. J. Mol. Struct., 2023, 1292, 136188.
[http://dx.doi.org/10.1016/j.molstruc.2023.136188]
[6]
El-Remaily, M.A.A.; Elhady, O.; Eskander, T.N.A.; Shaaban, M.K.; Abu-Dief, A.M. Development of novel guanidine iron (III) complexes as a powerful catalyst for the synthesis of tetrazolo[1,5-a]pyrimidine by green protocol. Sohag. J. Sci., 2024, 9(1), 7-15.
[7]
(a) Chen, C.; Zuo, H.; Chan, K.S. Catalytic hydrodebromination of aryl bromides by cobalt tetra-butyl porphyrin complexes with EtOH. Tetrahedron, 2019, 75(4), 510-517.
[http://dx.doi.org/10.1016/j.tet.2018.12.010];
(b) Abu-Dief, A.M.; Said, M.A.; Elhady, O.; Alzahrani, S.; Aljohani, F.S.; Eskander, T.N.A.; El-Remaily, A.M.A.E.A.A. Design, structural inspection of some new metal chelates based on benzothiazol-pyrimidin-2-ylidene ligand: Biomedical studies and molecular docking approach. Inorg. Chem. Commun., 2023, 158, 111587.
[http://dx.doi.org/10.1016/j.inoche.2023.111587]
[8]
Castaño, B.J.; Vargas, C.C.; Brocksom, T.; de Oliveira, K. Porphyrins as catalysts in scalable organic reactions. Molecules, 2016, 21(3), 310.
[http://dx.doi.org/10.3390/molecules21030310] [PMID: 27005601]
[9]
Hong, Y.H.; Han, J.W.; Jung, J.; Nakagawa, T.; Lee, Y-M.; Nam, W.; Fukuzumi, S. Photocatalytic oxygenation reactions with a cobalt porphyrin complex using water as an oxygen source and dioxygen as an oxidant. J. Am. Chem. Soc., 2019, 141(23), 9155-9159.
[http://dx.doi.org/10.1021/jacs.9b02864] [PMID: 30943724]
[10]
Ahmed, E.; Khodairy, A. One-step, low-cost, operator-friendly, and scalable procedure to synthetize novel tetrazolo pyrimidinyl benzopyran-2-ones by benign protocol. Curr. Org. Chem., 2022, 26(24), 2215.
[11]
Lee, E.S.; Park, J.G.; Jahng, Y. A facile synthesis of simple alkaloids-synthesis of 2,3-polymethylene-4(3H)-quinazolinones and related alkaloids. Tetrahedron Lett., 2003, 44(9), 1883-1886.
[http://dx.doi.org/10.1016/S0040-4039(03)00080-7]
[12]
Ahmed, E.A.; Soliman, A.M.M.; Ali, A.M.; El-Remaily, A.M.A.E.A.A. Boosting the catalytic performance of zinc linked amino acid complex as an eco‐friendly for synthesis of novel pyrimidines in aqueous medium. Appl. Organomet. Chem., 2021, 35(5), e6197.
[http://dx.doi.org/10.1002/aoc.6197]
[13]
Batanero, B.; Barba, F. Electrosynthesis of tryptanthrin. Tetrahedron Lett., 2006, 47(47), 8201-8203.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.130]
[14]
Liu, W.; Sahoo, B.; Junge, K.; Beller, M. Cobalt complexes as an emerging class of catalysts for homogeneous hydrogenations. Acc. Chem. Res., 2018, 51(8), 1858-1869.
[http://dx.doi.org/10.1021/acs.accounts.8b00262] [PMID: 30091891]
[15]
Junge, K.; Papa, V.; Beller, M. Cobalt–pincer complexes in catalysis. Chemistry, 2019, 25(1), 122-143.
[http://dx.doi.org/10.1002/chem.201803016] [PMID: 30182374]
[16]
Shende, V.S.; Saptal, V.B.; Bhanage, B.M. Recent advances utilized in the recycling of homogeneous catalysis. Chem. Rec., 2019, 19(9), 2022-2043.
[http://dx.doi.org/10.1002/tcr.201800205] [PMID: 31021522]
[17]
Schnoor, K.O.; Martin, F.; Bocking, A.; Wessling, M.; Liauw, M.A. Homogeneous catalyst recycling and separation of a multicomponent mixture using organic solvent nanofiltration. Chem. Eng. Technol., 2019, 42(10), 2187-2194.
[http://dx.doi.org/10.1002/ceat.201900110]
[18]
(a) Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev., 1971, 7(1), 81-122.
[http://dx.doi.org/10.1016/S0010-8545(00)80009-0];
(b) Abu-Dief, A.M.; Musa, A.; Elhady, O.M.; Alahmadi, N.; Alzahrani, S.; Eskander, T.M.A.; El-Remaily, M.A.A. Designing of some novel Pd(II), Ni(II) and Fe(III) complexes: Synthesis, structural elucidation, biomedical applications, DFT and docking approaches against COVID-19. Inorg. Chem. Commun., 2023, 155, 110955.
[http://dx.doi.org/10.1016/j.inoche.2023.110955];
(c) Abu-Dief, A.M.; Said, M.A.; Elhady, O.; Al-Abdulkarim, H.A.; Alzahrani, S.; Eskander, T.N.A.; El-Remaily, M.A.E.A.A.A. Innovation of Fe(III), Ni(II), and Pd(II) complexes derived from benzothiazole imidazolidin‐4‐ol ligand: Geometrical elucidation, theoretical calculation, and pharmaceutical studies. Appl. Organomet. Chem., 2023, 37(8), e7162.
[http://dx.doi.org/10.1002/aoc.7162]
[19]
(a) Nakazono, T.; Parent, A.R.; Sakai, K. Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem. Commun., 2013, 49(56), 6325-6327.
[http://dx.doi.org/10.1039/c3cc43031f] [PMID: 23743719];
(b) Satoh, M.Y.O.; Yamauchi, S.; Iwaizumi, M. Temperature-and axial-ligand-dependent EPR spectra of cobalt porphyrin cation radicals: effects of mixing of the A1u and A2u states and a locally excited triplet state. Inorg. Chem., 1992, 31, 298.
[http://dx.doi.org/10.1021/ic00028a032]
[20]
Sakurai, T.; Yamamoto, K.; Naito, H.; Nakamoto, N. The crystal and molecular structure of chloro-α,β,γ,δ-tetraphenylporphinatocobalt(III). Bull. Chem. Soc. Jpn., 1976, 49(11), 3042-3046.
[http://dx.doi.org/10.1246/bcsj.49.3042]
[21]
Fukuzumi, S.; Okamoto, K.; Tokuda, Y.; Gros, C.P.; Guilard, R. Dehydrogenation versus oxygenation in two-electron and four-electron reduction of dioxygen by 9-alkyl-10-methyl-9,10-dihydroacridines catalyzed by monomeric cobalt porphyrins and cofacial dicobalt porphyrins in the presence of perchloric acid. J. Am. Chem. Soc., 2004, 126(51), 17059-17066.
[http://dx.doi.org/10.1021/ja046422g] [PMID: 15612745]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy