Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Letter Article

Studying the Effects of Curd as a Biocatalyst in Multicomponent Biginelli Reaction

In Press, (this is not the final "Version of Record"). Available online 14 March, 2024
Author(s): Surbhi B. Joshi*, Rahulkumar Singh, Khushbu Parekh, Dhara Javiya, Kirti Gandhi, Dhruv Patel and Rahul Bariya
Published on: 14 March, 2024

DOI: 10.2174/0122133372294408240305111712

Price: $95

Abstract

Introduction: Dihydropyrimidinone (DHPM) is a very useful moiety with a wide range of applications. Synthesis of this moiety with environmentally friendly methods is the demand of the era.

Method: In recent research, the optimisation of curd as a biocatalyst has been studied. It has been reported that it can be used directly in the multicomponent Biginelli synthesis of ethyl 6-methyl-2- oxo-4-benzyl-1,2,3,4-tetrahydropyrimidine-5-carboxylates under mild reaction conditions.

Result: The chemical structures of synthesized compounds were characterized by physicochemical and analytical methods (1H NMR, IR and LC-MS methods) and it was found that curd is suitable for a vast variety of aromatic aldehydes to obtain the corresponding DHPMs.

Conclusion: This new eco-friendly approach can be implemented to synthesize DHPMs for different applications.

[1]
Al-Mulla, A. Der Pharma Chem, 2017, 9, 141-147.
[2]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: a review. Int. J. Pharma Sci., 2012, 3, 2947-2954.
[3]
Alvarez-Builla, J.; Barluenga, J. Modern heterocyclic chemistry; Wiley: New York, 2011.
[http://dx.doi.org/10.1002/9783527637737]
[4]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839-3842.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[5]
Buntrock, R.E. Review of heterocyclic chemistry, 5th Edition. J. Chem. Educ., 2012, 89(11), 1349-1350.
[http://dx.doi.org/10.1021/ed300616t]
[6]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[7]
Cabrele, C.; Reiser, O. The modern face of synthetic heterocyclic chemistry. J. Org. Chem., 2016, 81(21), 10109-10125.
[http://dx.doi.org/10.1021/acs.joc.6b02034] [PMID: 27680573]
[8]
Sapra, R.; Patel, D.; Meshram, D. A mini review: recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. J. Med. Chem. Sci, 2020, 3, 71-78.
[9]
de la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules, 2021, 26(3), 1-627.
[http://dx.doi.org/10.3390/molecules26030627]
[10]
Challener, C. Advances in heterocyclic chemistry for API synthesis. Pharm. Technol., 2015, 39(11)
[11]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[12]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances, 2020, 10(24), 14170-14197.
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[13]
Chugh, V.; Pandey, G.; Rautela, R.; Mohan, C. Heterocyclic compounds containing thiazole ring as important material in medicinal chemistry. Mater. Today Proc., 2022, 69, 478-481.
[http://dx.doi.org/10.1016/j.matpr.2022.09.150]
[14]
Liu, J.C.; Narva, S.; Zhou, K.; Zhang, W. A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors. Mini Rev. Med. Chem., 2019, 19(18), 1517-1530.
[http://dx.doi.org/10.2174/1389557519666190312152358] [PMID: 30864519]
[15]
Chugh, A.; Kumar, A.; Verma, A.; Kumar, S.; Kumar, P. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Med. Chem. Res., 2020, 29, 1723-1750.
[16]
Dasmahapatra, U.; Chanda, K. Synthetic approaches to potent heterocyclic inhibitors of tuberculosis: A decade review. Front. Pharmacol., 2022, 13, 1021216.
[http://dx.doi.org/10.3389/fphar.2022.1021216]
[17]
Yan, M.; Ma, S. Recent advances in the research of heterocyclic compounds as antitubercular agents. ChemMedChem, 2012, 7(12), 2063-2075.
[http://dx.doi.org/10.1002/cmdc.201200339] [PMID: 23042656]
[18]
Gobis, K.; Foks, H.; Bojanowski, K.; Augustynowicz-Kopeć, E.; Napiórkowska, A. Synthesis of novel 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds and their evaluation for tuberculostatic activity. Bioorg. Med. Chem., 2012, 20(1), 137-144.
[http://dx.doi.org/10.1016/j.bmc.2011.11.020] [PMID: 22153872]
[19]
Mohammad, A.; Mohd, I. Abida. Antimicrobial activities of various thiazine based heterocyclic compounds: a mini-review. Mini Rev. Org. Chem., 2022, 19, 166-172.
[http://dx.doi.org/10.2174/1570193X18666210629102447]
[20]
Desai, N.C.; Bhatt, N.B.; Joshi, S.B.; Jadeja, K.A.; Khedkar, V.M. Synthesis, antimicrobial activity and 3D‐QSAR study of hybrid oxazine clubbed pyridine scaffolds. ChemistrySelect, 2019, 4(25), 7541-7550.
[http://dx.doi.org/10.1002/slct.201901391]
[21]
Sayed, M.; Kamal El-Dean, A.M.; Ahmed, M.; Hassanien, R. Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synth. Commun., 2018, 48(4), 413-421.
[http://dx.doi.org/10.1080/00397911.2017.1403627]
[22]
Ozdemir, S.B.; Cebeci, Y.U.; Bayrak, H.; Mermer, A.; Ceylan, S.; Demirbas, A.; Karaoglu, S.A.; Demirbas, N. Heterocycl. Commun., 2017, 23, 43-54.
[http://dx.doi.org/10.1515/hc-2016-0125]
[23]
Foks, H.; Balewski, L.; Gobis, K.; Dabrowska-Szponar, M.; Wisniewska, K. Studies on pyrazine derivatives LII: Antibacterial and antifungal activity of nitrogen heterocyclic compounds obtained by pyrazinamidrazone usage. Heteroatom Chem., 2012, 23(1), 49-58.
[http://dx.doi.org/10.1002/hc.20751]
[24]
Bhandare, R.R.; Munikrishnappa, C.S.; Suresh Kumar, G.V.; Konidala, S.K.; Sigalapalli, D.K.; Vaishnav, Y.; Chinnam, S.; Yasin, H.; Al-karmalawy, A.A.; Shaik, A.B. Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents. J. Saudi Chem. Soc., 2022, 26(3), 1-101447.
[http://dx.doi.org/10.1016/j.jscs.2022.101447]
[25]
Desai, N.C.; Joshi, S.B.; Jadeja, K.A. A one‐pot multicomponent Biginelli reaction for the preparation of novel pyrimidinthione derivatives as antimicrobial agents. J. Heterocycl. Chem., 2020, 57(2), 791-795.
[http://dx.doi.org/10.1002/jhet.3821]
[26]
Chaurasia, H.; Singh, V.K.; Mishra, R.; Rai, P.K.; Choure, K.; Pandey, A. Molecular modelling, DFT, molecular dynamics simulations, synthesis and antimicrobial potential studies of heterocyclic nucleoside mimetics. J. Mol. Struct., 2022, 134071.
[http://dx.doi.org/10.1016/j.molstruc.2022.134071]
[27]
Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem., 2020, 28(15), 115585.
[http://dx.doi.org/10.1016/j.bmc.2020.115585] [PMID: 32631563]
[28]
Alhamzani, A.G.; Yousef, T.A.; Abou-Krisha, M.M.; Raghu, M.S.; Yogesh Kumar, K.; Prashanth, M.K.; Jeon, B.H. Design, synthesis, molecular docking and pharmacological evaluation of novel triazine-based triazole derivatives as potential anticonvulsant agents. Bioorg. Med. Chem. Lett., 2022, 77, 129042.
[http://dx.doi.org/10.1016/j.bmcl.2022.129042] [PMID: 36332884]
[29]
Zara, H.; Ali, R.; Nima, R. Anti-cancer nitrogen-containing heterocyclic compounds. Curr. Org. Chem., 2018, 22, 2256-2279.
[http://dx.doi.org/10.2174/1385272822666181008142138]
[30]
Bsharat, I.; Abdalla, L.; Sawafta, A.; Abu-Reidah, I.M.; Al-Nuri, M.A. Synthesis, characterization, antibacterial and anticancer activities of some heterocyclic imine compounds. J. Mol. Struct., 2023, 1289, 135789.
[http://dx.doi.org/10.1016/j.molstruc.2023.135789]
[31]
Schroeder, A.C.; Bardos, T.J.; Cheng, Y.C. Synthesis and antiviral activity of 1-(2-deoxy-.beta.-D-ribofuranosyl)-5-(methylmercapto)-2-pyrimidinone. J. Med. Chem., 1981, 24(1), 109-112.
[http://dx.doi.org/10.1021/jm00133a022] [PMID: 6259353]
[32]
Rashad, A.E.; Shamroukh, A.H.; Yousif, N.M.; Salama, M.A.; Ali, H.S.; Ali, M.M.; Mahmoud, A.E.; El-Shahat, M. New pyrimidinone and fused pyrimidinone derivatives as potential anticancer chemotherapeutics. Arch. Pharm., 2012, 345(9), 729-738.
[http://dx.doi.org/10.1002/ardp.201200119] [PMID: 22674829]
[33]
De, A.; Sarkar, S.; Majee, A. Recent advances on heterocyclic compounds with antiviral properties. Chem. Heterocycl. Compd., 2021, 57(4), 410-416.
[http://dx.doi.org/10.1007/s10593-021-02917-3]
[34]
Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
[35]
Cherukupalli, S.; Hampannavar, G.A.; Chinnam, S.; Chandrasekaran, B.; Sayyad, N.; Kayamba, F.; Reddy Aleti, R.; Karpoormath, R. An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold. Bioorg. Med. Chem., 2018, 26(2), 309-339.
[http://dx.doi.org/10.1016/j.bmc.2017.10.012] [PMID: 29273417]
[36]
Singh, K.; Singh, K.; Wan, B.; Franzblau, S.; Chibale, K.; Balzarini, J. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem., 2011, 46(6), 2290-2294.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.010] [PMID: 21450375]
[37]
Prasad, T.; Mahapatra, A.; Sharma, T.; Sahoo, C.R.; Padhy, R.N. Dihydropyrimidinones as potent anticancer agents: Insight into the structure–activity relationship. Arch. Pharm., 2023, 356(6), 2200664.
[http://dx.doi.org/10.1002/ardp.202200664] [PMID: 36942985]
[38]
Khan, M.S.; Nawaz, M.A.; Jalil, S.; Rashid, F.; Hameed, A.; Asari, A.; Mohamad, H.; Rehman, A.U.; Iftikhar, M.; Iqbal, J.; al-Rashida, M. Deep eutectic solvent mediated synthesis of 3,4-dihydropyrimidin-2(1H)-ones and evaluation of biological activities targeting neurodegenerative disorders. Bioorg. Chem., 2022, 118, 1-105457.
[http://dx.doi.org/10.1016/j.bioorg.2021.105457]
[39]
Dash, A.K.; Nayak, D.; Hussain, N.; Mintoo, M.J.; Bano, S.; Katoch, A.; Mondhe, D.M.; Goswami, A.; Mukherjee, D. Synthesis and investigation of the role of benzopyran dihydropyrimidinone hybrids in cell proliferation, migration and tumor growth. Anticancer. Agents Med. Chem., 2019, 19(2), 276-288.
[http://dx.doi.org/10.2174/1871520618666180903101422] [PMID: 30179143]
[40]
Ling, Y.; Hao, Z.Y.; Liang, D.; Zhang, C.L.; Liu, Y.F.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Devel. Ther., 2021, 15, 4289-4338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[41]
Drugbank online. Available from: https://go.drugbank.com/drugs/DB00249 (Accessed on 19 October, 2023).
[42]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[43]
Aminophylline. Available from: https://go.drugbank.com/drugs/DB01223 (Accessed on 19 October 2023).
[44]
Emivirine. Available from: https://go.drugbank.com/drugs/DB08188 (Accessed on 19 October 2023).
[45]
Riboflavin. Available from: https://go.drugbank.com/drugs/DB00140 (Accessed on 19 October 2023).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy